Submitted as: development and technical paper
21 Sep 2016
Submitted as: development and technical paper
| 21 Sep 2016
Status : this preprint was under review for the journal GMD. A revision for further review has not been submitted.
Technical Note: Improving the computational efficiency of sparse matrix multiplication in linear atmospheric inverse problems
Vineet Yadav1 and Anna M. Michalak2
Vineet Yadav and Anna M. Michalak
Vineet Yadav1 and Anna M. Michalak2
1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91011, USA 2 Department of Global Ecology, Carnegie Institution for Science, Stanford, California, 94305, USA
1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91011, USA 2 Department of Global Ecology, Carnegie Institution for Science, Stanford, California, 94305, USA
Hide author details
Received: 28 Jul 2016 – Discussion started: 21 Sep 2016
Matrix multiplication of two sparse matrices is a fundamental operation in linear Bayesian inverse problems for computing covariance matrices of observations and a posteriori uncertainties. Applications of sparse-sparse matrix multiplication algorithms for specific use-cases in such inverse problems remain unexplored. Here we present a hybrid-parallel sparse-sparse matrix multiplication approach that is more efficient by a third in terms of execution time and operation count relative to standard sparse matrix multiplication algorithms available in most libraries. Two modifications of this hybrid-parallel algorithm are also proposed for the types of operations typical of atmospheric inverse problems, which further reduce the cost of sparse matrix multiplication by yielding only upper triangular and/or dense matrices.
Vineet Yadav and Anna M. Michalak
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC : Author comment | RC : Referee comment | SC : Short comment | EC : Editor comment
- Printer-friendly version
- Supplement
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC : Author comment | RC : Referee comment | SC : Short comment | EC : Editor comment
- Printer-friendly version
- Supplement
Vineet Yadav and Anna M. Michalak
Vineet Yadav and Anna M. Michalak
Viewed
Total article views: 1,558 (including HTML, PDF, and XML)
HTML
PDF
XML
Total
Supplement
BibTeX
EndNote
1,025
440
93
1,558
123
70
92
HTML: 1,025
PDF: 440
XML: 93
Total: 1,558
Supplement: 123
BibTeX: 70
EndNote: 92
Views and downloads (calculated since 21 Sep 2016)
Month
HTML
PDF
XML
Total
Sep 2016
40
10
1
51
Oct 2016
21
5
0
26
Nov 2016
5
1
0
6
Dec 2016
5
3
0
8
Jan 2017
14
5
0
19
Feb 2017
16
6
2
24
Mar 2017
24
6
4
34
Apr 2017
27
13
3
43
May 2017
31
11
5
47
Jun 2017
26
3
3
32
Jul 2017
9
4
1
14
Aug 2017
10
4
0
14
Sep 2017
12
5
0
17
Oct 2017
12
1
0
13
Nov 2017
12
4
0
16
Dec 2017
13
7
1
21
Jan 2018
25
5
3
33
Feb 2018
28
2
4
34
Mar 2018
15
7
2
24
Apr 2018
7
8
0
15
May 2018
10
5
1
16
Jun 2018
7
6
1
14
Jul 2018
8
5
1
14
Aug 2018
8
4
0
12
Sep 2018
15
5
0
20
Oct 2018
14
4
3
21
Nov 2018
10
7
1
18
Dec 2018
10
6
1
17
Jan 2019
11
4
0
15
Feb 2019
14
6
1
21
Mar 2019
5
5
0
10
Apr 2019
14
8
1
23
May 2019
12
7
0
19
Jun 2019
8
5
0
13
Jul 2019
13
1
0
14
Aug 2019
19
4
0
23
Sep 2019
7
3
0
10
Oct 2019
6
8
0
14
Nov 2019
18
3
0
21
Dec 2019
7
5
0
12
Jan 2020
20
13
0
33
Feb 2020
9
4
0
13
Mar 2020
3
4
0
7
Apr 2020
5
5
0
10
May 2020
9
1
0
10
Jun 2020
9
7
1
17
Jul 2020
41
30
23
94
Aug 2020
10
1
0
11
Sep 2020
7
3
0
10
Oct 2020
10
5
2
17
Nov 2020
16
8
1
25
Dec 2020
13
2
1
16
Jan 2021
12
6
0
18
Feb 2021
11
7
0
18
Mar 2021
10
8
0
18
Apr 2021
19
5
0
24
May 2021
10
4
0
14
Jun 2021
14
2
0
16
Jul 2021
17
9
0
26
Aug 2021
12
5
0
17
Sep 2021
11
8
0
19
Oct 2021
19
18
0
37
Nov 2021
18
14
0
32
Dec 2021
23
11
7
41
Jan 2022
25
5
2
32
Feb 2022
18
1
2
21
Mar 2022
12
6
2
20
Apr 2022
8
3
1
12
May 2022
5
2
2
9
Jun 2022
7
1
2
10
Jul 2022
9
4
1
14
Aug 2022
6
5
1
12
Sep 2022
14
4
0
18
Oct 2022
7
2
1
10
Nov 2022
4
5
1
10
Dec 2022
5
6
3
14
Jan 2023
9
5
1
15
Cumulative views and downloads
(calculated since 21 Sep 2016)
Month
HTML views
PDF downloads
XML downloads
Sep 2016
40
10
1
Oct 2016
61
15
1
Nov 2016
66
16
1
Dec 2016
71
19
1
Jan 2017
85
24
1
Mar 2017
101
30
3
Mar 2017
125
36
7
Apr 2017
152
49
10
May 2017
183
60
15
Jun 2017
209
63
18
Jul 2017
218
67
19
Aug 2017
228
71
19
Sep 2017
240
76
19
Oct 2017
252
77
19
Nov 2017
264
81
19
Dec 2017
277
88
20
Jan 2018
302
93
23
Mar 2018
330
95
27
Mar 2018
345
102
29
Apr 2018
352
110
29
May 2018
362
115
30
Jun 2018
369
121
31
Jul 2018
377
126
32
Aug 2018
385
130
32
Sep 2018
400
135
32
Oct 2018
414
139
35
Nov 2018
424
146
36
Dec 2018
434
152
37
Jan 2019
445
156
37
Mar 2019
459
162
38
Mar 2019
464
167
38
Apr 2019
478
175
39
May 2019
490
182
39
Jun 2019
498
187
39
Jul 2019
511
188
39
Aug 2019
530
192
39
Sep 2019
537
195
39
Oct 2019
543
203
39
Nov 2019
561
206
39
Dec 2019
568
211
39
Jan 2020
588
224
39
Feb 2020
597
228
39
Mar 2020
600
232
39
Apr 2020
605
237
39
May 2020
614
238
39
Jun 2020
623
245
40
Jul 2020
664
275
63
Aug 2020
674
276
63
Sep 2020
681
279
63
Oct 2020
691
284
65
Nov 2020
707
292
66
Dec 2020
720
294
67
Jan 2021
732
300
67
Mar 2021
743
307
67
Mar 2021
753
315
67
Apr 2021
772
320
67
May 2021
782
324
67
Jun 2021
796
326
67
Jul 2021
813
335
67
Aug 2021
825
340
67
Sep 2021
836
348
67
Oct 2021
855
366
67
Nov 2021
873
380
67
Dec 2021
896
391
74
Jan 2022
921
396
76
Mar 2022
939
397
78
Mar 2022
951
403
80
Apr 2022
959
406
81
May 2022
964
408
83
Jun 2022
971
409
85
Jul 2022
980
413
86
Aug 2022
986
418
87
Sep 2022
1,000
422
87
Oct 2022
1,007
424
88
Nov 2022
1,011
429
89
Dec 2022
1,016
435
92
Jan 2023
1,025
440
93
Viewed (geographical distribution)
Total article views: 1,434 (including HTML, PDF, and XML)
Thereof 1,430 with geography defined
and 4 with unknown origin.
Total:
0
HTML:
0
PDF:
0
XML:
0
Latest update: 29 Jan 2023