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Abstract. Atmospheric inversions are frequently used to es-

timate fluxes of atmospheric greenhouse gases (e.g., bio-

spheric CO2 flux fields) at Earth’s surface. These inversions

typically assume that flux departures from a prior model are

spatially smoothly varying, which are then modeled using

a multi-variate Gaussian. When the field being estimated is

spatially rough, multi-variate Gaussian models are difficult

to construct and a wavelet-based field model may be more

suitable. Unfortunately, such models are very high dimen-

sional and are most conveniently used when the estimation

method can simultaneously perform data-driven model sim-

plification (removal of model parameters that cannot be reli-

ably estimated) and fitting. Such sparse reconstruction meth-

ods are typically not used in atmospheric inversions. In this

work, we devise a sparse reconstruction method, and illus-

trate it in an idealized atmospheric inversion problem for the

estimation of fossil fuel CO2 (ffCO2) emissions in the lower

48 states of the USA.

Our new method is based on stagewise orthogonal match-

ing pursuit (StOMP), a method used to reconstruct compres-

sively sensed images. Our adaptations bestow three proper-

ties to the sparse reconstruction procedure which are useful

in atmospheric inversions. We have modified StOMP to in-

corporate prior information on the emission field being esti-

mated and to enforce non-negativity on the estimated field.

Finally, though based on wavelets, our method allows for the

estimation of fields in non-rectangular geometries, e.g., emis-

sion fields inside geographical and political boundaries.

Our idealized inversions use a recently developed multi-

resolution (i.e., wavelet-based) random field model devel-

oped for ffCO2 emissions and synthetic observations of

ffCO2 concentrations from a limited set of measurement

sites. We find that our method for limiting the estimated field

within an irregularly shaped region is about a factor of 10

faster than conventional approaches. It also reduces the over-

all computational cost by a factor of 2. Further, the sparse

reconstruction scheme imposes non-negativity without intro-

ducing strong nonlinearities, such as those introduced by em-

ploying log-transformed fields, and thus reaps the benefits of

simplicity and computational speed that are characteristic of

linear inverse problems.

1 Introduction

The estimation of spatially resolved fields, e.g., permeability

fields in aquifers or CO2 fluxes in the biosphere, from limited

observations, are required for many scientific or engineer-

ing analyses. These fields are generally represented on a grid

whose spatial resolution is dictated by the analyses. The ob-

servations are usually too scarce to allow the estimation of

the field’s values in each grid cell independently. If the field

is known to be smooth, one can impose a spatial correlation

between the grid cells (e.g., model the field as a realization

from a stationary multi-variate Gaussian distribution) and re-

duce the effective dimensionality of the estimation problem

so that the limited observations suffice. In contrast, if the field

is complex, i.e., non-smooth or non-stationary (in the statis-

tical sense, implying different characteristic length scales at

different locations), multi-variate Gaussian models are diffi-

cult to construct and an alternative parameterization may be

preferable. The parameterization has to be low dimensional,
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i.e., have few independent parameters, so that they can be

estimated from limited observations.

The construction of the spatial parameterization for com-

plex fields poses a stiff challenge. The parameterization is

usually problem dependent and sometimes based on heuris-

tics. One may use an easily observed covariate (or predictor)

of the field being estimated to construct such a model; for ex-

ample, see Ray et al. (2014) for a description on how images

of lights at night were used to create a spatial parameteriza-

tion for fossil fuel CO2 (ffCO2) emissions. However, one is

never quite sure if the resultant parameterization is too sim-

ple or too complex – in the former case, the estimates will

be needlessly inaccurate, while in the latter case, one may

not obtain a unique solution or the estimates may reproduce

the noise in the observations (overfitting). Consequently, one

uses some method, for example, Akaike information crite-

rion, to devise models of suitable complexity. However, if

the quality of the observations changes with time, then, ide-

ally, a different parameterization is constructed for each time

instant. In practice, often the simplest model that can be used

with all the observations is employed. This degrades estima-

tion accuracy.

Sparse reconstruction methods can allow one to circum-

vent these problem which arise from the dimensionality

of spatial parameterization (also called the random field

model). Sparse reconstruction methods such as matching

pursuit (MP; Mallat and Zhang, 1993), orthogonal match-

ing pursuit (OMP; Tropp and Gilbert, 2007) and Stagewise

OMP (StOMP; Donoho et al., 2012) are optimization meth-

ods that are used to fit high-dimensional models to lim-

ited observations. Unlike other optimization methods, these

methods enforce sparsity, i.e., they identify the model param-

eters that are not informed by the observations and set them

to zero. This is accomplished by augmenting the objective

function (usually a `2 norm of the data – model discrep-

ancy or residuals) with a penalty formulated as a `1 norm

over the parameters being estimated. (The `2 norm of a vec-

tor x is defined as ||x||2 =

√∑
ix

2
i , while the `1 norm is

||x||1 =
∑
i |xi |.) An optimizer is used to manipulate model

parameters to minimize the objective function. The parame-

ters that do not impact the residual appreciably are quickly

driven to zero, as it minimizes the `1 penalty, i.e., the op-

timizer performs dimensionality reduction while it fits the

model to data. This model simplification characteristic of

sparse reconstruction methods allows one to dispense with

the offline construction of a spatial parameterization and pos-

tulate a general, high-dimensional random field model in-

stead; thereafter, the optimization method simplifies (reduce

the dimensionality of) the random field model in a data-

driven manner. In the case of observations with time-variant

quality, sparse reconstruction methods have the potential to

be particularly useful.

Our interest in sparse reconstruction methods arises from

a need to develop accurate spatially resolved estimates of

emissions that are not smoothly distributed in space; ffCO2

emissions are one such example. Estimates of ffCO2 emis-

sions are used to assess regional contributions to greenhouse

gas emissions and to drive climate change simulations (An-

dres et al., 2012). Currently, spatially resolved estimates of

ffCO2 emissions are typically derived from national-level

emissions inventories, and are mapped spatially using pop-

ulation density or some other proxy of human activity; ex-

amples of such spatially resolved inventories are described

in Gurney et al. (2009), Olivier et al. (2005), Rayner et al.

(2010) and Oda and Maksyutov (2011). Their shortcomings

arise from errors in national/provincial reporting and the

choice of the proxy used in spatial disaggregation (Andres

et al., 2012). Recently, the possibility of using atmospheric

observations to constrain fossil fuel emissions, and thereby

improve inventories, has been explored (Pacala et al., 2010).

Such applications involve the solution of an inverse problem

driven by ffCO2 concentration measurements (Rayner et al.,

2010). Note that such improvements would be contingent on

a good representation of an estimation problem within the

context of an inversion, including the use of a suitable param-

eterization for the emissions, the characterization of transport

model errors, and the availability of an observational network

that is sufficient to provide an adequate constraint on ffCO2

emissions; ffCO2 emissions for individual urban domes have

been estimated using atmospheric measurements (Turnbull

et al., 2011; McKain et al., 2012; Kort et al., 2012), i.e., with-

out solving an inverse problem, but existing methods do not

offer a scalable approach to updating entire inventories in this

manner.

As a step towards enabling such applications, we con-

structed a wavelet-based spatial parameterization, called the

multiscale random field (MsRF; Ray et al., 2014), to repre-

sent ffCO2 emission fields. The MsRF was used to model

ffCO2 emissions in the lower 48 states of the USA at 1◦× 1◦

spatial resolution. The MsRF covers a rectangular region

described by the corners 24.5◦ N, 63.5◦W and 87.5◦ N,

126.5◦W. The emissions are modeled using Haar wavelets,

which provide the sparsest representation of ffCO2 emissions

in the relevant region. The model has O(103) independent

model parameters which were selected using images of lights

at night. Due to its high dimensionality, the MsRF model

cannot be used directly given realistic in situ observational

limitations. However, a data-driven dimensionality reduction

of the MsRF model, using a sparse reconstruction method,

could help constrain the inverse problem and make it pos-

sible to capture coarse spatial patterns of ffCO2 emissions

(and, perhaps, finer details in the vicinity of the sensors), con-

ditioned on atmospheric measurements.

The use of sparse reconstruction methods poses certain

methodological challenges. First, these reconstruction meth-

ods do not provide a mechanism for imposing non-negativity,

which is a requirement when estimating emission fields.

Second, sparse reconstruction methods have, to date, been

used with wavelet-based random field models which can
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only model rectangular domains; in contrast, the geometry of

emission fields could be decided by geographical or political

boundaries. (A random field model is a spatial parameteriza-

tion for a field defined on a grid. It can be constructed using

orthogonal bases such as wavelets; the wavelets’ weights are

the model parameters and are treated as random variables.

Realizations of these random variables produce a realization

of the field. Depending upon the choice of the basis set, e.g.,

if it contains only a subset of wavelets that can be supported

by the grid, the random field model may be able to produce

only a subset of the infinite number of fields that the grid can

support). Finally, sparse reconstruction methods do not pro-

vide a simple mechanism to incorporate prior information or

guesses of the field being estimated, a common technique

to ensure a unique solution to an inverse problem. This is

because methods such as OMP and StOMP were largely de-

veloped for the reconstruction of compressively sensed im-

ages (Candes and Wakin, 2008) where prior information is

weak. In contrast, many emission fields of an anthropogenic

nature have inventories that can serve as very informative pri-

ors and reconstruction methods could profitably use them.

Our previous work (Ray et al., 2014) focused on the spatial

parameterization (the MsRF described above) for estimating

ffCO2 emission fields via atmospheric inversion. In this pa-

per, we describe the methodological innovations in sparse re-

construction techniques that allowed us to perform the inver-

sion, despite the high dimensionality of the parameterization.

These innovations result in an extension of StOMP which

can address the peculiarities of reconstructing an emission

field. The StOMP extension will be demonstrated in a top-

down inversion, using synthetic observations generated from

a known, ground-truth emission field so that we may examine

certain algorithmic and numerical aspects of the estimation

technique, as described below. The novel algorithmic devel-

opments addressed in this paper are

1. Incorporation of a prior model of spatially rough emis-

sions: we demonstrate a novel and simple method to in-

troduce prior information on spatially rough emission

fields (in the form of an approximate field f pr) into

StOMP. Currently, sparse reconstruction methods em-

ploy no other prior information beyond the phenomeno-

logical observation that most fields can be represented

quite accurately with a sparse set of judiciously chosen

wavelet bases (Candés and Romberg, 2007).

Note, that the term prior model or prior information is

used somewhat loosely here since our method is not

strictly Bayesian. However, f pr serves a similar func-

tion by providing regularization in the inverse problem.

2. Estimating fields in irregularly shaped regions: the

MsRF model, being based on wavelets, can only model

fields in rectangular domains, whereas our emission

field is distributed over an irregular regionR, the lower

48 states of the USA. We demonstrate how this geomet-

rical constraint can be imposed efficiently using random

projections, a technique that underlies much of com-

pressive sensing. The reconstruction of fields in non-

rectangular geometries has no parallel in the compres-

sive sensing of images and the method discussed in this

paper is the first of its kind.

3. Imposition of non-negativity: the estimation of the emis-

sion field is posed as a linear inverse problem (see

Sect. 2). Non-negativity of emissions can be enforced

by log transforming the field, but converts the problem

into a nonlinear one, requiring computationally expen-

sive, iterative sparse reconstruction methods, like the

one developed in Li and Jafarpour (2010). We develop

a simple, iterative post-processing method to enforce

non-negativity on the estimated ffCO2 emissions. The

non-negativity enforcement mechanism uses StOMP

but does not use the MsRF model. The imposition of

non-negativity in the sparse reconstruction of an emis-

sion field has never been explored before; for example,

in Hirst et al. (2013), the non-negativity constraint was

not applied to CH4 emissions from landfills.

In this study, we demonstrate our method on an idealized at-

mospheric inversion of a spatially rough emission field inR.

The method is general, but we use ffCO2 as the test case. The

idealizations are enumerated below.

1. We assume that ffCO2 can be measured independently

without interference from biospheric CO2 fluxes. As de-

scribed in Ray et al. (2014), this could be performed

using 114CO2 (radiocarbon) or other non-CO2 tracers,

but the measurement technology is expensive and far

from being widely deployable.

2. Inversions require us to adopt a statistical error model

for the mismatch between observations and model pre-

dictions using the estimated emission field. This er-

ror quantifies the aggregate of measurement uncertain-

ties and errors introduced by the approximations in the

transport model, among others. It varies between mea-

surement locations. In this study, we model this mis-

match as i.i.d. (independent and identically distributed)

Gaussian random variables. We assume a value for the

standard deviation of the distribution that is too small

compared to what is possible using existing transport

models and measurement technologies; further, we use

the same error model for all the measurement locations

(details in Sect. 4). The small error allowed us to investi-

gate the numerical aspects of our formulation and solu-

tion algorithms without being substantially affected by

observational noise. The small error was also required

due to the nature of the measurement network employed

in the synthetic data test (see below).

The synthetic measurements are obtained at a set of 35 tow-

ers, a network that existed in 2008 (see Ray et al., 2013,
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for their locations). This network, sited with biospheric CO2

measurements in mind, has towers which tend to be far from

urban areas and thus sources of ffCO2 emissions. Conse-

quently, the modeled ffCO2 concentrations at these towers

tend to be low, forcing us to employ an error model that is

unrealistically small. These idealizations lead to limits on the

inferences that can be drawn regarding the use of our method

in a real-data inversion for ffCO2 emission fields; they are

discussed in Sect. 5.

We will estimate the emission field at 1◦× 1◦ resolu-

tion. Emission fields are averaged over 8 days, and esti-

mated over 360 days, i.e., we estimate 360/8= 45 fields.

ffCO2 emission from the Vulcan inventory (version 1) (http://

vulcan.project.asu.edu/index.php; Gurney et al., 2009) serve

as the ground truth, to generate the synthetic or pseudo-

observations yobs of time-variant ffCO2 concentrations. (The

Vulcan inventory provides hourly ffCO2 emissions at 10 km

resolution for the lower 48 states of the USA for 2002; it

can also be downloaded at 0.1◦ resolution.) The prior model

f pr will be constructed using the Emission Database for

Global Atmospheric Research (source: European Comission,

Joint Research Centre/Netherlands Environmental Assess-

ment Agency; Emission Database for Global Atmospheric

Research (EDGAR), release version 4.0, http://edgar.jrc.ec.

europa.eu, 2009; Olivier et al., 2005), which provides a sin-

gle emission field at 1◦ resolution for 2005. These choices

were driven solely by the easy availability of data.

We evaluate our inversion method using the following

metrics. First, we check whether the incorporation of prior

information into our modification of the StOMP algorithm

improves estimates. Second, we investigate the sparsifying

nature of our algorithm. The aim of sparse reconstruction is

to estimate parameters supported by data (usually large-scale

spatial patterns in the rough emission field) and remove de-

tails that are not. We check whether this property of StOMP

is retained after our modifications. Finally, we check the ef-

ficiency with which our method reconstructs emission fields

inside an irregular R. Our use of a wavelet-based spatial pa-

rameterization incurs a computational cost which can be lim-

ited by a user-defined setting. We check if there is a princi-

pled way of computing this setting, e.g., if improvements in

results follow a diminishing returns behavior with the com-

putational cost.

Note that in this study, we do not use the accuracy of the

estimated field as a metric for evaluating our method; we

only use estimation accuracy to select between competing

formulations of the inverse problem. The estimation accuracy

depends on (1) the spatial parameterization (the MsRF) and

(2) the information content of the data set, and was explored

in detail in our previous paper (Ray et al., 2014). There, we

fixed the observational data and used the accuracy of the es-

timated emission field to gauge the quality of the MsRF. The

converse problem – fixing the MsRF and varying the quantity

of data – is not very useful for our StOMP-based algorithm,

since StOMP’s sensitivity to data was addressed in Donoho

et al. (2012).

The paper is structured as follows. In Sect. 2, we re-

view sparse reconstruction techniques, their use with wavelet

models of fields and the tenets of compressive sensing that

establish the necessary conditions for successful sparse re-

constructions. In Sect. 3, we pose the inverse problem and

describe the numerical method used to solve it. Three for-

mulations, differing in the manner in which they incorporate

f pr are examined. In Sect. 4 we perform inversion tests with

synthetic data to select the best formulation. We also explain,

using the properties required for sparse reconstruction, why

the selected formulation performed better than the others.

The efficacy of limiting the estimated field within R using

random projections is also investigated. Conclusions are in

Sect. 5.

2 Background

In this section, we review techniques used to estimate CO2

fluxes, compressive sensing and the use of sparse reconstruc-

tion in inverse problems.

Estimation of CO2 fluxes: let the vector f be the CO2 flux

defined on a grid with NR grid cells. Let f be of size KNR,

representing a flux field defined over K time periods. The

flux is assumed to be time invariant during a given time pe-

riod. The transport of CO2 is modeled as that of a passive

scalar, i.e., the concentration of CO2 due to f at an arbitrary

set of sites, is given by y =Hf . Here, y is a vector KsNs

long, Ns being the number of locations where measurements

are collectedKs times over theK time periods. The matrix H

(KsNs×KNR) contains the sensitivity of measurements to a

CO2 source in each grid cell and is computed using an atmo-

spheric transport model such as the Stochastic Time-Inverted

Lagrangian Transport Model (STILT; Lin et al., 2003). In an

atmospheric inversion, CO2 concentration yobs are measured

at a limited set of locations, usually a set of measurement

towers (as in our case) or as column-averaged satellite sound-

ings. The measurements are too few or too uninformative to

estimate f , with each grid cell treated independently. In case

of biospheric fluxes, a prior flux f pr (with the same dimen-

sions as f ) can be obtained from a biogeochemical process-

based model such as CASA (Carnegie–Ames–Stanford Ap-

proach; Potter et al., 1993). The discrepancy (f −f pr) is

usually modeled as a multi-variate Gaussian field with co-

variance Q (a KNR×KNR matrix), and the estimation of

f is typically performed by minimizing the objective func-

tion

J = (yobs
−Hf )TR−1

e (yobs
−Hf )︸ ︷︷ ︸

Observation term

+ (f −f pr)
TQ−1(f −f pr),︸ ︷︷ ︸
Prior term

(1)
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where Re is a diagonal matrix with the data – model vari-

ances and includes many sources of errors including mea-

surement errors, aggregation errors and transport model in-

accuracies. Methods to solve this linear inverse problem are

reviewed in Ciais et al. (2010). A comparison of biogenic

CO2 fluxes and ffCO2 emissions (Fig. 1 in Ray et al., 2014)

shows that ffCO2 are multiscale in nature and a multi-variate

Gaussian field approximation of (f −f pr) is unlikely to be

accurate. This motivated us to construct the MsRF model for

ffCO2 emission fields (Ray et al., 2014). The solution of an

inverse problem using MsRF requires the use of a sparse re-

construction method that, to date, has been used in the recon-

struction of compressively sensed images.

Compressive sensing of images: compressive sens-

ing (Romberg, 2008; Candes and Wakin, 2008) is a very effi-

cient means of representing images using wavelets. Wavelets

are a family of orthogonal bases with compact support that

are routinely used to model complex fields, including ffCO2

emissions (Ray et al., 2014). Compact support refers to the

fact that a wavelet is defined over a finite region (com-

pact support). This is in contrast to other commonly used

bases, e.g., sin(kπx),−∞≤ x ≤∞,k ∈ Z, which have in-

finite support. However, like Fourier bases, wavelets are or-

thogonal; the scalar product of two different wavelets of the

same type and order, e.g., Daubechies wavelets of order 4,

is 0. Compressive sensing (CS) is based on two key tenets:

compressible representation and encoding via random pro-

jections. CS assumes that an image, projected onto a suitable

wavelet basis set, will yield wavelet weights (represented by

a vector w) that are mostly very small (i.e., a compressible

representation) and can be set to zero. Removing the small

wavelets results in a sparse approximation of the image. En-

coding via random projections is more involved and deter-

mines the necessary conditions for successful sampling. Ran-

dom encoding is central to our method for applying boundary

conditions, viz., limiting ffCO2 emissions within complex,

non-rectangular boundaries.

Consider an image g of size N , that can be represented

sparsely using L�N wavelets. Random encoding, as used

in CS, asserts that the image may be sampled by projecting

it onto a set of random vectors ψj , to obtain compressive

measurements g′, of size Nm, L <Nm�N :

g′ =9g =98w = Aw, (2)

where the rows of the sampling matrix 9 consist of the ran-

dom vectorsψj , the columns of8 consist of the orthonormal

basis vectors (the wavelets) φi and w are the weights (or co-

efficients) of the wavelets. 8 is a N ×N matrix while 9 is

Nm×N . The bulk of the theory was established in Candes

and Tao (2006), Donoho (2006), Candes et al. (2006) and

Baraniuk et al. (2008).

In order that one may recover the original image g from g′

using sparse reconstruction, 9 and 8 must satisfy incoher-

ence and a restricted isometry property (Candes and Wakin,

2008). Incoherence implies that no rowψk in9 is co-aligned

with column φl in 8 and thus collects information on all

bases. It is ensured by choosing some well-known wavelets

bases (e.g., Haars or Daubechies 4 and 8) for 8 and ran-

dom vectors for 9 (Tsaig and Donoho, 2006; Coifman et al.,

2001). This is formally quantified by the mutual coherence

µ(9,8) of 9 and 8:

µ(9,8)=
√
Nmax1≤(k,l)≤N |< ψk,φl > |

=
√
Nmax(|Akl |), (3)

where Akl are elements of A. Each row of 9 is normalized

to a unit vector. The term |< ψk,φl > | is the projection of

row ψk on a wavelet basis φl . Co-alignment of a row ψk′

with a wavelet φl′ would lead to Ak′l′ = 1 and Ak′l = 0 for

all l 6= l′, indicating that a random vector ψk′ collects in-

formation on only one wavelet. The scaling by
√
N is con-

ventional. A small mutual coherence ensures that all pro-

jections of 8 on the rows of 9 are of moderate magnitude

(O(10−1)–O(10−3)). A small mutual coherence aids accu-

rate reconstruction. When µ(9,8)�
√
N , we loosely re-

fer to 9 and 8 as being incoherent. The restricted isometry

property (RIP) is a condition imposed on A which ensures

that w can be recovered from g′ uniquely without the use of

priors (except sparsity). We did not pursue this thread since

the use of a prior – making the inventory that supplies f pr

consistent with observations – is the motivation behind this

investigation.

Sparse reconstruction of images from compressive mea-

surements: the aims of reconstruction in CS are to (1) recover

the sparsity pattern (alternatively, identify the components of

w that can be estimated from g′) and (2) estimate those ele-

ments of w that are informed by g′ while setting the rest to

zero. The former can be realized by minimizing the `0 norm

of w while the latter is typically achieved by minimizing the

`2 norm of the measurement – model discrepancy. However,

an objective function that contains a `0 norm is discontinu-

ous, and consequently `0 is replaced by an `1 norm, which is

more tractable (Donoho et al., 2012). Thus, the optimization

problem is posed as

minimize
w∈RN

||w||1, subject to ||g′−Aw||2 < ε2. (4)

This optimization problem can be solved using methods like

MP, OMP and StOMP. Bayesian equivalents also exist (Ji

et al., 2008; Babacan et al., 2010), where Laplace priors

are used to enforce sparseness in the inferred w. Algorithms

based on convex optimization that serve the same purpose

are reviewed in Jafarpour (2013). All these algorithms are

general and do not exploit any particular structure in g ex-

cept sparsity. However, one may also create a prior model

for wavelet distributions, e.g., by using a database of simi-

lar images, for higher quality reconstructions (Duarte et al.,

2005; La and Do, 2005; Baraniuk et al., 2010; He and Carin,

2009). In order to do so, sparse reconstruction methods have

to be modified to incorporate prior information.
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Sparsity is sometimes used to solve inverse problems in

physics, with the 9 operator representing the physical pro-

cess. Most of these inverse problems have been in the estima-

tion of log-transformed permeability fields (Li and Jafarpour,

2010; Jafarpour, 2013), seismic tomography (Loris et al.,

2007; Simons et al., 2011; Gholami and Siahkoohi, 2010)

and estimation of point and distributed emissions (Hirst et al.,

2013; Martinez-Camara et al., 2013). A more detailed re-

view of the sparse reconstruction methods can be found in

our previous paper (Ray et al., 2014). Most of these inverse

problems involved nonlinear models, i.e., y = a(w), rather

than y = Aw, for which incoherence (and RIP) are not well

defined and consequently were not investigated.

To summarize, sparse reconstruction techniques and

wavelet-based random field models have been used in non-

linear inverse problems. In contrast, the problem of estima-

tion of spatially rough emission fields is linear, raising the

possibilities that (1) the same approach may offer a solution

to the emission estimation problem and (2) mutual incoher-

ence may provide analytical metrics for the quality of obser-

vations and, consequently, solutions. We build on the princi-

ples of compressive sensing and sparse reconstruction meth-

ods to design an inversion scheme for rough emission fields.

In particular, we show (using coherence metrics) why the use

of f pr was necessary. We also show the degree of computa-

tional saving achieved when we use random projections to

limit ffCO2 emissions withinR.

3 Formulation of the estimation problem

Ray et al. (2014) developed a MsRF model for ffCO2 emis-

sions in the USA. The MsRF model allows ffCO2 emissions

to be represented as f =8w, where8 is a collection of Haar

wavelets. Consequently, the observational term in Eq. (1) can

be written as ||yobs
−H8w||22. Compared with Eq. (2), we

see that the transport model H serves as the sampling matrix

9. Since we seek to estimate the wavelet weights w from

yobs, an optimization problem like Eq. (4) could be posed

with the constraint ||yobs
−Aw||2 < ε2, A=H8. In order

to solve this problem via sparse reconstruction, one requires

that H and 8 be incoherent. As we will show in Sect. 4.2,

the incoherence requirement is not met, and sparsity (solely)

is not sufficient to solve the problem accurately (as tested in

Sect. 4.1). Consequently, we modify StOMP to incorporate

a prior emission field f pr. We also adapt it to accommodate

fields defined over irregularly shaped domains as well as to

ensure non-negativity of the estimated field.

Let f be a time-variant, non-negative field defined in an

irregular region R, gridded with NR grid cells. In our case

f models ffCO2 emission fields. The field is averaged over

a time period T and covers K time periods, i.e., it is a vector

NRK long. f drives a linear model of observations of ffCO2

concentrations:

yobs
= y+ ε =Hf + ε, (5)

where H is the sensitivity matrix obtained from an atmo-

spheric transport model (see Sect. 2), ε is the model–data

mismatch due to measurement and transport model errors

and yobs is a vector of time-variant measurements collected

at Ns measurement towers. Each tower collects Ks measure-

ments over the K time periods, i.e., yobs is a vector KsNs

long. The H matrix is (KsNs)× (NRK).

3.1 Prior models

We employ two prior models in our work – the MsRF

model for ffCO2 emissions and a time-invariant approx-

imation of ffCO2 emissions f pr. The MsRF is a collec-

tion of wavelets and model emissions in the logically rect-

angular domain given by the corners 24.5◦ N, 63.5◦W

and 87.5◦ N, 126.5◦W. The MsRF discretizes the domain

using a dyadic 2M × 2M mesh. Haar wavelets are de-

fined on all M levels of this dyadic grid, but not all of

them are retained in the MsRF. Wavelets constituting the

MsRF model are chosen using radiance-calibrated images

of lights at night (http://ngdc.noaa.gov/eog/data/web_data/

v4composites/F152002.v4.tar; Cinzano et al., 2000), which

serve as a proxy for human activity and thus capture the spa-

tial patterns of ffCO2 emissions. The emission field is al-

lowed to assume non-zero values only within R, the lower

48 states of the USA. We denote the field during the kth time

period as f k and model it as

f k = w
′

kφ
′
+

M∑
s=1

∑
i,j

ws,i,j,kφs,i,j ,

{s, i,j} ∈W (s)
=8wk, (6)

whereW (s) contains the L wavelets that constitute the MsRF

model, and L is a fraction of the 4M wavelets that can be

supported by a 2M × 2M mesh.

The MsRF is also the starting point for developing the sec-

ond prior model f pr. The MsRF provides a sparse represen-

tation of the radiances X(s):

X(s) = w′(X)φ
′
+

∑
l,i,j

w(X),l,i,jφl,i,j , {l, i,j} ∈W
(s). (7)

X(s) is used to calculate a time-invariant prior model for

ffCO2 emissions as f pr = cX
(s). c is computed such that∫

R

f V dA=

∫
R

f prdA= c

∫
R

X(s)dA= c

∫
R

(
w′(X)φ

′

+

∑
l,i,j

w(X),s,i,jφl,i,j

)
dA, {l, i,j} ∈W (s). (8)

Equation (8) implies that c is calculated such that both f V
and f pr provide the same value for the total emissions in R.
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f V in our case is the annually averaged 2005 emission field

obtained from EDGAR. The leftmost term
∫
Rf V dA quan-

tifies the total emissions as predicted by EDGAR over R.

The term c
∫
RX(s)dA is an estimate of emissions over the

same region but modeled using f pr. The rightmost term sim-

ply replaces X(s) with its wavelet model, in accordance with

Eq. (7). The details of how the MsRF and f pr were con-

structed are in Ray et al. (2014). f pr differs from the ground

truth (Vulcan emissions aggregated over the lower 48 states)

by 5–25 % (see Fig. 9 in Ray et al., 2014).

3.2 Posing and solving the inverse problem

We seek emissions over an entire year (360 days), i.e., we

seek F = {f 1,f 2, . . .fK} = {8w1,8w2, . . .8wK} = 8̃w.

F models the field in R∪R′, where R′ models the region

outsideR (but inside the rectangular domain modeled by the

MsRF) with zero ffCO2 emissions. We separate out the fluxes

inR andR′ by permuting the rows of 8̃

F =

(
FR
FR′

)
=

(
8̃R
8̃R′

)
w,

where 8̃R and 8̃R′ are (NRK)×(LK) and (NR′K)×(LK)
matrices, respectively. Here NR′ is the number of grid cells

in R′. The modeled concentrations at the measurement tow-

ers, caused byFR, can be written as y =HFR. For arbitrary

w, FR′ (the emissions in R′) are not zero and FR′ = 0 will

have to be imposed as a constraint in the inverse problem.

Specifying the constraint in individual grid cells is not very

efficient since it leads toNR′K constraints. This can get very

large in a global inversion at high spatial resolutions. Instead,

we adapt an approach from compressive sensing to enforce

this constraint approximately. Consider aMcs×(NR′K)ma-

trix R, whose rows are direction cosines of random points on

the surface of NR′K-dimensional unit sphere. This matrix

is called a uniform spherical ensemble (Tsaig and Donoho,

2006). The Mcs projections of the emission field FR′ on R,

i.e., RFR′ , compressively samples FR′ and setting them to

zero during inversion allows us to enforce zero emissions

outsideR. In Sect. 4.3, we will investigate the degree of com-

putational saving afforded by imposing the FR′ = 0 con-

straint in this manner. The problem is now modeled as

Y =

(
yobs

0

)
≈

(
H 8̃R
R 8̃R′

)
w =Gw. (9)

In this equation, G is akin to A in Eq. (2). The left hand side

Y is approximately equal to Gw since the observations yobs

contain measurement errors that cannot be modeled with H.

The case where R′ contains non-zero emissions requires

the use of boundary fluxes and is discussed in Ray et

al. (2014).

The wavelet coefficients w in Eq. (9) are not normal-

ized and usually display a large range of magnitudes. The

wavelets in W (s) at finer scales, i.e., those with a small sup-

port, tend to have coefficients with a large magnitude. Their

small support cause the fine-scale wavelets to impact only

neighboring measurement towers. In contrast, wavelets at the

coarser scales have large footprints that span multiple mea-

surement locations. Total emissions inR, as well as yobs, are

very sensitive to their coefficients. Solving Eq. (9) as it is in-

corporates no information from f pr beyond the selection of

wavelets to be included in 8̃. We explore the incorporation of

f pr in the estimation of w using three different approaches:

Approach A: this is the baseline approach and solves

Eq. (9) as it is. The lack of normalization of w, in conjunc-

tion with the sparse reconstruction procedure described be-

low, leads to artifacts that will be described in Sect. 4.1.

Approach B: in this formulation, we include f pr as a prior.

We write the emissions as F = f pr+1F . Substituting into

Eq. (9), we get Y ≈Hf pr+G1w, where 1w = w−w(X).

Here, w(X) = c{w
′

(X),w(X),s,i,j }, {s, i,j} ∈W
(s), where c is

obtained from Eq. (8). Simplifying, we get

1Y = Y −Hf pr ≈G1w. (10)

Approach C: in approach B we expressed the true fluxF as

an additive correction over f pr, thus incorporating the prior

information in f pr. In approach C, we use the spatial pat-

tern of f pr, as captured by its wavelet coefficients w(X), to

normalize w. We rewrite Eq. (9) as

Y ≈GBB−1w =G′w′ =

(
H8̃
′

R
R8̃
′

R′

)
w′, (11)

B= c diag(w(X)), (12)

where w′ = {ws,i,j/(c w(X),s,i,j )}, {s, i,j} ∈W
(s) are the

wavelet coefficients normalized by those of f pr, 8̃
′

R =

8̃R diag(w(X)) and 8̃
′

R′ = 8̃R′ diag(w(X)). If f pr is close

to F , the elements of w′ will be O(1). If f pr is a gross un-

derestimate, the elements of w′ will still be of the same order

of magnitude, but not O(1). Thus, normalization with w(X)
removes the large differences that exist between the wavelet

coefficients at different scales.

In all the three cases, we obtain an underdetermined set of

linear equations of the form

ϒ ≈ 0ζ . (13)

Here ϒ represents Y in approaches A and C, and 1Y in ap-

proach B. 0 represents G in approaches A and B and G′ in

approach C. ζ representsw in approach A,1w in approach B

and w′ in approach C.

Since yobs is obtained from a set of locations sited with an

eye towards biospheric CO2 fluxes (see Ray et al., 2013), it is

unlikely that it will allow the estimation of all the elements of

ζ . Further, a priori, we do not know the identity of these un-

estimateable elements and so we use sparse reconstruction

to find and compute them. Equation (13) is recast similar to

Eq. (4):

minimize
ζ∈RN

||ζ ||1, subject to ||ϒ −0ζ ||22 < ε2. (14)
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We solve Eq. (14) using StOMP. ||ζ ||1 is minimized by set-

ting to zero as many elements of ζ as possible, thus enforc-

ing sparsity. Meanwhile, the constraint ||ϒ −0ζ ||2 ensures

that the solutions being proposed by the optimization proce-

dure provide a good reproduction of the observations. Note

ζ contains only the wavelets in W (s). The StOMP algorithm

is detailed in Donoho et al. (2012). We will refer to this step

in the estimation procedure as step I.

3.3 Enforcing non-negativity on FR

Estimates of w calculated by StOMP do not necessarily pro-

vide FR = 8̃Rw that are non-negative. In practice, negative

values of FR occur in only a few grid cells and are usually

small in magnitude. A large fraction of elements of w are set

to zero by StOMP. Having identified the sparsity pattern, i.e.,

the spatial scales that can be estimated from yobs, we devise

an iterative procedure for enforcing non-negativity on FR.

We discard FR′ and manipulate the field (the emissions) in

R directly, rather than via the wavelet coefficients.

We seek the non-negative vector E = {Ei}, i =

1. . .Q,Q= (NRK) such that

||yobs
−HE||2

||yobs||2
≤ ε3. (15)

E is constructed iteratively through a sequence E1,E2, . . .

EN . E0 is initialized by using the absolute values of FR
calculated by solving Eq. (14). At each iteration m, we seek

a correction ξ = {ξi}, i = 1. . .Q, where |ξi | ≤ 1, such that

E(m) = diag(exp(ξ1),exp(ξ2), . . .,exp(ξQ))E
(m−1)

≈ diag(1+ ξ1,1+ ξ2, . . .,1+ ξQ)E
(m−1)

=E(m−1)
+1E(m−1), where 1E(m−1)

= ξTE(m−1).

Since the field must satisfy yobs
≈HE(m), we get

yobs
−HE(m−1)

=1y ≈H1E(m−1). (16)

This is an underconstrained problem, and we seek the spars-

est set of updates 1E(m−1) using StOMP. The corrections

are calculated, and the field updated as

ξi = sgn

(
1E

(m−1)
i

E
(m)
i

)
max

(
1,

∣∣∣∣∣1E
(m−1)
i

E
(m)
i

∣∣∣∣∣
)
,

E
(m)
i = E

(m−1)
i exp(ξi) (17)

to obtain E(m). The convergence requirement in Eq. (15) is

checked with E(m), and if not met, the iteration count is up-

dated m :=m+ 1 and Eq. (16) is solved again.

We will refer to this step in the estimation procedure as

step II.

4 Numerical results

In this section, we test the sparse estimation technique in

Sect. 3, using synthetic observations. The time period T over

which the ffCO2 emissions are averaged is 8 days. K = 45,

i.e., we estimate emissions over 8× 45= 360 days. Ns = 35

towers, which are a subset of NOAA’s Earth System Re-

search Laboratory (ESRL) Global Monitoring Division’s co-

operative air sampling network (Tans and Conway, 2005);

their locations are in Ray et al. (2013). These towers pro-

vide continuous observations of CO2 concentrations (in parts

per million by volume, ppmv), and 3-hourly averaged syn-

thetic observations are used here (i.e.,Ks = 24/3× 8× 45=

2880). We discretize the domain covered by the MsRF us-

ing 1◦× 1◦ grid cells i.e., M = 6. The number of grid cells

in the entire domain (the rectangle with the corners 24.5◦ N,

63.5◦W and 87.5◦ N, 126.5◦W), N , is 4M = 4096, which is

also equal to the number of wavelets that can be defined on

the mesh. The number of wavelets retained in the MsRF, L,

is 1031. R denotes the lower 48 states of the USA. They are

covered with NR = 816 grid cells. The number of grid cells

outsideR, NR′ =N −NR = 3280.

The H matrix in Eq. (5) is calculated per the description

in Gourdji et al. (2012). We use the Stochastic Time-Inverted

Lagrangian Transport Model (Lin et al., 2003), with wind

fields from the Weather Research & Forecasting model (Ska-

marock and Klemp, 2008), version 2.2, driven by 2008 me-

teorology to compute H. Concentration sensitivities are cal-

culated at 3 h intervals over a North American grid, at a res-

olution of 1◦× 1◦. The sensitivity of the CO2 concentration

at each observation location due to the flux at each grid cell

is calculated in units of ppmvµmol−1 m2 s1. The sensitivity

of y to the 8-day-averaged emissions were obtained from the

3 h sensitivities by simply adding the 8×24/3= 64 sensitiv-

ities that span the 8-day period.

The true ffCO2 emissions in R are obtained, for 2002,

from the Vulcan inventory. Hourly Vulcan fluxes are coars-

ened from 0.1◦ resolution to 1◦, and averaged to 8-day pe-

riods. These 8-day-averaged fluxes at 1◦ resolution are mul-

tiplied by H to obtain ffCO2 concentrations at the measure-

ment towers. Note that averaging over 8 days removes the di-

urnal variations of ffCO2 emissions in Vulcan. Observations

are generated every 3 h and span a full year. A measurement

error ε ∼N(0,σ 2) is added to the concentrations to obtain

yobs (see Eq. 5), as used in Eq. (9). The same σ is used for

all towers. We use σ = 0.1 ppmv, which is too small and rep-

resents an idealized inversion scenario that is used here to test

the quality of the proposed numerical method. Realistic val-

ues of transport model errors for some of the towers used in

this study are in Gourdji et al. (2012). Radiocarbon measure-

ment errors can be found in Turnbull et al. (2011).
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Figure 1. Plot of US ffCO2 emissions (micromoles of C m−2 s−1) as reported by EDGAR for 2005.
Emissions below 0.02 micromoles of C m−2 s−1 are grayed out.
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Figure 1. Plot of ffCO2 emissions (micromoles of C m−2 s−1) as

reported by EDGAR for 2005. Emissions below 0.02 micromoles

of C m−2 s−1 are grayed out.

4.1 Comparison of optimization formulations

We choose between approaches A, B and C by solving the

inverse problem for the ffCO2 emission field. The inversion

is performed for the emissions F = {f k},k = 1. . .K , for the

entire year. The following parameters are used in the inver-

sion process: ε2 = 10−5,ε3 = 5.0×10−4,Mcs = 13 500, i.e.,

300 random projections for each 8-day period. The rationale

for these values can be found in our previous paper (Ray

et al., 2014).

In Fig. 2 we plot the estimated emissions during the 31st

8-day period, as calculated using approaches A, B and C. The

true emissions are also plotted for reference. Four quadrants

are also plotted for easier comparison and reference. The dis-

tribution of measurement towers is very uneven, with most

of the towers being concentrated in the northeast (NE) quad-

rant, where we expect the reconstruction to be most accurate.

We see that approach A (Fig. 2, top right) provides estimates

that have large areas in the northwest (NW) and southwest

(SW) quadrants with moderate levels of ffCO2 emissions.

In contrast, the true emissions (Fig. 2, top left) are mostly

empty. Thus, we see that the minimization of ||ζ ||1 (alterna-

tively ||w||1) drives the wavelet coefficients to small values,

but not identically to zero. In Fig. 2 (bottom left), approach

B provides estimates that show much structure in the eastern

quadrants, and the patterns seen in f pr (see Ray et al., 2014)

are reproduced. The reason is as follows. While f pr captures

the broad, coarse-scale patterns of ffCO2 emissions, it incurs

significant errors at the finer scales. Equation (10) seeks to

rectify the discrepancy between f pr and true emissions us-

ing observations. However, as mentioned in Sect. 3.2, fine-

scale wavelets tend to have large wavelet coefficients and the

minimization of ||ζ ||1 (alternatively ||1w||1) removes them

since the constraint ||ϒ −0ζ ||22 < ε2 is not very sensitive

to individual wavelets at the fine scale. (See Gerbig et al.

(2009) for a discussion on the largely local impact of a CO2

flux source.) The inability to rectify the fine-scale discrep-

ancies led to a final ffCO2 estimate that resembles f pr in

the finer details. Figure 2 (bottom right) plots the estimates

obtained using approach C, which uses normalized wavelet

coefficients w′. The estimates from approach C show large

areas of little or no emissions in the western quadrants, sim-

ilar to the true emissions in the top-left figure. In the eastern

quadrants, the emissions show less spatial structure than the

true emissions as well as those obtained using approach A.

The quality of the estimate is due to both the MsRF model

and the new sparse reconstruction scheme. The limited ob-

servations are sufficient to allow the estimation of the coarse

MsRF wavelets, and in certain areas, e.g., the NE quad-

rant, finer details. The MsRF model is sufficiently flexible

to accommodate the spatial heterogeneity in detail, but re-

quires a sparse reconstruction method to address the high di-

mensionality that such flexibility entails. Further, the multi-

resolution nature of MsRF model allows for the accurate es-

timation of coarse-scale patterns of ffCO2 emissions, i.e.,

we expect that aggregate measures of emission quality, such

as integrated emissions in R, will be accurate. It will incur

larger errors as the domain of integration has shrunk.

In Fig. 3 (top) we evaluate the accuracy of the reconstruc-

tion quantitatively. We integrate the emissions inR to obtain

the country-level ffCO2 emissions and compare that with the

emissions from Vulcan. We plot a time series of errors de-

fined as a percentage of total, country-level Vulcan emissions

Errork (%)=
100

K

K∑
k=1

Ek −EV,k

EV,k
,

where Ek =

∫
R

Ek dA and EV,k =

∫
R

f V,kdA. (18)

Here, f V,k are Vulcan emissions averaged over the kth 8-

day period and Ek are the non-negativity enforced emission

estimates in the same time period. A positive error denotes

an overestimation by the inverse problem. In Fig. 3 (bottom)

we plot the Pearson correlation coefficient between the true

and reconstructed emissions inR over the same duration. We

define the Pearson correlation coefficient between Ek and

f V,k as

C
(
Ek,f V,k

)
=

cov(Ek,f V,k)

σEkσf V,k
,

where σ 2
Ek

and σ 2
f V,k

are the variances of the true and re-

constructed fluxes and cov(Z1,Z2) is the covariance between

two random variables Z1 and Z2. It is clear that approach B

provides the worst reconstructions, with the largest errors and

smallest correlations. Approach C tends to over-predict emis-

sions a little more than approach A, but has better spatial cor-

relation with the Vulcan emissions.

In Fig. 4 we see the essential difference between ap-

proach A and C. We plot the reconstruction error (top) and

www.geosci-model-dev.net/8/1259/2015/ Geosci. Model Dev., 8, 1259–1273, 2015
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Figure 2. Plots of ffCO2 emissions during the 31st 8 day period. The units are micromoles of C m−2 s−1.
Emissions below 0.02 micromoles of C m−2 s−1 are grayed out. Top left, we plot true emissions from
the Vulcan inventory. Top right, the estimates from Approach A. Bottom left and right figures contain
the estimates obtained from Approaches B and C respectively. Each figure contains the measurement
towers as white diamonds. Each figure is also divided into quadrants. We see that Approach A, uncon-
strained by f pr provides low levels of (erroneous) emissions in large swathes of the Western quadrants.
Approach B reflects f pr very strongly. Approach C provides a balance between the influence of f pr and
the information in yobs.
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Figure 2. Plots of ffCO2 emissions during the 31st 8-day period. The units are micromoles of C m−2 s−1. Emissions below 0.02 micromoles

of C m−2 s−1 are grayed out. Top left, we plot true emissions from the Vulcan inventory. Top right, the estimates from approach A. Bottom

left and right figures contain the estimates obtained from approaches B and C, respectively. Each figure contains the measurement towers as

white diamonds. Each figure is also divided into quadrants. We see that approach A, unconstrained by f pr provides low levels of (erroneous)

emissions in large swathes of the western quadrants. Approach B reflects f pr very strongly. Approach C provides a balance between the

influence of f pr and the information in yobs.

correlation between true and reconstructed emissions (bot-

tom) in the northeast (NE) and northwest (NW) quadrants.

Errors in the emissions are represented as a percentage of the

total (true) emissions in that quadrant. We see the approach

C has smaller errors in both the quadrants. It also provides

higher correlation in the NW quadrant, which does not have

many measurement towers (white diamonds in Fig. 2). Both

the approaches have errors of opposite signs in the quadrants

which largely cancel out when errors are assessed over R as

a whole, leading to approximately similar estimation accura-

cies by both the approaches in Fig. 3. However, the estimates

produced by approach A (without the use of f pr) show larger

spatial variability and error than approach C. This is because

normalization using w(X) and minimization of ||ζ ||1 (alter-

natively ||w′||1) prevents large departures from f pr and also

rectifies the tendency to remove large wavelet coefficients be-

longing to the finer wavelets. Approach C therefore provides

a formulation that is more accurate and robust at the quad-

rant scale, even though both have similar fidelity at the scale

ofR.

4.2 Evaluating formulation using compressive

sensing metrics

Having established empirically that approach A is less accu-

rate than approach C, we can explain why this is the case. We

employ coherence metrics for this purpose.

In compressive sensing, random matrices such as Gaus-

sians, Hadamard, Circulant/Toeplitz or functions such as

noiselets (Tsaig and Donoho, 2006; Gan et al., 2008; Yin

et al., 2010; Tuma and Hurley, 2009) serve as 9. In Fig. 5,

we plot the distribution of log10(|Ai,j |), the elements of

A9 =98 for these standard sampling matrices. 8 contains

only the wavelets in W (s). Note that max(|Aij |) specifies the

mutual coherence, and small values of max(|Aij |) indicate

informative measurements. We see that log10(|Ai,j |) may

assume continuous (Gaussian and circulant sampling matri-

ces) or discrete (Hadamard, scrambled-block Hadamard and

noiselets) distributions, and generally lie between −3 and

−1. This provides a range for the level of coherence observed

in theoretical CS analyses.

In Eq. (9), H serves a similar sampling purpose, and the

efficiency of sampling depends on the incoherence between

H and 8. We construct a new H′ by picking the rows of H

corresponding to two towers and for the 21st and 22nd 8-

day periods. We compute AH′ =H′8, and in Fig. 5, plot the

log-transformed magnitudes of the elements of AH′ . The dis-

tributions for the two towers are almost identical. We clearly

see that, unlike A9 , AH′ contains a significant number of el-

ements that are close to 1, and a large number of elements

that are close to 0 (e.g., near 10−6). This is a consequence of

the rows of H′ being approximately aligned to some of the

columns of 8 and, consequently, nearly orthogonal to oth-
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Figure 3. Comparison of estimation error (left) and the correlation between true and estimated emissions
(right) using Approaches A, B and C. It is clear that Approach B is inferior to the others.
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Figure 3. Comparison of estimation error (top) and the correlation

between true and estimated emissions (bottom) using approaches A,

B and C. It is clear that approach B is inferior to the others.

ers. The small values in AH′ indicate that the CO2 concen-

tration prediction y at the two selected towers are insensitive

to many of the wavelets, i.e., to many scales and locations,

as observed in Sect. 4.1. Further, the coherence µ(H ′,8) is

larger than µ(9,8), indicating a sampling efficiency a few

orders of magnitude inferior to those achieved in the CS of

images. Consequently, approach A, based solely on sparsity,

and identical to the method adopted in CS, would not work

well. Thus, approach C, which employed both sparsity and

f pr, proved superior to approach A.

4.3 Numerical consistency and computational

efficiency

We now address some of the numerical aspects of the so-

lution. The results presented here are not tests of accuracy

of the estimated emission field; estimation accuracy also de-

pends on the MsRF and was investigated in Ray et al. (2014).

Here we empirically verify that certain necessary conditions

of our sparse reconstruction are satisfied.

In Fig. 6 (top), we plot y predicted by the reconstructed

emissions at two towers, BAO (Boulder Atmospheric Obser-

vatory, Colorado) and MAP (Mary’s Peak, Oregon). These

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

0 10 20 30 40 50

−20

0

20

40

60

80

100

120

140

8−day periods

E
m

is
si

on
 e

rr
or

 %

Error in reconstructed emissions in each quadrant

 

 

NW; Approach A
NE; Approach A
NW; Approach C
NE; Approach C

0 10 20 30 40 50

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8−day periods

P
ea

rs
on

 c
or

r 
co

ef
fic

ie
nt

Correlation between reconstructed & true emissions

 

 

NW; Approach A
NE; Approach A
NW; Approach C
NE; Approach C

Figure 4. Reconstruction error (left) and correlation between the true and estimated emissions, using
Approaches A and C, for the Northeast (NE) and Northwest (NW) quadrants. We see that Approach C,
which includes information from f pr, leads to lower errors in both the quadrants and better correlations
in the less instrumented NW quadrant.
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Figure 4. Reconstruction error (top) and correlation between the

true and estimated emissions, using approaches A and C, for the

northeast (NE) and northwest (NW) quadrants. We see that ap-

proach C, which includes information from f pr, leads to lower er-

rors in both the quadrants and better correlations in the less instru-

mented NW quadrant.

towers were included in the inversion and are not being used

as an out-of-sample test of the accuracy of the estimated

emission field. Rather, the MsRF for rough fields allows

the estimation of local sources which can help reproduce a

tower’s measurements very closely, unless neighboring tow-

ers provide a constraint; in a sparse network, this is not al-

ways possible. Thus, an accurate reproduction of a tower’s

observations is not necessarily a sign of an accurately esti-

mated emission field, but a bad reproduction can be a sign

of a malfunctioning sparse reconstruction method. We see

that the ffCO2 concentrations are well reproduced by the es-

timated emissions. In Fig. 6 (bottom) we plot the wavelet co-

efficients obtained by projecting the emissions (both the true

and reconstructed) on the wavelet bases. The wavelet coef-

ficient values have been subjected to a hyperbolic tangent

transformation for ease of plotting. The true wavelet coeffi-

cients with a magnitude above 0.01 are plotted with red sym-

bols. The true (Vulcan) emissions have a large number of co-

efficients with small magnitude; these are usually for small-

scale features, i.e., have coefficient indices in the right half of
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Figure 5. Comparison of the distribution of the elements of A9
and A8. We see that Gaussian and circulant random matrices lead

to continuous distributions, whereas Hadamard, scrambled-block

Hadamard (sbHadamard) and noiselets serving as sampling matri-

ces lead to A9 where the elements assume discrete values. In con-

trast, the elements of AH′ assume values which are spread over a far

larger range, some of which are quite close to 1 while others are very

close to 0.

the range (red symbols in Fig. 6, bottom). During sparse re-

construction, these coefficients are set to zero (blue symbols

in Fig. 6, bottom). The low-index coefficients, which repre-

sent large structures, are estimated accurately. The explicit

separation of scales is thus leveraged into omitting fine-scale

details which are difficult to inform with data and focusing

model-fitting effort on the large scales instead. Sparse re-

construction achieves this in an automatic, purely data-driven

manner, rather than via a pre-processing, scale-selection step.

Finally, we address the issue of enforcing the FR′ = 0

constraint via random Mcs projections. Naively, the con-

straint can be enforced for every individual grid cell, re-

sulting in NR′ = 3280 linear equations per 8-day period in

Eqs. (9) and (13). Considering that yobs
=H8̃R results in

64× 35= 3240 linear equations per 8-day period, we see

that enforcing the constraint is as expensive as computing

FR. Instead, we set Mcs�NR′ random projections of FR′
to zero in Eqs. (9) and (13), exploiting the basic efficiency-

via-random-sampling tenet of CS. Since Eq. (13) is solved

approximately, and due to the small number of wavelets in

W (s) that span R′, the constraint FR′ = 0 is not satisfied

exactly. This error varies with Mcs; a larger Mcs results in

a closer realization of the constraint. Errors in the enforce-

ment of the FR′ = 0 constraint lead to commensurate errors

in FR. Here we check the trade-off between Mcs (compu-

tational efficiency) and accuracy of the estimated emissions

(FR and FR′ ). In practice, this affects only step I of the pro-

cedure, where an approximation of ffCO2 emissions is calcu-

lated, and thereafter it is used as a guess in step II. However,

a good estimate of the emission field accelerates the second

step. The quality of the solution from step I, quantified as the
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The larger scales are estimated accurately.
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Figure 6. (Top) predictions of ffCO2 concentrations at two mea-

surement locations, using the true (Vulcan) and reconstructed emis-

sions (blue lines) over an 8-day period (period no. 31). Observations

occur every 3 h. We see that the concentrations are accurately repro-

duced by the estimated emissions. (Bottom) Projection of the true

and estimated emissions on the wavelet bases for the same period.

Coarse wavelets have lower indices, and they progressively get finer

with the index number. We see that the true emissions have a large

number of wavelets with small, but not zero, coefficients. In the re-

construction (plotted in blue), a number of wavelet coefficients are

set to very small values (almost zero) by the sparse reconstruction.

The larger scales are estimated accurately.

cumulative distribution function of the fluxes can be found

in Ray et al. (2013, 2014). There are only a few grid cells

with negative emissions and their magnitudes are small.

In Fig. 7, we plot the impact of Mcs on the reconstruction.

We perform sparse reconstruction of the emission field, for

the 31st 8-day period and compute the ratios

ηR =
||f k,R||2
||f V,k||2

and ηR′ =
||f k,R′ ||2
||f V,k||2

for k = 31, (19)

where f k,R and f k,R′ are the emissions over R and R′
from step I. f V,k is the true (Vulcan) emission field dur-

ing the same period. These ratios are plotted as a function

of log10(Mcs) per 8-day period. We see that 10 projections

per 8-day period is too few, leading to around 20 % errors in

f k,R′ (ηR′ ≈ 0.2). Beyond about 100 projections per 8-day

Geosci. Model Dev., 8, 1259–1273, 2015 www.geosci-model-dev.net/8/1259/2015/
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Figure 7. The impact of the number of compressive samples Mcs

on the reconstruction of FR (ηR) and FR′ (ηR′ ). ηR and ηR′
are plotted on the Y1 and Y2 axes, respectively. Results are plotted

for the 31st 8-day period. We see that Mcs > 103 does not result in

an appreciable increase in reconstruction quality. Also, Mcs < 102

shows a marked degradation in ηR′ .

period, ηR′ oscillates around 0.1. The corresponding errors

in f k,R are about 5 % (ηR ≈ 1.05). In our study we used 300

random projections for each 8-day period. This is about 10 %

of the 3280 linear constraints that we would have enforced

under a naive implementation of the FR′ = 0 constraint. It

also halves the computational cost of step I.

5 Conclusions

In this study, we have developed a sparse reconstruction

scheme that could be used for solving physics-based lin-

ear inverse problems. Our method is an extension of stage-

wise orthogonal matching pursuit (StOMP) (Donoho et al.,

2012) and borrows many concepts from the compressive

sensing (CS) and sparse reconstruction of images (Candes

and Wakin, 2008). This scheme is useful for estimating non-

stationary fields, e.g., permeability or flux fields, provided

their random field model consists of independent parame-

ters. This is typically achieved by representing the fields in

terms of orthogonal bases, e.g., wavelets or Karhunen–Loève

modes, if a prior covariance is available. The dimensionality

of the resultant representation is not an issue; the sparse re-

construction method estimates only those parameters that are

informed by the observations while setting the rest to zero.

Our new method has three novel characteristics. First, it

can impose non-negativity on the estimated field, without re-

sorting to log transformations. This retains the linear nature

of the inverse problem and consequently, its computational

efficiency. Second, it allows one to estimate geometrically

irregular fields while using a random field model designed

for rectangular domains. Third, it allows us to incorporate

a prior model of the field being estimated into the sparse re-

construction procedure. While other model-based sparse re-

construction methods exist (Baraniuk et al., 2010; He and

Carin, 2009; La and Do, 2005), our method is simple and is

seen empirically to recover the correct solution.

We have demonstrated our method in an atmospheric in-

verse problem for the estimation of a spatially rough emis-

sion field. It is an idealization of the estimation of ffCO2

emissions in R, the lower 48 states of the USA. The emis-

sions were modeled in a square domain, with a 64× 64 grid,

using a recently developed multiscale random field (MsRF)

model (Ray et al., 2014). It uses Haar wavelets and images of

lights at night to capture the spatial patterns of ffCO2 emis-

sion fields. The observational data consists of ffCO2 mea-

surements at a limited set of towers, which are linked to

the emission field via a CO2 transport model (the forward

model). We draw parallels between our physics-based in-

verse problem and the sparse reconstruction of images in

CS, and show that a fundamental CS tenet – incoherence –

holds only approximately. Consequently, such inverse prob-

lems may not bear an accurate solution if they are regularized

solely using sparsity. We demonstrate this in our study and

show how incorporation of prior information, in the form of

spatial patterns in images of lights at night, and a prior model

of ffCO2 emissions can enable a solution. We also demon-

strate how CS concepts can be used to restrict the estimated

field to an irregular region (in our case, R) with a factor-of-

ten less computational effort than a naive approach. Finally,

we show how non-negativity of ffCO2 emissions can be im-

posed using a simple post-processing step.

We also tested whether step I (Sect. 3.2) was necessary by

bypassing it completely, and starting step II (Sect. 3.3) with

E0 initialized using an inventory. We do not present results

of these tests in this paper, but find that the iterative scheme

converges only when E0 is very close to the true results. For

example, initializing using perturbed Vulcan emissions led

a converged solution, whereas f pr did not. Thus, step I is

required for robustness and generality. This is particularly

relevant for developing countries where inventories contain

larger errors.

Our sparse reconstruction scheme suffers from one serious

drawback – it does not provide uncertainty bounds on the

estimated field due to the paucity of data, and/or the short-

comings of the models. While this can be rectified using

a Kalman filter, it does not provide any mechanism for re-

ducing the dimensionality of the random field model, should

the observational data prove inadequate. This is currently be-

ing investigated. Also, we assumed that there were no emis-

sions outsideR, but in reality, there are. See our previous pa-

per (Ray et al., 2014) on how they could be accommodated

as boundary fluxes. Our use of the MsRF in the inversion is a

second source of error; in the limit of a very informative mea-

surement network, the accuracy of the inversion is limited by

the ability of the MsRF to represent ffCO2 fields accurately.

Due to the lack of a good tracer for ffCO2 emissions,

we demonstrated our method in an idealized inversion prob-

lem. The idealizations include a very small model – data

mismatch ε (much smaller than what can be supported by

www.geosci-model-dev.net/8/1259/2015/ Geosci. Model Dev., 8, 1259–1273, 2015
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contemporary transport models and radiocarbon measure-

ment technology) and an ability to measure ffCO2 accurately,

without interference from biospheric CO2 fluxes (i.e., we

treated ffCO2 like a radiocarbon tracer). In order that our

method could be used in a real-data inversion for ffCO2 emis-

sions, our method would need to be extended in a number of

ways. First, we would require a measurement network bet-

ter suited for ffCO2 measurements, with sensors near large

sources; one could be designed by conducting an observation

system simulation experiment, perhaps using the method de-

scribed here. Second, we would have to extend the method to

perform a joint ffCO2–biospheric CO2 inversion, by includ-

ing a spatial parameterization and priors for biospheric CO2.

Finally, we would have to devise a separate ε for each tower

to reflect transport model errors.

In conjunction with this paper, we are also providing, at

our website (Ray, 2013), the MATLAB® code required to

construct the MsRF model for ffCO2 emissions and perform

the inversion using synthetic observations. The website also

contains links to the (free) MATLAB® toolkits that our code

depends on, along with a user’s manual.
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