Articles | Volume 9, issue 3
https://doi.org/10.5194/gmd-9-1019-2016
https://doi.org/10.5194/gmd-9-1019-2016
Model description paper
 | 
10 Mar 2016
Model description paper |  | 10 Mar 2016

pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling

J. Florian Wellmann, Sam T. Thiele, Mark D. Lindsay, and Mark W. Jessell

Related authors

About the Trustworthiness of Physics-Based Machine Learning – A Considerations for Geomechanical Applications
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2932,https://doi.org/10.5194/egusphere-2024-2932, 2024
Short summary
Perspectives of physics-based machine learning strategies for geoscientific applications governed by partial differential equations
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023,https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
GeoINR 1.0: an implicit neural network approach to three-dimensional geological modelling
Michael Hillier, Florian Wellmann, Eric A. de Kemp, Boyan Brodaric, Ernst Schetselaar, and Karine Bédard
Geosci. Model Dev., 16, 6987–7012, https://doi.org/10.5194/gmd-16-6987-2023,https://doi.org/10.5194/gmd-16-6987-2023, 2023
Short summary
PySubdiv 1.0: open-source geological modeling and reconstruction by non-manifold subdivision surfaces
Mohammad Moulaeifard, Simon Bernard, and Florian Wellmann
Geosci. Model Dev., 16, 3565–3579, https://doi.org/10.5194/gmd-16-3565-2023,https://doi.org/10.5194/gmd-16-3565-2023, 2023
Short summary
Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022,https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary

Related subject area

Solid Earth
ShellSet v1.1.0 parallel dynamic neotectonic modelling: a case study using Earth5-049
Jon B. May, Peter Bird, and Michele M. C. Carafa
Geosci. Model Dev., 17, 6153–6171, https://doi.org/10.5194/gmd-17-6153-2024,https://doi.org/10.5194/gmd-17-6153-2024, 2024
Short summary
FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth
Jan Swierczek-Jereczek, Marisa Montoya, Konstantin Latychev, Alexander Robinson, Jorge Alvarez-Solas, and Jerry Mitrovica
Geosci. Model Dev., 17, 5263–5290, https://doi.org/10.5194/gmd-17-5263-2024,https://doi.org/10.5194/gmd-17-5263-2024, 2024
Short summary
Automatic adjoint-based inversion schemes for geodynamics: reconstructing the evolution of Earth's mantle in space and time
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024,https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Reconciling Surface Deflections From Simulations of Global Mantle Convection
Conor P. B. O'Malley, Gareth G. Roberts, James Panton, Fred D. Richards, J. Huw Davies, Victoria M. Fernandes, and Sia Ghelichkhan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1893,https://doi.org/10.5194/egusphere-2024-1893, 2024
Short summary
Benchmarking the accuracy of higher-order particle methods in geodynamic models of transient flow
Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Elbridge Gerry Puckett, and Cedric Thieulot
Geosci. Model Dev., 17, 4115–4134, https://doi.org/10.5194/gmd-17-4115-2024,https://doi.org/10.5194/gmd-17-4115-2024, 2024
Short summary

Cited articles

Armit, R. J., Betts, P. G., Schaefer, B. F., and Ailleres, L.: Constraints on long-lived Mesoproterozoic and Palaeozoic deformational events and crustal architecture in the northern Mount Painter Province, Australia, Gondwana Res., 22, 207–226, 2012.
Bernecker, T., Woollands, M., Wong, D., Moore, D., and Smith, M.: Hydrocarbon prospectivity of the deep water Gippsland Basin, Victoria, Australia, APPEA Journal, 41, 91–113, 2001.
Bistacchi, A., Massironi, M., Dal Piaz, V. G., Monopoli, B., Schiavo, A., and Toffolon, G.: 3-D fold and fault reconstruction with an uncertainty model: An example from an Alpine tunnel case study, Comput. Geosci., 34, 351–372, 2008.
Bond, C. E.: Uncertainty in structural interpretation: Lessons to be learnt, J. Struct. Geol., 74, 185–200, 2015.
Bond, E. C., Shipton, K. Z., Jones, R. R., Butler, W. R., and Gibbs, D. A.: Knowledge transfer in a digital world: Field data acquisition, uncertainty, visualization, and data management, Geosphere, 3, 568–576, https://doi.org/10.1130/GES00094.1, 2007.
Download
Short summary
We often obtain knowledge about the subsurface in the form of structural geological models, as a basis for subsurface usage or resource extraction. Here, we provide a modelling code to construct such models on the basis of significant deformational events in geological history, encapsulated in kinematic equations. Our methods simplify complex dynamic processes, but enable us to evaluate how events interact, and finally how certain we are about predictions of structures in the subsurface.