Articles | Volume 8, issue 4
Geosci. Model Dev., 8, 1259–1273, 2015
Geosci. Model Dev., 8, 1259–1273, 2015

Development and technical paper 29 Apr 2015

Development and technical paper | 29 Apr 2015

A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

J. Ray et al.

Related authors

A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions
J. Ray, V. Yadav, A. M. Michalak, B. van Bloemen Waanders, and S. A. McKenna
Geosci. Model Dev., 7, 1901–1918,,, 2014

Related subject area

Numerical Methods
A note on precision-preserving compression of scientific data
Rostislav Kouznetsov
Geosci. Model Dev., 14, 377–389,,, 2021
Short summary
An N-dimensional Fortran interpolation programme (NterGeo.v2020a) for geophysics sciences – application to a back-trajectory programme (Backplumes.v2020r1) using CHIMERE or WRF outputs
Bertrand Bessagnet, Laurent Menut, and Maxime Beauchamp
Geosci. Model Dev., 14, 91–106,,, 2021
Short summary
A framework to evaluate IMEX schemes for atmospheric models
Oksana Guba, Mark A. Taylor, Andrew M. Bradley, Peter A. Bosler, and Andrew Steyer
Geosci. Model Dev., 13, 6467–6480,,, 2020
Inequality-constrained free-surface evolution in a full Stokes ice flow model (evolve_glacier v1.1)
Anna Wirbel and Alexander Helmut Jarosch
Geosci. Model Dev., 13, 6425–6445,,, 2020
Short summary
A fast and efficient MATLAB-based MPM solver: fMPMM-solver v1.1
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 13, 6265–6284,,, 2020
Short summary

Cited articles

Andres, R. J., Boden, T. A., Bréon, F.-M., Ciais, P., Davis, S., Erickson, D., Gregg, J. S., Jacobson, A., Marland, G., Miller, J., Oda, T., Olivier, J. G. J., Raupach, M. R., Rayner, P., and Treanton, K.: A synthesis of carbon dioxide emissions from fossil-fuel combustion, Biogeosciences, 9, 1845–1871,, 2012.
Babacan, S. D., Molina, R., and Katsaggelos, A. K.: Bayesian compressive sensing using Laplace priors, IEEE T. Signal Proces., 19, 55–63,, 2010.
Baraniuk, R., Davenport, M., DeVore, R., and Wakin, M.: A simple proof of the restricted isometry property for random matrices, Constr. Approx., 28, 253–263, 2008.
Baraniuk, R., Cevher, V., Duarte, M., and Hegde, C.: Model-based compressive sensing, IEEE T. Inform. Theory, 56, 1982–2001, 2010.
Candes, E. and Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies?, IEEE T. Inform. Theory, 52, 5406–5425, 2006.
Short summary
The paper presents a statistical method (shrinkage) that can be used to estimate rough emission fields, e.g., fossil fuel CO2 emissions, from measurements of concentrations. This method is demonstrated in a test case where the emissions are modeled using wavelets. We find that the method can eliminate unnecessary complexity from the wavelet model, ensures non-negativity of the emissions, is computationally efficient and is, by construction, insensitive to prior guesses of the total emission.