Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7377-2021
https://doi.org/10.5194/gmd-14-7377-2021
Model experiment description paper
 | 
01 Dec 2021
Model experiment description paper |  | 01 Dec 2021

Recalculation of error growth models' parameters for the ECMWF forecast system

Hynek Bednář, Aleš Raidl, and Jiří Mikšovský

Related authors

Prediction error growth in a more realistic atmospheric toy model with three spatiotemporal scales
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 15, 4147–4161, https://doi.org/10.5194/gmd-15-4147-2022,https://doi.org/10.5194/gmd-15-4147-2022, 2022
Short summary

Related subject area

Numerical methods
Modeling large‐scale landform evolution with a stream power law for glacial erosion (OpenLEM v37): benchmarking experiments against a more process-based description of ice flow (iSOSIA v3.4.3)
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023,https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
A mixed finite-element discretisation of the shallow-water equations
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev., 16, 1265–1276, https://doi.org/10.5194/gmd-16-1265-2023,https://doi.org/10.5194/gmd-16-1265-2023, 2023
Short summary
Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling
Anthony Gruber, Max Gunzburger, Lili Ju, Rihui Lan, and Zhu Wang
Geosci. Model Dev., 16, 1213–1229, https://doi.org/10.5194/gmd-16-1213-2023,https://doi.org/10.5194/gmd-16-1213-2023, 2023
Short summary
Massively parallel modeling and inversion of electrical resistivity tomography data using PFLOTRAN
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev., 16, 961–976, https://doi.org/10.5194/gmd-16-961-2023,https://doi.org/10.5194/gmd-16-961-2023, 2023
Short summary
Parallelized domain decomposition for multi-dimensional Lagrangian random walk mass-transfer particle tracking schemes
Lucas Schauer, Michael J. Schmidt, Nicholas B. Engdahl, Stephen D. Pankavich, David A. Benson, and Diogo Bolster
Geosci. Model Dev., 16, 833–849, https://doi.org/10.5194/gmd-16-833-2023,https://doi.org/10.5194/gmd-16-833-2023, 2023
Short summary

Cited articles

Alligood, K. T., Sauer, T. D., and Yorke, J. A.: Chaos an Introduction to Dynamical System, Springer, New York, USA, 1996. 
Bednář, H.: Recalculation of error growth models’ parameters for the ECMWF forecast system, OSF [code and data set] https://doi.org/10.17605/OSF.IO/CEK32, 2020. 
Bengtsson, L. K., Magnusson, L., and Kallen, E.: Independent Estimations of the Asymptotic Variability in an Ensemble Forecast System, Mon. Weather Rev., 136, 4105–4112, https://doi.org/10.1175/2008MWR2526.1, 2008. 
Brisch, J. and Kantz, H.: Power law error growth in multi-hierarchical chaotic system-a dynamical mechanism for finite prediction horizon, New J. Phys., 21, 1–7, https://doi.org/10.1088/1367-3630/ab3b4c, 2019. 
Buizza, R.: Horizontal Resolution Impact on Short- and Long-range Forecast Error, Q. J. Roy. Meteorol. Soc., 136, 1020–1035, https://doi.org/10.1002/qj.613, 2010. 
Download
Short summary
Forecast errors in numerical weather prediction systems grow in time. To quantify the impacts of this growth, parametric error growth models may be employed. This study recalculates and newly defines parameters for several statistic models approximating error growth in the ECMWF forecasting system. Accurate values of parameters are important because they are used to evaluate improvements of the forecasting systems or to estimate predictability.