Articles | Volume 16, issue 1
https://doi.org/10.5194/gmd-16-289-2023
https://doi.org/10.5194/gmd-16-289-2023
Model description paper
 | 
11 Jan 2023
Model description paper |  | 11 Jan 2023

The Intelligent Prospector v1.0: geoscientific model development and prediction by sequential data acquisition planning with application to mineral exploration

John Mern and Jef Caers

Related authors

Mapping high-resolution basal topography of West Antarctica from radar data using non-stationary multiple-point geostatistics (MPS-BedMappingV1)
Zhen Yin, Chen Zuo, Emma J. MacKie, and Jef Caers
Geosci. Model Dev., 15, 1477–1497, https://doi.org/10.5194/gmd-15-1477-2022,https://doi.org/10.5194/gmd-15-1477-2022, 2022
Short summary
Automated Monte Carlo-based quantification and updating of geological uncertainty with borehole data (AutoBEL v1.0)
Zhen Yin, Sebastien Strebelle, and Jef Caers
Geosci. Model Dev., 13, 651–672, https://doi.org/10.5194/gmd-13-651-2020,https://doi.org/10.5194/gmd-13-651-2020, 2020
Short summary
Hydrostratigraphic modeling using multiple-point statistics and airborne transient electromagnetic methods
Adrian A. S. Barfod, Ingelise Møller, Anders V. Christiansen, Anne-Sophie Høyer, Júlio Hoffimann, Julien Straubhaar, and Jef Caers
Hydrol. Earth Syst. Sci., 22, 3351–3373, https://doi.org/10.5194/hess-22-3351-2018,https://doi.org/10.5194/hess-22-3351-2018, 2018
Short summary

Related subject area

Numerical methods
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary
Assessing the benefits of approximately exact step sizes for Picard and Newton solver in simulating ice flow (FEniCS-full-Stokes v.1.3.2)
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024,https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary

Cited articles

Agusdinata, D. B., Liu, W., Eakin, H., and Romero, H.: Socio-environmental impacts of lithium mineral extraction: towards a research agenda, Environ. Res. Lett., 13, 123001, https://doi.org/10.1088/1748-9326/aae9b1, 2018. 
Bickel, J. E., Smith, J. E., and Meyer, J. L.: Modeling dependence among geologic risks in sequential exploration decisions, SPE Reserv. Eval. Eng., 11, 352–361, https://doi.org/10.2118/102369-PA, 2008. 
Brechtel, S., Gindele, T., and Dillmann, R.: Probabilistic decision-making under uncertainty for autonomous driving using continuous POMDPs, in: 17th international IEEE conference on intelligent transportation systems (ITSC) IEEE, 8–11 October 2014, Qingdao, China, 392–399, 2014. 
Brus, D. J. and de Gruijter, J. J.: Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion), Geoderma, 80, 1–44, https://doi.org/10.1016/s0016-7061(97)00072-4, 1997. 
Caers, J., Scheidt, C., Yin, Z., Mukerji, T., and House, K:. Efficacy of Information in Mineral Exploration Drilling, Nat. Resour. Res., 31, 1157–1173 https://doi-org.stanford.idm.oclc.org/10.1007/s11053-022-10030-1 (last access: 16 March 2022​​​​​​​), 2022. 
Download
Short summary
In this work, we formulate the sequential geoscientific data acquisition problem as a problem that is similar to playing chess against nature, except the pieces are not fully observed. Solutions to these problems are given in AI and rarely used in geoscientific data planning. We illustrate our approach to a simple 2D problem of mineral exploration.