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Abstract. This article provides a new estimate of er-
ror growth models’ parameters approximating predictabil-
ity curves and their differentials, calculated from data of the
ECMWF forecast system over the 1986 to 2011 period. Es-
timates of the largest Lyapunov exponent are also provided,
along with model error and the limit value of the predictabil-
ity curve. The proposed correction is based on the ability of
the Lorenz (2005) system to simulate the predictability curve
of the ECMWF forecasting system and on comparing the pa-
rameters estimated for both these systems, as well as on com-
parison with the largest Lyapunov exponent (λ= 0.35 d−1)
and limit value of the predictability curve (E∞ = 8.2) of the
Lorenz system. Parameters are calculated from the quadratic
model with and without model error, as well as by the log-
arithmic, general, and hyperbolic tangent models. The aver-
age value of the largest Lyapunov exponent is estimated to be
in the < 0.32; 0.41> d−1 range for the ECMWF forecasting
system; limit values of the predictability curves are estimated
with lower theoretically derived values, and a new approach
for the calculation of model error based on comparison of
models is presented.

1 Introduction

Forecast errors in numerical weather prediction systems
grow in time because of the inaccuracy of the initial state (ini-
tial error), chaotic nature of the system itself, and the model
imperfections (model error). The growth of forecast error in
weather prediction is exponential on average. As an error be-
comes larger, its growth slows down and then stops, with the
magnitude saturating at about the average distance between
two states chosen randomly from dynamically and statisti-

cally possible states (limit, or saturated, error). For very short
lead times the error growth could be superexponential either
due to small-scale processes (Zhang et al., 2019) or due to
decorrelation between analysis and forecast errors. This av-
erage growth of forecast error as a function of time is called
the predictability curve.

Predictability curves (Froude et al., 2013) of the European
Centre for Medium-Range Weather Forecasts (ECMWF) nu-
merical weather prediction system are calculated by the ap-
proach developed by Lorenz (1982), whereby two types of
error growth can be obtained (Lorenz, 1982). The first type is
calculated as the root mean square difference between fore-
cast data of increasing lead times and analysis data valid for
the same time. This error growth estimate consists of initial
and model error that is often referred to as practical pre-
dictability, but following Lorenz (1982) we will call it the
lower-bound predictability curve (L). The second type is cal-
culated as the root mean square difference between pairs of
forecasts valid for the same time but with times differing by
some fixed time interval (the difference between two fore-
casts issued with 24 h lag but valid at the same time is used
in this article). This type, which is historically referred to as
the perfect model assumption, consists of initial error, and
we will call it the upper-bound predictability curve (U ). Pre-
dictability curves of Lorenz’s 05 system (L05; Lorenz, 2005)
can be controlled by model parameters and by the size of the
initial error, and they are set to be as close to predictability
curves of ECMWF forecasting system as possible.

Over the years several error growth models approximat-
ing predictability curves have been developed, aiming to
quantify Lyapunov exponents, model errors (for the im-
perfect model case in which the atmosphere is not per-
fectly modeled), and limit (saturated) errors. The first, called
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quadratic (Km), was designed by Lorenz (1969). Dalcher and
Kalney (1987) added model error to the quadratic model,
and Savijarvi (1995) changed it to the form (Kmβ ) that
is used today. An alternative, called the logarithmic model
(Lm), was introduced by Trevisan et al. (1992) and Trevisan
(1993). The general model (Gm) was introduced by Stroe
and Royer (1993, 1994). All these models are based on time
derivatives of the error (error growth rate). Newer models ap-
proximate the predictability curve directly by the hyperbolic
tangent (Tm and Tmβ ) (Žagar et al., 2017).

Values of parameters calculated from error growth mod-
els are used to evaluate the improvement of the ECMWF
forecasting system (Magnusson and Kallen, 2013), to esti-
mate the predictability or the limit error (Bengtsson et al.,
2008), to quantify impacts of different model resolutions
(Buizza, 2010), and to study chaos and model error on differ-
ent spatial–temporal scales (Žagar et al., 2015, 2017). They
are also used by researchers when the need arises to estimate
chaoticity, model error, or predictability, but their validity
cannot be proven because standard methods (Sprott, 2006)
to calculate the largest Lyapunov exponents for the ECMWF
forecasting system cannot be used due to a large number of
variables. An independent value estimated from forecast and
analysis anomalies can be calculated for the limit error (Sim-
mons et al., 1995), and its validity will be discussed. The
need for correct values of error growth models’ parameters
is increasing because the quadratic model with model error
is used to describe multiscale weather (Zhang et al., 2019); a
parameter that usually measures model error represents the
intrinsic upscale error growth and propagation from small
scales here.

This article intends to provide a new estimate of parame-
ters of error growth models in the ECMWF forecasting sys-
tem calculated from data over the 1986 to 2011 period. The
correction is based on comparing the parameters calculated
from the error growth models for the L05 system and the
ECMWF forecasting system as well as on comparison with
the largest Lyapunov exponent and the limit value of the pre-
dictability curve of the L05 system that can be calculated
independently and with sufficient accuracy. To make the cor-
rection valid, predictability curves of the ECMWF forecast-
ing system and the L05 systems are compared for two dif-
ferent methods (arithmetic and geometric averages), and the
number of variables of the L05 system pertaining to the best
match of the predictability curves is identified. As a result,
a new approach to the calculation of model error based on a
comparison of models is presented.

This article is divided into seven sections. The second de-
scribes the experimental setting. The third describes calcula-
tion of the predictability curves. The fourth provides a com-
parison of predictability curves of the ECMWF forecasting
system and the L05 system, and the fifth deals with the es-
timation of Lyapunov exponents, model, and limit errors of
the ECMWF forecasting system based on the correction. Dis-

cussion and conclusions are then presented in the final two
sections.

2 Experimental setting

The L05 model is based on the low-dimensional atmospheric
system presented by Lorenz (1996). It is a nonlinear model,
with N variables connected by governing equations:

dXn/dt =−Xn−2Xn−1+Xn+1Xn−1−Xn+F, (1)

n= 1, . . .,N . Xn−2, Xn−1, Xn, and Xn+1 are unspecified
(i.e., unrelated to actual physical variables) scalar meteo-
rological quantities, F is a constant representing external
forcing, and t is time. The index is cyclic so that Xn−N =
Xn+N =Xn and variables can be viewed as existing around
a circle. Nonlinear terms of Eq. (1) simulate advection. Lin-
ear terms represent mechanical and thermal dissipation. The
model quantitatively, to a certain extent, describes weather
systems, but, unlike the well-known Lorenz model of atmo-
spheric convection (Lorenz, 1963), it cannot be derived from
any atmospheric dynamic equations. The motivation was to
formulate the simplest possible set of dissipative chaotically
behaving differential equations that share some properties
with the “real” atmosphere. One of the model’s properties
is to have five to seven main highs and lows that correspond
to planetary waves (Rossby waves) and a number of smaller
waves that correspond to synoptic-scale waves. For Eq. (1)
this is only valid for N = 30 and that is, as will be seen,
not sufficient for the experimental setting. Therefore, spatial
continuity modification of the L05 system is used, whereby
Eq. (1) is rewritten to the form

dXn/dt = [X,X]L,n−Xn+F, (2)

where

[X,X]L,n =

J∑
j=−J

′

J∑
i=−J

′
(
−Xn−2L−iXn−L−j +Xn−L+j−iXn+L+j

)
/L2.

If L is even,
∑
′ denotes a modified summation, in which

the first and last terms are to be divided by 2. If L is odd,∑
′ denotes an ordinary summation. Generally, L is much

smaller than N and J = L/2 if K is even and J = (L−1)/2
if L is odd. For comparison with predictability curves of the
ECMWF forecasting system, we chooseN = 30, 60, 90, 120,
150, and 360. To keep a desirable number of main pressure
highs and lows, Lorenz (2005) suggested to keep the ratio
N/L= 30 and therefore L= 1, 2, 3, 4, 5, and 12. For even
values of L we have J = 1, 2, and 6, and for odd values of
L we have J = 0, 1, and 2. The parameter F = 15 is se-
lected as a compromise between a Lyapunov exponent that
is too high (smaller F ) and undesirable shorter waves (larger
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F ). For this setting and by the method of numerical calcu-
lation (Sprott, 2006), the largest global Lyapunov exponents
are calculated (Table 2). By the definition of Lorenz (1969):
“A bounded dynamical system with a positive Lyapunov ex-
ponent is chaotic”. Because the value of the largest Lyapunov
exponent is positive and the system under study is bounded,
it is chaotic. Strictly speaking (Aligood et al., 1996), we also
need to exclude the asymptotically periodic behavior, but
such a task is impossible to fulfill for the numerical simula-
tion. The choice of parameters F and time unit= 5 d is made
to obtain a similar value of the largest Lyapunov exponent as
the ECMWF forecasting system.

3 Calculation of predictability curves

To calculate predictability curves (Lorenz, 1996), arbitrary
values of the variables Xn are chosen, and, using a fourth-
order Runge–Kutta method with a time step1t = 0.05 or 6 h,
they are integrated forward for 14 400 steps or 10 years. Fi-
nal values X0,n, which should be free of transient effect, are
the initial values of “reality”. Initial values of “prediction”
are X′0,n =X0,n+ e0,n, where e0,n is the initial error and it
is chosen randomly from a normal distribution ND(µ;σ),
where µ= 0 is mean and σ is the standard deviation, which
is chosen from comparison with the ECMWF forecasting
system. From X0,n and X′0,n Eq. (2) is integrated forward
for 37.5 d (K = 150 steps). For upper-bound predictability
curves, Xn and X′n are chosen with the same number of
variables (N = 30, 60, 90, 120, 150). For lower-bound pre-
dictability curves, Xn is defined by X0,n and by Eq. (2) with
N0 = 360 and X′n by X′0,n and by Eq. (2) with N = 30, 60,
90, 120, and 150. The size of the model error is corrected by
the difference of N for Xn and X′n. If, for example, N = 120
then Xn is compared with X′n in each third point of N0. This
method was presented by Lorenz (2005). Although not only
resolution but also physical parameterization affects the de-
ficiencies of the ECMWF system, which make it different
from the real atmosphere, Buizza (2010) showed that a com-
parison of predictability curves of the ECMWF system cal-
culated from differences of prediction and analysis as well
as from two predictions of systems with different horizon-
tal resolutions leads to the same overall conclusions. Despite
the sub-differences mentioned by Buizza (2010), this method
is sufficient for comparing the L05 system and the ECMWF
forecasting system.

In each time step 1t of numerical integration N

“real” and N “predicted” values are obtained. The size
of the error at a given time for upper-bound predictabil-
ity curves is en (k ·1t)=X′k,n−Xk,n, where k = 1, . . .,K
and n= 1, . . .,N and for lower-bound predictability curves
εn (k ·1t)=Xk,n−Xk,n′ , where k = 1, . . .,K , n= 1, . . .,N
(except for N0). n′ = 1, . . .,N (except for N0) is the loca-
tion of the value Xk,n′ for N = 360, where n′ = n ·N0/N for
N = 30, 60, 90, 120, and 150. The predictability curves of

the ECMWF forecasting system, in this case, are obtained
from annual averages of daily data. To simulate that, the
number of runs M = 400 is made. In each new run, initial
values X0,n are the last values XK,n from the previous run.
M ·N values are obtained for each k. Final formulas of pre-
diction errors that constitute predictability curves by calcula-
tion with arithmetic mean (A) are

EL05
U(A) (k ·1t)=

√√√√ 1
M ·N

M∑
m=1

N∑
n=1

e2
n,m (k ·1t), (3)

EL05
L(A) (k ·1t)=

√√√√ 1
M ·N

M∑
m=1

N∑
n=1

ε2
n,m (k ·1t). (4)

Formulas to calculate prediction errors by geometric means
(G) are

EL05
U(G) (k ·1t)=

2M

√√√√ M∏
m=1

(
1
N

N∑
n=1

e2
n,m (k ·1t)

)
, (5)

EL05
L(G) (k ·1t)=

2M

√√√√ M∏
m=1

(
1
N

N∑
n=1

ε2
n,m (k ·1t)

)
. (6)

For an overview of the symbols see Table 1.
To calculate predictability curves for the ECMWF fore-

casting system (EFS) values of 500 hPa geopotential height
are used. Data were obtained from ECMWF (Magnus-
son, 2018). Lower-bound predictability curves are calculated
(Magnusson and Kallen, 2013) from 21 root mean squares
over the Northern Hemisphere (20–90◦ N) obtained daily
from 1 January 1986 to 31 December 2011. Means are dif-
ferences between operational forecasts and analyses from
ERA-Interim for a given day. Forecasts range from 0.5 d
ago relative to the given day to 10 d ago, with time step
0.5 d. The difference between operational analysis and anal-
ysis from ERA-Interim is taken as the initial error. Upper-
bound predictability curves are calculated (Magnusson and
Kallen, 2013) from 27 root mean squares over the Northern
Hemisphere (20–90◦) obtained daily from 1 January 1986
to 31 December 2011. Means are differences between two
operational forecasts issued with a 1 d lag but that are valid
on the same day. Specifically, the following differences are
obtained for a given day (hours): 0–24, 6–30, 12–36, 18–
42, 24–48, 30–54, 36–60, 42–66, 48-72, 54–78, 60–84, 66–
90, 72–96, 78–102, 84–108, 90–114, 96–120, 108–132, 120–
144, 132–156, 144–168, 156–180, 168–192, 180–204, 192–
216, 204–228, and 216–240. Prediction errors constituting
the predictability curves are calculated as annual averages
of daily data. Detailed information about calculating pre-
dictability curves of the ECMWF forecasting system can be
found in Lorenz (1982).

Comparisons of model predictability curves are done
through values normalized by the limit (saturated) errors
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Table 1. Description of symbols that indicate types of predictability curve, types of mean and systems for prediction error E, theoretically
calculated limit error E∞, and parameters of error growth models α, β, p, and Elim (Eqs. 8–13).

Types of mean Types of predictability curve

Upper bound (U ) Lower bound (L)

ECMWF forecasting
system (EFS) Arithmetic (A)

EEFS
U(A)

(t) EEFS
∞,U(A)

EEFS
lim,U(A) EEFS

L(A)
(t) EEFS

∞,L(A)
EEFS

lim,L(A)

αEFS
U(A)

βEFS
U(A)

pEFS
U(A)

αEFS
L(A)

βEFS
L(A)

pEFS
L(A)

Geometric (G)
EEFS
U(G)

(t) EEFS
∞,U(G)

EEFS
lim,U(G) EEFS

L(G)
(t) EEFS

∞,L(G)
EEFS

lim,L(G)

αEFS
U(G)

βEFS
U(G)

pEFS
U(G)

αEFS
L(G)

βEFS
L(G)

pEFS
L(G)

L05 system (L05)
Arithmetic (A)

EL05
U(A)

(t) EL05
∞,U(A)

EL05
lim,U(A) EL05

L(A)
(t) EL05

∞,L(A)
EL05

lim,L(A)

αL05
U(A)

βL05
U(A)

pL05
U(A)

αL05
L(A)

βL05
L(A)

pL05
L(A)

Geometric (G)
EL05
U(G)

(t) EL05
∞,U(G)

EL05
lim,U(G) EL05

L(G)
(t) EL05

∞,L(G)
EL05

lim,L(G)

αL05
U(G)

βL05
U(G)

pL05
U(G)

αL05
L(G)

βL05
L(G)

pL05
L(G)

Table 2. Values of the largest global Lyapunov exponents λL05 and
limit values of predictability curves EL05

∞,U
and EL05

∞,L
for the dis-

played number of variables N of the L05 system.

N λL05 EL05
∞,U

EL05
∞,L

30 0.70 8.5 8.3
60 0.29 8.0 8.1
90 0.35 8.2 8.2
120 0.32 8.2 8.2
150 0.34 8.2 8.2
360 0.34

(E∞,U = lim
t→∞

EU , E∞,L = lim
t→∞

EL). Because the maxi-
mum forecast time for the ECMWF forecasting system is
10 d, presented predictability curves do not reach their limit
value. An independent measure of limit error can be calcu-
lated as

E∞,L =

√
(f − c)

2
+ (a− c)

2
; E∞,U =

√
2(f − c)

2
, (7)

where (f − c) is the time-averaged anomaly with respect to
climate and (a− c) is the time-averaged analysis anomaly
with respect to climate. The climate is defined from ERA-
Interim daily climatology. E∞,U and E∞,L differ if the
ECMWF forecasting system does not sufficiently describe
the variability of the atmosphere (model error). More infor-
mation can be found in Simmons et al. (1995). Because it
will be shown that values of limit error calculated by this
method are not correct, predictability curves of the ECMWF
forecasting system are normalized by values calculated by
Eq. (15).

4 Comparison of predictability curves

Predictability curves of the ECMWF (26 annual averages)
and L05 systems are compared to find a setting of the L05
system (number of variables N , the size of the initial errors,
preference of arithmetic or geometric mean) that gives the
most similar progress of systems’ predictability curves.

Predictability curves of the L05 system show negative
growth for the first time step (6 h) but turn into an increase
thereafter. At the second time step (12 h) values of pre-
dictability curves reach approximately the same values as
they had initially. A possible explanation could be that ini-
tial errors set the initial state off the attractor and a decrease
occurs because the first tendency is to get on the attractor
(Brisch and Kantz, 2019). With an increase in average errors,
chaotic behavior becomes dominant. Predictability curves of
the ECMWF forecasting system do not exhibit this type of
behavior. This may be because of larger time steps or meth-
ods of objective analysis. We aim to get the most similar
predictability curves of both models, and therefore the first
two time steps (up to 12 h) of the L05 model’s predictability
curves are filtered out.

A description of symbols that indicate the type of predic-
tion error E in the text is provided in Table 1. Initial val-
ues EL05

U (0) and EL05
L (0) or equivalently standard devia-

tions σ from a normal distribution ND(µ;σ) of the L05
system are calculated from a comparison of initial values
of the ECMWF system (26 annual averages) that are nor-
malized (ENorm) by limit (saturated) errors EEFS

∞ calculated
by Eq. (15). Upper-bound predictability curves start for the
ECMWF forecasting system on day 1 (the difference be-
tween 1 d prediction and the analysis), and thereforeEL05

U (0)
is calculated from predictability curves that are close on the
first day:

(
EL05

Norm (1)= E
EFS
Norm (1)

)
. Initial values for the L05

system are computed for N = 60, 90, 120, and 150. Nor-
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malized predictability curves with N = 30 exhibit different
evolution compared to predictability curves of the ECMWF
forecasting system, and they are not displayed. Initial predic-
tion errors EL05

U (0) calculated by arithmetic and geometric
mean as well as N = 60, 90, 120, and 150 have the same val-
ues, and these values are in the interval EL05

U (0) ∈ 〈0.3;0.8〉,
where lower values correspond to initial prediction errors of
the ECMWF system from later years and higher values per-
tain to early years. For lower-bound predictability curves of
the ECMWF forecasting system, the initial error EEFS

L (0) is
computed as a difference between analysis from the oper-
ational forecasting system and analysis from ERA-Interim.
Initial errors of the L05 system EL05

L (0) are calculated as
EL05
L (0)= EL05

∞,L ·E
EFS
L (0)/EEFS

∞,L and EL05
L (0) ∈ 〈0.2;0.7〉,

where lower values correspond to initial prediction errors of
the ECMWF system from later years and higher values per-
tain to early years. Initial values are the same for all N as
well as arithmetic and geometric mean.

Predictability curves calculated by arithmetic and geomet-
ric mean show a significant difference for the L05 system (all
N ), which agrees with Ruiqiang and Jianping (2011), and
a minor difference for the ECMWF forecasting system. For
the L05 system and upper- and lower-bound predictability
curves, the maximal difference is between 6.5 % and 10.5 %
ofEL05

∞,U orEL05
∞,L, and these maximal values occur between 5

and 9 d of forecast length. For the ECMWF forecasting sys-
tem and upper- and lower-bound predictability curves, the
maximal difference is 2 % of EEFS

∞,U or EEFS
∞,L, and these max-

imal values occur at the end of the forecast length (10 d).
The choice of the averaging method does not significantly
change the evolution of the ECMWF forecasting system’s
predictability curves, and it does not change values of param-
eters of the approximations. For the L05 system, the choice
of averaging method is significant, and it changes values of
the parameters. The reason for this sensitivity can be found
in the spread of values that are used for averaging. For the
ECMWF forecasting system, the values are closer to each
other than for the L05 system, and from the definition of
means, it leads to the aforementioned difference. Calculating
predictability curves by arithmetic and geometric mean, al-
though it does not affect predictability curves of the ECMWF
forecasting system, is mentioned because it affects the calcu-
lation of predictability curves of the L05 system, and this
then affects the comparison of predictability curves, which is
important for recalculation of error growth models’ parame-
ters for the ECMWF forecast system.

The comparison of predictability curves is done with given
initial values. Predictability curves of the ECMWF forecast-
ing system are normalized by EEFS

∞,U or EEFS
∞,L (Fig. 7, black

full curves) and for the L05 system by EL05
∞,U and EL05

∞,L dis-
played in Table 2 (for a description of the symbols see Ta-
ble 1). For the L05 system predictability curves are calcu-
lated with N = 60, 90, 120, and 150 variables and by arith-
metic and geometric mean (for lower-bound predictability

curves this sets different values of the model error). For the
ECMWF forecasting system only arithmetic mean is used.

A comparison of lower-bound predictability curves
(Fig. 2) shows the most similar predictability curves of the
ECMWF forecasting system and the L05 system for the L05
system calculated by arithmetic mean with N = 90 (the fact
that this would mean unrealistic values of the model error
for the ECMWF forecasting system is further discussed).
For upper-bound predictability curves (Fig. 1), predictability
curves for the L05 system with N = 90 are the most similar
to the year 1999 for predictability curves of the L05 system
calculated by geometric mean and after 1999 by the arith-
metic mean.

5 Estimation of parameters

Parameters of error growth models are the Lya-
punov exponent, model error, and limit error. They
are estimated from approximations of predictabil-
ity curves or differences of predictability curves
((E (t +1t)+E(t))/2;(E (t +1t)−E(t))/1t), where t
is time and1t = 0.25 d (Figs. 3 and 4). Error growth models
considered here are

Km :=
dE(t)

dt
= αE

(
1−

E

Elim

)
, (8)

Kmβ :=
dE(t)

dt
= (αE+β)

(
1−

E

Elim

)
, (9)

Lm :=
dE(t)

dt
=−αE ln

(
E

Elim

)
, (10)

Gm :=
dE(t)

dt
=
α

p
E

(
1−

(
E

Elim

)p)
, (11)

Tm := E(t)= Atanh(at + a)+A, (12)

where parameters of Tm are α = 2a, Elim = 2A, and

Tmβ := E(t)= A tanh(at + b)+B, (13)

where parameters of Tmβ are α = a (A+B)/A, β =

a
(
A2
−B2)/A, and Elim = A+B. E is an average forecast

error. t represents time, α is the estimate of the Lyapunov
exponent λ, β is the parameter of model error (dE/dt when
E = 0), Elim is the limit (saturated) value of E (value of E
when dE/dt = 0, theoretically E∞; Figs. 3 and 4), and p, A,
B, a, and b are parameters.

The calculation is done for the ECMWF forecasting sys-
tem (26 annual averages) and the L05 system (N = 90) for
arithmetic (A) and geometric (G) means, upper-bound pre-
dictability curves (U ), and lower-bound predictability curves
(L). See Tables 3 and 4 for root mean square (rms) values
of parameters α, Elim, β, and p that are calculated over all
initial errors used for the L05 system and all calculated years
for the ECMWF forecasting system.

The average values of parameters α and Elim are higher
for the lower-bound predictability curves than for the
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Figure 1. Comparison of upper-bound predictability curvesEnorm,U of the ECMWF forecasting system normalized byEEFS
∞,U

(Eq. 15) (EFS;

annual arithmetic means, representative samples from 1986–2011) and the L05 system normalized byEL05
∞,U

(Table 2) (L05; geometric means
1986–1999, arithmetic means 2000–2011).

Table 3. The rms values calculated over all initial errors used for the L05 system (N = 90) and over all years for the ECMWF forecasting
system of parameters α and Elim (for description see Table 1).

rms KHDPP KHDPM KHKP
PP KHKP

PM OH LH
value (d−1) (d−1) (d−1) (d−1) (d−1) (d−1)

αL05
U(A)

0.45 0.36 0.46 0.34 0.31 0.24
αL05
L(A)

0.46 0.40 0.48 0.41 0.33 0.23
αL05
U(G)

0.41 0.39 0.41 0.39 0.39 0.19
αL05
L(G)

0.42 0.40 0.43 0.41 0.35 0.19
αEFS
U(A)

0.45 0.41 0.46 0.39 0.36 0.21
αEFS
L(A)

0.48 0.42 0.50 0.40 0.35 0.27

(–) (–) (–) (–) (–) (–)

E
L05
lim,U(A) 7.5 7.8 7.3 7.8 8.2 8.9

E
L05
lim,L(A) 7.5 7.8 7.3 7.6 8.3 9.3

E
L05
lim,U(G) 7.7 7.8 7.7 7.8 7.8 11.0

E
L05
lim,L(G) 7.8 8.0 7.6 7.8 8.3 10.6

(m) (m) (m) (m) (m) (m)

E
EFS
lim,U(A) 108 110 106 111 115 138

E
EFS
lim,L(A) 114 117 112 117 123 134
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Figure 2. Comparison of lower-bound predictability curves Enorm,L of the ECMWF forecasting system normalized by EEFS
∞,L

(Eq. 15)

(EFS; annual arithmetic means, representative samples from1986–2011) and the L05 system normalized by EL05
∞,L

(Table 2) (L05; arithmetic
mean).

Table 4. The rms values calculated over all initial errors used for the L05 system (N = 90) and over all years for the ECMWF forecasting
system of parameters β and p (for description see Table 1).

rms KHDPM KHKP
PM rms OH rms KHDPM KHKP

PM rms OH
value (d−1) (d−1) value (–) value (d−1) (d−1) value (–)

β
L05
U(A) 0.21 0.27 pL05

U(A)
0.3 β

L05
U(G) 0.03 0.04 pL05

U(G)
0.9

β
L05
L(A) 0.10 0.12 pL05

L(A)
0.4 β

L05
L(G) 0.04 0.03 pL05

L(G)
0.7

(m d−1) (m d−1) (–) (m d−1) (m d−1) (–)

β
EFS
U(A) 0.97 1.82 pEFS

U(A)
0.6 β

EFS
L(A) 2.14 2.83 pEFS

L(A)
0.40

upper-bound predictability curves. Upper-bound predictabil-
ity curves should not include model error (theoretically β =
0), but from Table 4 it can be seen that for the L05 sys-
tem (arithmetic mean) the values are even higher than for
the lower-bound predictability curves. For the ECMWF fore-
casting system the values of β are higher for lower-bound
predictability curves, which is theoretically more acceptable,
but β is not zero for the upper-bound predictability curves. A
possible explanation can be the sensitivity to correct approx-
imation (cases with higher β have lower α), but this cannot
fully explain the discrepancy. For p the values of upper- and

lower-bound predictability curves are similar to each other
(L05 system and ECMWF forecasting system).

There are significant differences of parameters α, Elim, β,
and p between predictability curves calculated by arithmetic
and geometric mean for the L05 system (for the ECMWF
forecasting system only arithmetic mean is presented). The
most significant differences are detected for β and p; for β
values are closer to zero for geometric mean and values of
predictability curves calculated by arithmetic mean are 2 or
3 times higher. Values of parameter p are closer to p = 1 for
geometric mean. This means that differences of predictabil-
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ity curves calculated by geometric mean have a shape that is
close to a symmetric parabola (for example, Fig. 3a), but for
the arithmetic mean the parabolic shape is skewed to the left
(for example, Fig. 3c).

Note that the description of symbols that indicate the type
of parameters of error growth models α, β, p, and Elim in the
text is provided in Table 1. The Lyapunov exponent of the
ECMWF forecasting system is recalculated by the formula

λEFS
= αEFS

+

(
λL05
−αL05

)
, (14)

where αEFS and αL05 are parameters of error growth mod-
els and λL05

= 0.35 d−1. The formula (Eq. 14) is based on
the assumption that if normalized predictability curves of the
L05 system and the ECMWF forecasting system are simi-
lar, then the differences between true values of the largest
global Lyapunov exponents (λEFS, λL05) and values deter-
mined from error growth models (αEFS, αL05) are similar
(λEFS

−αEFS
≈ λL05

−αL05). Similarity of differences λ−α
allows us to estimate the largest global Lyapunov expo-
nents of the ECMWF forecasting system. For upper-bound
predictability curves (the L05 system with N = 90 to the
year 1999 calculated by geometric mean and after 1999
by arithmetic mean), the average value λEFS

U over all error
growth models is in the range 〈0.33;0.41〉 d−1 (Fig. 5a). Lm
is not used because this error growth model is not sufficient
to approximate predictability curves. Root mean square er-
rors (RMSEs) of λEFS

U are mostly about 0.01 d−1 only in
the years 1991, 1995, and 1997; a 1999 RMSE is about
0.02 d−1. For comparison, RMSEs of αEFS

U are in the range
〈0.02;0.07〉 d−1 (Fig. 5a). For lower-bound predictability
curves (the L05 system withN = 90 calculated by arithmetic
mean), the average value λEFS

U over all error growth models
is in the range 〈0.32;0.41〉 d−1 (Fig. 5b). RMSEs of λEFS

L

are in the range 〈0.01;0.02〉 d−1. For comparison, RMSEs
of αEFS

L are in the range 〈0.03;0.07〉 d−1 (Fig. 5b). The av-

erage value λ
EFS

over upper- and lower-bound predictability

curves is shown in Fig. 6, and RMSEs of λ
EFS

are mostly
about 0.01 d−1. Low values of RMSEs of λEFS compared to
RMSEs of αEFS and similar values of λEFS for upper- and
lower-bound predictability curves (low values of RMSEs of

λ
EFS

) prove the validity of λ
EFS

. Values of λ
EFS

and λEFS

are generally closer to parameters αEFS of Kmβ , Tmβ , and
Gm than to αEFS of Km, Tm, and Lm, but none of the error

growth models approximate λ
EFS

(Fig. 6).
New limit values EEFS

∞ are calculated from the error
growth models by the formula

EEFS
∞ = EEFS

lim ·
EL05
∞

EL05
lim

, (15)

where EEFS
lim and EL05

lim are values from error growth models
and EL05

∞ = 8.2. As in calculating λEFS, Eq. (15) is based on

the assumption that if normalized predictability curves of the
L05 system and the ECMWF forecasting system are similar,
then the differences between true limit values (EEFS

∞ , EL05
∞ )

and values determined from error growth models (EEFS
lim ,

EL05
lim ) are similar. In this case, however, only normalized val-

ues can be compared:(
EEFS
∞ −E

EFS
lim

)/
EEFS
∞ ≈

(
EL05
∞ −E

L05
lim

)/
EL05
∞

EEFS
∞ ≈ EEFS

lim +
(
EEFS
∞ ·

(
EL05
∞ −E

L05
lim

))/
EL05
∞

EEFS
∞ ≈ EEFS

lim ·E
L05
∞

/
EL05

lim .

Similarity of normalized differences ((E∞−Elim)/E∞) al-
lows us to estimate new limit values of the ECMWF forecast-
ing system. For upper-bound predictability curves (the L05
system with N = 90), the average value over all error growth
models E

EFS
∞,U is in the range 〈96;133〉m (Fig. 7a). Lm is not

used because this error growth model is not sufficient to ap-
proximate predictability curves. RMSEs of E

EFS
∞,U are mostly

about 1 m only in the years 1987, 1988, 1995, 1997, and
2003, and in 2011 it is about 2 m. For comparison, RMSEs
of E

EFS
lim,U are in the range 〈2;6〉m (Fig. 7a). For lower-bound

predictability curves (the L05 system withN = 90 calculated
by arithmetic mean), the average value over all error growth
models E

EFS
∞,L is in the range 〈114;134〉m (Fig. 7b). Lm is

not used because this error growth model is not sufficient
to approximate predictability curves. RMSEs of E

EFS
∞,L are

mostly 3 m, and after the year 2004, they are 4 m. RMSEs
of E

EFS
lim,L are in the range 〈3;6〉m (Fig. 7b). Lower values of

RMSEs ofE
EFS
∞,U andE

EFS
∞,L calculated by Eq. (15) compared

to RMSEs of E
EFS
lim,U and E

EFS
lim,L prove the validity of E

EFS
∞,U

and E
EFS
∞,L.

6 Discussion

The argument that favorsEEFS
∞ calculated by Eq. (15) (Fig. 7,

black full curves) instead of EEFS
∞ calculated by Eq. (7)

(Fig. 7, black dashed curves) is based on the parameter of
model error β. The most similar predictability curves of the
L05 system and the ECMWF forecasting system with EEFS

∞

calculated by Eq. (15) are found for the L05 system with
N = 90 (for lower-bound predictability curves calculated by
arithmetic mean and for upper-bound predictability curves
calculated by geometric mean to 1999 and after by arith-
metic mean). The most similar predictability curves of the
L05 system and the ECMWF forecasting system with EEFS

∞

calculated by Eq. (7) are found for the L05 system with
N = 90 by the arithmetic mean for upper- and lower-bound
predictability curves. It means that if the comparison is valid
and model error is constant for the L05 system (same num-
ber of variables over years in the L05 system means con-
stant model error over years), it must also be constant for
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Figure 3. Approximations of differences of upper-bound predictability curves (representative samples). (a, b) The most similar predictability
curves in the year 1995 of the ECMWF forecasting system. (c, d) The most similar predictability curves in the year 2005 of the ECMWF
forecasting system. Parameters from Tm used in Km (blue) and parameters from Tmβ used in Kmβ (blue dashed).

the ECMWF forecasting system, but the calculation of pa-
rameters βEFS

L shows a decreasing trend with increasing time
(Fig. 8b). But parameters βEFS

U have nonzero values (Fig. 8a)
that are close to βEFS

L for some years, and that is inconsis-
tent with the theoretical expectation that upper-bound pre-
dictability curves should be without model error; therefore,
β should be 0 m d−1. This inconsistency can be solved by
the new definition of the model error. From Fig. 6 it can be

seen that a closer value of αEFS to λ
EFS

for αEFS is approx-
imated from error growth models Kmβ , Tmβ , and Gm than
for αEFS approximated from error growth models Km, Tm,
and Lm. Gm has parameter p that defines skewness of the
originally parabolic shape of the difference of predictability
curves. p = 1 pertains to symmetrical parabolic shape (Gm
becomes Km) and p = 0 means the greatest skewness to the
left (Gm becomes Lm). Parameters β also skew the originally
parabolic shape (Figs. 3 and 4). The model error can be seen
as a difference between skewness of upper- and lower-bound
predictability curves, and the new definition of model error
would be

βL−U = |βL−βU | . (16)

Results (Fig. 9a) show good agreement for βEFS
L−U (Eq. 16)

calculated from Kmβ and Tmβ , a decreasing trend of βEFS
L−U

with increasing time for predictability curves with EEFS
∞ cal-

culated by Eq. (15), and almost constant values of βEFS
L−U with

increasing years (slight decrease can be due to the error of
approximations) for predictability curves with EEFS

∞ calcu-
lated by Eq. (7). There is also good agreement with trends
of |pL−pU | (Fig. 9b). Because constant values of βL−U for
predictability curves with EEFS

∞ calculated by Eq. (7) are not
theoretically possible, predictability curves with EEFS

∞ calcu-
lated by Eq. (15) are favored. The reason for the decreas-
ing trend of βL05

L−U , which is found for predictability curves
of the L05 system with N = 90 that are the most similar to
predictability curves of the ECMWF forecasting system nor-
malized byEEFS

∞ calculated by Eq. (15), is that they are partly
calculated by geometric and partly by the arithmetic mean.

These arguments are taken as proof of the validity of λ
EFS

and EEFS
∞ calculated by Eq. (15). The reason for the overes-

timation of EEFS
∞ calculated by Eq. (7) (Fig. 7) can be found

in the multiscale behavior of weather. If some events are pre-
dictable on a timescale longer than 10 d (for example, long-
lived anomalies in sea surface temperature or soil moisture),
then they would not be captured by medium-range weather
forecast (Simmons et al., 1995; Brisch and Kantz, 2019). It
is also possible that the overestimation is due to the different
source of data used for calculation of EEFS

∞ by Eqs. (7) and
(15). For EEFS

∞ calculated by Eq. (7) only data from ERA-
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Figure 4. Approximations of differences of lower-bound predictability curves (representative samples). (a, b) The most similar predictability
curves in the year 1995 of the ECMWF forecasting system. (c, d) The most similar predictability curves in the year 2005 of the ECMWF
forecasting system. Tm displays parameters from Tm used in Km, and Tmβ displays parameters from Tmβ used in Kmβ .

Figure 5. Lyapunov exponents λEFS of the ECMWF forecasting system calculated by Eq. (14) and parameters αEFS of error growth models
for (a) upper- and (b) lower-bound predictability curves. λEFS is the average value over all error growth models.

Interim (Janoušek, 2011) are used, but for EEFS
∞ calculated

by Eq. (15) data from the operational forecast are employed.
At the end of this section, it is important to remind the

readers about the importance of the correct values of the
parameters. Zhang et al. (2019) used Kmβ in the ECMWF
forecasting system to estimate the influence of different spa-
tiotemporal scales with the parameter β newly representing
the intrinsic upscale error growth and propagation from small

scales and α representing synoptic-scale error growth. The
results of our analysis support this approach by the new def-
inition of model error (Eq. 16) and by showing the errors of
approximations for individual error growth models.
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Figure 6. Average values over upper- and lower-bound predictability curves of Lyapunov exponents λ
EFS

(black, solid), average values
λ

EFS (black dashed) for (a) upper- and (b) lower-bound predictability curves of the ECMWF forecasting system calculated by Eq. (14), and
parameters αEFS of error growth model for (a) upper- and (b) lower-bound predictability curves of the ECMWF forecasting system.

Figure 7. Limit values EEFS
∞ of the ECMWF forecasting system calculated by Eq. (15) and parameters EEFS

lim of error growth models for

(a) upper- and (b) lower-bound predictability curves. EEFS
∞ (Eq. 15) is the average value over all error growth models, and EEFS

∞ (Eq. 7)
represents limit values calculated by Eq. (7).

7 Conclusions

The values of error growth models’ (Eqs. 8–13) parame-
ters that approximate predictability curves and their differ-
ences (Figs. 3 and 4) in the ECMWF forecast system (Ta-
bles 3 and 4) were recalculated. This is based on similar-
ities of normalized upper- and lower-bound predictability
curves (Figs. 1 and 2) of the ECMWF forecasting system
(annual arithmetic mean of geopotential heights of 500 hPa
from years 1986–2011) and the L05 system (N = 90, arith-
metic mean for lower-bound predictability curves; geometric
mean up to 1999 and arithmetic mean after 1999 for upper-
bound predictability curves). It is also based on knowledge of
the largest Lyapunov exponent (λ= 0.35 d−1) and the limit
value of the predictability curve (E∞ = 8.2) of the L05 sys-
tem.

Lyapunov exponents of the ECMWF forecasting sys-
tem were recalculated by Eq. (14). The average value over

all error growth models for upper-bound predictability is
in the range 〈0.33;0.41〉 d−1 (Fig. 5a) and RMSEs are
mostly about 0.01 d−1. For lower-bound predictability curves
the average value over all error growth models is in the
range 〈0.32;0.41〉 d−1 (Fig. 5b). RMSEs are in the range
〈0.01;0.02〉 d−1. The average value over upper- and lower-
bound predictability curves is shown in Fig. 6 and RMSEs
are mostly about 0.01 d−1. Values of the Lyapunov exponent
are generally closer to parameters αEFS of Kmβ , Tmβ , and
Gm than to αEFS of Km, Tm, and Lm (Fig. 6).

New limit values were calculated from the error growth
models by Eq. (15). For upper-bound predictability curves,
the average value over all error growth models is in the range
〈96;133〉m (Fig. 7a) and RMSEs are mostly about 1 m. For
lower-bound predictability curves the average value over all
error growth models is in the range 〈114;134〉m (Fig. 7b)
and RMSEs are mostly 3 m.
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Figure 8. Parameters βEFS (a) for upper-bound predictability curves βEFS
U

and (b) for lower-bound predictability curves βEFS
L

. Black curves
represent βEFS approximated from predictability curves with EEFS

∞ calculated by Eq. (7), red curves pertain to βEFS approximated from
predictability curves with EEFS

∞ calculated by Eq. (15), full curves correspond to βEFS calculated from Tmβ , and dashed curves correspond
to βEFS calculated from Kmβ .

Figure 9. Absolute values of differences of parameters (a)
∣∣∣βEFS
L
−βEFS

U

∣∣∣ and (b)
∣∣∣pEFS
L
−pEFS

U

∣∣∣ between lower- and upper-bound pre-
dictability curves. For the notation see Fig. 8.

The argument that favors limit values calculated by
Eq. (15) (Fig. 7, black full curves) instead of limit values
calculated by Eq. (7) (Fig. 7, black dashed curves) is based
on the new definition of model error (Eq. 16) that shows
a decreasing trend with increasing years for predictability
curves with limit values calculated by Eq. (15) and an almost
constant trend with increasing time (slight decrease can be
due to the error of approximations) for predictability curves
with limit values calculated by Eq. (7), which is theoreti-
cally impossible (Fig. 9a). This new model error calculated
as a difference of model error parameters between the upper-
(Fig. 8a) and lower-bound (Fig. 8b) predictability curves sup-
ports model error parameters calculated for upper-bound pre-
dictability curves that are used to represent the intrinsic up-

scale error growth and propagation from small scales (Zhang
et al., 2019).
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