Articles | Volume 16, issue 1
https://doi.org/10.5194/gmd-16-289-2023
https://doi.org/10.5194/gmd-16-289-2023
Model description paper
 | 
11 Jan 2023
Model description paper |  | 11 Jan 2023

The Intelligent Prospector v1.0: geoscientific model development and prediction by sequential data acquisition planning with application to mineral exploration

John Mern and Jef Caers

Related authors

Mapping high-resolution basal topography of West Antarctica from radar data using non-stationary multiple-point geostatistics (MPS-BedMappingV1)
Zhen Yin, Chen Zuo, Emma J. MacKie, and Jef Caers
Geosci. Model Dev., 15, 1477–1497, https://doi.org/10.5194/gmd-15-1477-2022,https://doi.org/10.5194/gmd-15-1477-2022, 2022
Short summary
Automated Monte Carlo-based quantification and updating of geological uncertainty with borehole data (AutoBEL v1.0)
Zhen Yin, Sebastien Strebelle, and Jef Caers
Geosci. Model Dev., 13, 651–672, https://doi.org/10.5194/gmd-13-651-2020,https://doi.org/10.5194/gmd-13-651-2020, 2020
Short summary
Hydrostratigraphic modeling using multiple-point statistics and airborne transient electromagnetic methods
Adrian A. S. Barfod, Ingelise Møller, Anders V. Christiansen, Anne-Sophie Høyer, Júlio Hoffimann, Julien Straubhaar, and Jef Caers
Hydrol. Earth Syst. Sci., 22, 3351–3373, https://doi.org/10.5194/hess-22-3351-2018,https://doi.org/10.5194/hess-22-3351-2018, 2018
Short summary

Related subject area

Numerical methods
Modeling large‐scale landform evolution with a stream power law for glacial erosion (OpenLEM v37): benchmarking experiments against a more process-based description of ice flow (iSOSIA v3.4.3)
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023,https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
A mixed finite-element discretisation of the shallow-water equations
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev., 16, 1265–1276, https://doi.org/10.5194/gmd-16-1265-2023,https://doi.org/10.5194/gmd-16-1265-2023, 2023
Short summary
Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling
Anthony Gruber, Max Gunzburger, Lili Ju, Rihui Lan, and Zhu Wang
Geosci. Model Dev., 16, 1213–1229, https://doi.org/10.5194/gmd-16-1213-2023,https://doi.org/10.5194/gmd-16-1213-2023, 2023
Short summary
Massively parallel modeling and inversion of electrical resistivity tomography data using PFLOTRAN
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev., 16, 961–976, https://doi.org/10.5194/gmd-16-961-2023,https://doi.org/10.5194/gmd-16-961-2023, 2023
Short summary
Parallelized domain decomposition for multi-dimensional Lagrangian random walk mass-transfer particle tracking schemes
Lucas Schauer, Michael J. Schmidt, Nicholas B. Engdahl, Stephen D. Pankavich, David A. Benson, and Diogo Bolster
Geosci. Model Dev., 16, 833–849, https://doi.org/10.5194/gmd-16-833-2023,https://doi.org/10.5194/gmd-16-833-2023, 2023
Short summary

Cited articles

Agusdinata, D. B., Liu, W., Eakin, H., and Romero, H.: Socio-environmental impacts of lithium mineral extraction: towards a research agenda, Environ. Res. Lett., 13, 123001, https://doi.org/10.1088/1748-9326/aae9b1, 2018. 
Bickel, J. E., Smith, J. E., and Meyer, J. L.: Modeling dependence among geologic risks in sequential exploration decisions, SPE Reserv. Eval. Eng., 11, 352–361, https://doi.org/10.2118/102369-PA, 2008. 
Brechtel, S., Gindele, T., and Dillmann, R.: Probabilistic decision-making under uncertainty for autonomous driving using continuous POMDPs, in: 17th international IEEE conference on intelligent transportation systems (ITSC) IEEE, 8–11 October 2014, Qingdao, China, 392–399, 2014. 
Brus, D. J. and de Gruijter, J. J.: Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion), Geoderma, 80, 1–44, https://doi.org/10.1016/s0016-7061(97)00072-4, 1997. 
Caers, J., Scheidt, C., Yin, Z., Mukerji, T., and House, K:. Efficacy of Information in Mineral Exploration Drilling, Nat. Resour. Res., 31, 1157–1173 https://doi-org.stanford.idm.oclc.org/10.1007/s11053-022-10030-1 (last access: 16 March 2022​​​​​​​), 2022. 
Download
Short summary
In this work, we formulate the sequential geoscientific data acquisition problem as a problem that is similar to playing chess against nature, except the pieces are not fully observed. Solutions to these problems are given in AI and rarely used in geoscientific data planning. We illustrate our approach to a simple 2D problem of mineral exploration.