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Abstract. Geoscientific models are based on geoscientific
data; hence, building better models, in the sense of attain-
ing better predictions, often means acquiring additional data.
In decision theory, questions of what additional data are ex-
pected to best improve predictions and decisions is within
the realm of value of information and Bayesian optimal sur-
vey design. However, these approaches often evaluate the
optimality of one additional data acquisition campaign at a
time. In many real settings, certainly in those related to the
exploration of Earth resources, a large sequence of data ac-
quisition campaigns possibly needs to be planned. Geoscien-
tific data acquisition can be expensive and time-consuming,
requiring effective measurement campaign planning to opti-
mally allocate resources. Each measurement in a data acqui-
sition sequence has the potential to inform where best to take
the following measurements; however, directly optimizing a
closed-loop measurement sequence requires solving an in-
tractable combinatoric search problem. In this work, we for-
mulate the sequential geoscientific data acquisition problem
as a partially observable Markov decision process (POMDP).
We then present methodologies to solve the sequential prob-
lem using Monte Carlo planning methods. We demonstrate
the effectiveness of the proposed approach on a simple 2D
synthetic exploration problem. Tests show that the proposed
sequential approach is significantly more effective at reduc-
ing uncertainty than conventional methods. Although our ap-
proach is discussed in the context of mineral resource explo-
ration, it likely has bearing on other types of geoscientific
model questions.

1 Introduction

As the world weans itself off fossil fuels over the next
decades, new forms of energy will heavily rely on Earth ma-
terials, in particular minerals. Rare earth elements are used in
a variety of clean-energy technologies (Haque et al., 2014).
Fully electrifying the light-duty auto fleet requires discov-
ering new ore deposits of critical electric vehicle (EV) ma-
terials: copper, nickel, cobalt, and lithium (Sovacool et al.,
2020). Increasing the required supply of these critical min-
erals requires a yet unattained discovery rate of new de-
posits. Mineral exploration is slow, requiring extensive guid-
ance from human experts. As a result, the rate of new dis-
coveries has declined over the last decades, since deposits
with sections visible at the surface have mostly been discov-
ered (Davies et al., 2021). At the same time, the demand will
continue to increase, making minerals a targeted commodity
subject to international conflict (National Research Council,
2008) as well as social and environmental concerns (Agusdi-
nata et al., 2018). Enhancing and speeding up mineral explo-
ration at a planet-wide scale is required. Our approach, using
artificial intelligence for effective planning of exploration en-
deavors, aims to contribute to this challenge.

Mineral exploration requires making sequential decisions
about what type of data to acquire, where to acquire them,
and at what resolution with the goal of detecting an econom-
ically mineable deposit. In other words, mineral exploration
is a sequential decision-making problem under uncertainty.
These types of problems have previously been studied un-
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der several non-sequential frameworks in various areas of
the geosciences. Optimizing spatial designs of experiments
is a well-studied topic. McBratney et al. (1981) described a
method for designing optimal sampling schemes based on the
theory of regionalized variables (Matheron, 1971) by mod-
eling spatial dependence with semi-variograms. The 1990s
saw a significant debate arising in the soil sciences commu-
nity (Brus and Gruijter, 1997; Van Groeningen et al., 1999;
Lark, 2002; Heuvelink et al., 2006) around adaptation of geo-
statistics and their role in optimal survey design. Likewise,
geostatistics-based optimal design of environmental moni-
toring has been significantly developed (De Gruijter et al.,
2006; Melles et al., 2011). Geostatistical methods are often
not Bayesian, which may be a disadvantage when the spa-
tial structures (e.g., variograms) are uncertain themselves. A
method for Bayesian optimal design in spatial analysis was
developed by Diggle and Lophaven (2006).

Optimal placement of drill holes for mineral exploration
and mining (resource delineation) has received significant
attention. Some methodologies aim to minimize the uncer-
tainty in spatial properties through use of geostatistical algo-
rithms that model the effect of measured data on spatial un-
certainty (Pilger et al., 2001; Koppe et al., 2011, 2017; Caers
et al., 2022; Hall et al., 2022). Others rely on decision the-
oretic concepts of value of information to quantify the dol-
lar value of gathered information to reduce uncertainty in an
economic property of interest (Froyland et al., 2004; Eidsvik
and Ellefmo, 2013; Soltani-Mohammadi and Hezarkhani,
2013). Bickel et al. (2008) recognize the sequential nature
of the problem and illustrate the fact that sequential informa-
tion gathering is superior to non-sequential schemes, a con-
cept that goes back to the 1970s (Miller, 1975).

The above methodologies evaluate the performance of a
given spatial survey design, but do not address the combina-
torial problem of creating optimal survey plans. In general,
the number of sequences to evaluate grows exponentially
with the number of surveys. For example, when planning a
sequence of 10 surveys at 100 possible locations, there are
more than 17 billion possible sequences that could be eval-
uated. Many problems will likely require more than 10 data
acquisition actions to discover a mineral deposit that is eco-
nomically feasible. Therefore, methodologies (like Emery et
al., 2008) that use optimization in combination with geo-
statistics are likely intractable for many practical problems.

Sequential planning methods solve for each action in a
sequence only after observing the results of each previous
action. Planning is typically done in either an open-loop or
closed-loop fashion. Open-loop methods solve for each ac-
tion in the sequence that gives the best immediate return
according to some metric, without considering how the in-
formation learned from taking that action is likely to impact
future decisions. Closed-loop methods solve for actions that
maximize the expected return of all remaining actions in a se-
quence. Closed-loop methods tend to outperform open-loop
methods, especially on tasks in which a lot of information

is learned each step (Norvig and Russell, 2020, p. 120–122).
Closed-loop methods, however, tend to require significantly
more computational effort than open-loop approaches.

Recent work has applied Bayesian optimization to develop
open-loop solutions to sequential experiment design (Shahri-
ari et al., 2016). Marchant et al. (2014) specifically consider
the application of Bayesian optimization to spatial–temporal
measurement sequences. Receding horizon control has been
used in sequential resource development (Grema and Cao,
2013) in conjunction with general particle swarm optimiza-
tion. While these methods may be tractable, they are likely
suboptimal over the entire measurement sequence, since each
action only optimizes its own return.

Closed-loop methods solve for optimal conditional se-
quences of actions. Common closed-loop methods include
reinforcement learning, dynamic programming, and Monte
Carlo planning. These methods search for optimal actions
through extensive interaction with a simulation of the tar-
get environment. Because of the large amounts of data re-
quired, these methods were initially developed on virtual
domains such as video games (Chaslot et al., 2008). Re-
cently learning-based approaches have achieved state-of-the-
art performance in several real-world domains including au-
tonomous driving (Brechtel et al., 2014) and robotic con-
trol (Grigorescu et al., 2020). Little work has been done,
however, in applying these approaches to resource explo-
ration. Torrado et al. (2017) proposed a Monte Carlo plan-
ning method for a similar task of optimal sequential reser-
voir development. This work, to the authors’ knowledge, is
the first proposal for a general approach to optimal closed-
loop decision-making for geoscientific sequential data acqui-
sition planning. In this work, we propose an approach based
on Monte Carlo planning.

2 Illustration case for sequential data acquisition
planning in resource exploration

Our development will be illustrated on an analogue case
setup that contains many elements common to resource ex-
ploration planning. In that sense we aim for modularity in the
development where several components (inverse modeling,
geological modeling, data forward modeling) can be changed
out without changing the sequential data acquisition method-
ology.

Specifically, we will focus on the exploration of one or
more ore bodies in the subsurface. The elements of the prob-
lem definition consists of (1) a description of the state of
knowledge of the physical world, (2) a description of data
that exist or are planned to be acquired on the physical world,
and (3) rewards and costs associated with the exploration en-
deavor.

Knowledge and uncertainty about the subsurface is com-
monly represented by probability distributions over the pa-
rameters of the subsurface system. Gridded models describ-

Geosci. Model Dev., 16, 289–313, 2023 https://doi.org/10.5194/gmd-16-289-2023



J. Mern and J. Caers: Intelligent Prospector v1.0 291

ing parametric distributions over geological, geophysical,
and geochemical properties may be too high-dimensional for
practical use in decision-making. A realization (in geostatis-
tical jargon) generated from a probability distribution over
the subsurface represents a plausible representation of the
physical world. An ensemble of plausible realizations is a
tractable method to represent the distribution over the subsur-
face. The variation between multiple realizations is an empir-
ical representation of uncertainty (lack of knowledge).

A subsurface ore body may be hard to identify in a real set-
ting for various reasons. In geophysical surveys, many other
geological features may act as ore bodies. An ore body is also
not necessarily a perfect anomaly in a homogenous geolog-
ical setting. Tectonic, metamorphic, sedimentary, and other
alteration processes may have changed the nature of the orig-
inal ore body. In Fig. 1, we show how we created an analogue
situation that mimics many of these elements. Figure 1 rep-
resents a simplified 1D depiction, though the methodology
will be applied to 2D and 3D settings. Figure 1 should only
be referenced as a template containing the challenges present
in mineral exploration.

First, we represent the mineralization by the function in
Fig. 1a. The example shows a unimodal function; however,
a multiple of these mineralization bumps may be present.
Second, we introduce a “geological background variation”
as shown in Fig. 1b. This represents all geological processes
that have altered the original ore body shape. This variation is
not entirely random and has some structure. In our setting, we
model it as a Gaussian process with known correlation struc-
ture (variogram). In practice, a much more complex model
of the background geology may be used with the presented
methods, and hence the noise term in this simple example is
used to develop a methodology. By adding the “mineraliza-
tion field” to the “geological background field”, we obtain
the “measurable variation” shown in Fig. 1c. When a thresh-
old t is exceeded in the z(x) field, we get the target, which we
will term “massive ore”. The massive ore is shown in Fig. 1d
and is the part of the ore body that would be considered for
mining. In this example, this results in a single economic pa-
rameter: volume. We do not consider concentration, grade, or
other economic parameters in this paper, though the method-
ology does not prevent including them.

The next element is the set of measurements available to
be taken. Measurements are indirect indicators of what is de-
sired: the economic parameters of the ore body, which in our
setting is the ore body volume. Measurements generally do
not directly observe this value; however, they may reduce the
uncertainty in it. Such uncertainty quantification is generally
conducted with Bayesian approaches. Bayesian methods re-
quire stating measurement likelihood functions and prior dis-
tributions. In our setting, the various alternative realizations
constitute samples of the prior. In this work, we consider
taking point measurements of the total variational field, as
shown in Fig. 1c. We also consider taking only one measure-
ment at a time because measuring may be expensive, and the

Figure 1. Example 1D mineralization. Panel (a) shows a mineral-
ization that is altered by geological background variation (b), re-
sulting in the measurable variation (c). The massive ore body (d),
whose volume is the economic parameter of interest, exists at loca-
tions where z(x) exceeds a threshold value.

results may inform where to best take the next measurement.
Note that in this work, we will not perform a traditional geo-
statistical conditional simulation using the measurements as
hard data because the function m(x) is stochastic as well. In-
stead, we will solve Bayesian inverse problems that aim to
infer m(x) and r(x) jointly from data. z(x) represents the
exhaustive set of observations that could be acquired. In the
real world, measurements may have various degrees of noise
(e.g., geophysical survey vs. borehole data). In this work, we
assume that the noise in the point measurements is negligible
but that only a small area is directly observed. Measurement
noise can be integrated into the Bayesian inverse problem,
but our paper does not focus on it.

We test the presented methodology on a 2D case that is
analogous to the 1D example. The 2D case setup is shown
in Figs. 2 and 3. We define the mineralization m(x) using a
single uncertain parameter σ that determines the width. We
assume σ has a uniform distribution with known bounds.
Geological variation is modeled using a Gaussian process
with known mean and variogram. We generate the measur-
able fields z(x) by adding various realizations of m(x) to re-
alizations of r(x), as shown in Fig. 2. Then after defining
a threshold t , we obtain the massive ore field i(x) with the
volume v, as shown in Fig. 3.

The question we will address is the following: what is
the optimal sequence of data acquisition that best informs
a “mine” vs. “do not mine” decision based on a mineable
volume exceeding some minimum threshold?

3 Notational aspects

In this paper, we will need to merge nomenclature and math-
ematical notations of two different domains: geosciences–
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Figure 2. Two-dimensional exploration problem. The mineralization field m(x) (a) and the background field r(x) (b) are summed to create
the measurable field z(x) (c).

Figure 3. Two-dimensional economic field. The massive ore field
i(x) shows where the measurable field z(x) exceeds the economic
threshold zthreshold.

geostatistics and artificial intelligence (AI). Here we list
some nomenclature from each field that describes the same
concept (see also Table 1).

– A state is an instantiation of a set of parameters describ-
ing the world. For example, a geostatistical realization
is a set of geological parameters representing the “state”
of the subsurface in a gridded model. A state is referred
to as s.

– Belief over a state is a probability distribution of in-
stantiations of a set of parameters. In probability the-
ory, one defines a probability density over all possible
outcomes of a geological model. This density is very
high-dimensional in our setting. In AI ones uses b(s),
while in probability parlor, this is referred to as f (s).

– Belief update equals Bayesian update. A belief up-
date requires stating the prior and the likelihood model.
The likelihood in AI is termed the observation model
L(o|s,a), while in Bayesian terminology one uses
f (o|s). Note that in AI an additional “conditioning” is
added as a, which represents the action by an AI agent.
This accounts for the fact that actions are taken in se-
quences. L(ot+1 | st+1,at ) is the likelihood of the ob-
servation at measurement t + 1 , given the state at t + 1
and action at t .

– Observation space is the set of all possible outcomes of
the measurements. In AI observations are denoted as o,
while in Bayesian nomenclature these are termed data
d.

4 Methodology

4.1 Partially observable Markov decision processes

This work frames mineral exploration as a sequential de-
cision process. In a sequential problem, a decision-making
agent must take a sequence of actions to reach a goal. Infor-
mation gained from each action in the sequence can inform
the choice of subsequent actions. An optimal action sequence
will account for the expected information gain from each ac-
tion and its impact on future decisions. This type of condi-
tional planning may be referred to as closed-loop or feed-
back control. We will use the mineral exploration problem
outlined above as a working example for the remainder of
this section.

A sequential decision problem can be modeled formally
as a Markov decision process (MDP). An MDP is a math-
ematical description of a sequential decision process de-
fined by a collection of probability distributions, spaces, and
functions. The full MDP is typically defined by the tuple
(S,A,T ,r,γ ). The state space S is the space of all states
that the decision-making problem may take at any step. In
the mineral exploration process, the state is defined by the
geological model of the subsurface deposit as well as the lo-
cations of measurements. The action space A defines the set
of all actions that the agent may take. In the mineral explo-
ration problem, this would be the set of all locations at which
the agent may acquire measurements (data). The transition
model T (st+1 | st ,at ) is the probability distribution over the
next time step state st+1, conditioned on the current state and
action. The step t refers to the sequential actions and belief
updates. The MDP formulation assumes that the state tran-
sition is fully informed by the immediately preceding state
and action, which is the Markovian assumption. The transi-
tion model may be deterministic.
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Table 1. Comparison between AI and geostatistical nomenclature.

AI terminology Geoscience terminology Definition

State: s Realization: z(x) The (possibly unknown) subsurface geological parameters

Action: a Take measurement Measure z(x) at x

Observation: o Measurement Measured value of z(x)

Belief: b(s) Probability density over z(x) A probability distribution over the possible geological parame-
ter realizations

Belief update Bayesian posterior Updating the distribution over geological parameters given new
information according to Bayes’ rule

The reward function r(st ,at , st+1) : S×A× S→ R gives
a measure of how taking an action from a state contributes
to the utility of the total action sequence which the agent
seeks to maximize. The objective of an agent in an MDP is
to maximize the sum of all rewards accumulated over an ac-
tion sequence. To preference rewards earlier in the process,
a time discount factor γ ∈ (0,1] is used. The goal of solv-
ing an MDP is to maximize the sum of discounted rewards
accumulated from a given state, defined as∑T

t=1
γ t−1r(st ,at , st+1)

for a decision process with T steps. The sum of discounted
rewards expected from a state is defined as the value of the
state V (s). Given that the exact state transitions are not gen-
erally known in advance, the optimization target of solving
an MDP is to maximize the expected value.

In many decision-making problems, such as all subsur-
face problems, the state at each time step (the geological
model) is not fully known. In this case, agents make deci-
sions based on imperfect observations of the relevant states
of their environments. Sequential problems with state uncer-
tainty are modeled as partially observable Markov decision
processes (POMDPs). POMDPs are defined by the MDP tu-
ple plus an observation space O and an observation model
L(ot+1 | st+1,at ). The observation space defines all the ob-
servations that the agent may make after taking an action.
Observations are generally noisy measurements of a subset
of the state. The observation model defines the conditional
distribution of the observation given the state and action. In
the mineral exploration problem, an observation would be the
mineral content of the core sample taken at that time step.

To solve a POMDP, an agent must account for all the in-
formation gained from the sequence of previous observations
when taking an action. It is common to represent the informa-
tion gained from an observation sequence as a belief. A be-
lief is a probability distribution over the unknown state of the
world at a given time step. At the beginning of the decision-
making process, the agent will start with a belief that is de-
fined by all prior knowledge of the state available before

making any observations. With each observation made, the
belief is updated, typically using a Bayesian update as

b′(st+1)∝ L(ot+1 | st+1,at )b(st+1).

Note that b′ (st+1) is AI notation for a posterior p(s|o), where
p(s) is the prior. A belief may be an analytically defined
probability distribution or an approximate distribution, such
as a state ensemble updated with a particle filter.

Each decision in the sequence is made using the belief
updated from the preceding observation. The process is de-
picted in Fig. 4. An optimal choice in a sequential prob-
lem should consider all subsequent steps in the sequence.
However, the number of trajectories of actions and observa-
tions reachable from a given state grows exponentially with
the length of the sequence. As a result, optimizing condi-
tional plans exactly is generally intractable. Instead, most
POMDPs are solved approximately using stochastic planning
and learning methods.

Monte Carlo tree search (MCTS) is a class of stochastic
planning algorithms that is commonly used to solve MDPs
and POMDPs. MCTS methods solve for actions each time
a decision is made by simulating the potential outcome of
available action sequences. It uses the simulations to esti-
mate the expected value of each available action and then
recommends the action with the highest expected value. Each
simulated trajectory is recorded in a tree graph, as shown in
Fig. 5. Each time a simulation is generated, the trajectory is
added to the tree. Future action sequence trials are guided by
the information in the tree at the start of that trial. MCTS al-
gorithms are considered online planners, since they solve for
an optimal action from a given starting state and therefore
require computation every time a decision is made.

4.2 A POMDP for resource exploration

We propose formulating the mineral exploration problem as
a sequential decision problem. A sequential plan allows in-
formation from each measurement in the sequence to inform
the choice of subsequent measurements.
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Figure 4. Exploration Markov decision process. At each decision
step, the agent selects an action at based on its current belief regard-
ing the world state using a planner (π). The agent takes the action
in the world and observes some new data ot+1. These data are used
to update the belief bt+1 for the next step. Each action results in a
reward.

Figure 5. Monte Carlo search tree. Each simulation in an MCTS
algorithm is encoded into a search tree. The example tree is rooted
at the belief, b(st ), given at the start of search. Paths from the root
to a leaf of the tree represent a simulated trajectory of alternating
actions, ait , and observations, oit . An example trajectory in the tree
is shown in bold.

We now return to the template example introduced in
Fig. 1 and state the elements of the POMDP.

– State space (S). The state is a combination of a realiza-
tion of the unknown subsurface geology (a geostatistical
model) and any other environment factors that may con-

strain or affect the outcome of the measurements to be
taken and the rewards gained.

– Example POMDP. The state space is the combina-
tion of the subsurface state space and the measure-
ment state space. The subsurface state in the case
of Fig. 2 is the combination of m(x) and r(x). The
measurement state defines the location of all previ-
ously acquired measurements.

– Action space (A). The action space defines the set of
measurement actions that can be taken at every step. The
action space should also include MINE and ABANDON
(do not mine) actions. These actions allow the agent to
terminate the measurement campaign.

– Example POMDP. The action space is the set of all
locations at which a measurement may be acquired
in the exploration area, along with the MINE and
ABANDON actions. Each measurement action is
defined by the target measurement location. Tak-
ing an action a signifies measuring z(x) at x = a.
Available measurement locations are defined on a
regular Cartesian grid, and two measurements may
not be drilled closer than some minimum distance
from one another. The minimum distance may be
set to zero to represent an unconstrained set.

– Observation space (O). The set of measurement values
that may be observed from an action. The observation
space may be composed of heterogeneous observation
types to account for different measurements that may be
taken, for example to account for geochemical surface
data and drill-core sample data.

– Example POMDP. The mineralization z(x) mea-
sured at a targeted location is defined as a scalar
value.

– Observation model (L). The observation model defines
the effect of sensor and other noise on the data gener-
ated by measurements. In the case that observations can
be treated as noiseless, the conditional distribution can
be defined by the Dirac as L(o|s′,a)= δ(o− g(s′,a)),
where g(s′,a) is a deterministic function mapping the
state and action to the observation. In Bayesian litera-
ture g is also termed the data forward model.

– Transition model (T ). The transition model defines how
the state evolves as a result of actions. In our setting, the
subsurface state does not change because of measuring
actions, and only measurement state elements will be
updated. The transition model can also be used to con-
strain the actions that are available at each step by set-
ting the transition probabilities to 0 for disallowed ac-
tions.
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– Example POMDP. The measurement state is up-
dated with newly selected action locations. Later,
we will test two different transition models. One
model does not constrain the available actions, and
a second constrains the action space to measure-
ment locations that are no further than a distance δ
away from the previous measurement. The purpose
of doing so is to illustrate the fact that the method-
ology allows for action constraints.

– Reward function (r). The reward function defines a cost
for each measurement action taken and a reward for the
final MINE or ABANDON decision. The reward func-
tion takes the following form:

r (s,a)=−Cost(s,a) if a ∈ AMeasurements

r(s,a)= 0 if a = ABANDON
r(s,a)= Profit(s) if a =MINE,

where Cost(s,a) defines the cost of taking a measure-
ment, Profit(s) defines the profit from mining a deposit,
and AMeasurements is the set of measurement actions.

– Example POMDP. Each measurement has a fixed
cost, and the profit is a simple function of the
amount of ore present v(s) (Fig. 1d) and a fixed
extraction cost, as shown below.

Cost(s,a)= cMeasurement

Profit(s)= v(s)− cExtraction

– Discount rate (γ ). The discount rate defines a time dis-
count rate for the costs and profits and is used to cal-
culate the net present value (NPV) of the measurement
campaign.

– Example POMDP. We use a discount rate of 0.99.

4.3 Solving the POMDP

In this section, we present a method to solve the example 2D
mineral exploration POMDP. The methods presented may be
generalized to additional mineral exploration problems. Al-
gorithms to solve POMDPs can typically be applied to any
valid POMDP model, though with differing effectiveness.
The remaining subsections are divided into the tasks required
to solve the POMDP: belief updating and searching over the
large, combinatorial space of possible action sequences.

The proposed solver is based on Monte Carlo tree search
(MCTS), which is a class of stochastic planning algorithms
that is commonly used to solve MDPs and POMDPs. MCTS
methods solve for actions each time a decision is made
by simulating the potential outcome of available action se-
quences. It uses the simulations to estimate the expected
value of each available action and then recommends the ac-
tion with the highest expected value. Each simulated trajec-
tory is recorded in a tree graph, as shown in Fig. 5. Each time

a simulation is generated, the trajectory is added to the tree.
Future action sequence trials are guided by the information in
the tree at the start of that trial. MCTS algorithms are consid-
ered online planners, since they solve for an optimal action
from a given starting state and therefore require computation
every time a decision is made.

Reinforcement-learning-based approaches may also be
used to solve POMDP, though they are likely not as well
suited as the presented Monte Carlo method. Reinforcement
learning methods learn the optimal action for each possible
encountered state offline before any actions are taken. Be-
cause offline methods learn policies for the entire space of
experiences that may be encountered, they tend to require
significantly more training data than online methods and can
struggle to generalize to experiences outside the training set.
Reinforcement learning methods are typically formulated for
fully observable problems and do not explore partially ob-
servable domains as effectively as MCTS.

4.3.1 Belief modeling and updating

Belief updating in AI is the equivalent of inverse modeling
in the geosciences. In our setting, we have indirect measure-
ments o(z(x)) of the state variables m(x) and r(x). We have
assumed that m(x) can be modeled with a single parameter
σ that is distributed uniformly over a known range. We also
assume that r(x) can be modeled as a Gaussian process with
known mean µr and covariance Cr . The subscript t denotes
the step (iteration) of the decision-making process. After step
t , a total of t measurements have been taken, and we denote
the set of all measurements taken up to that point as follows.

o1:t = {o(xα) ,xα = 1, . . .t}

The observed measurements are dependent upon both ran-
dom functions, m(x) and r(x), and hence a traditional con-
ditional simulation cannot be directly applied. Instead, we
formulate this problem as a hierarchical Bayes’ problem by
factoring the joint distribution into

f (m(x),r (x) |o1:t )= f (m(x) |o1:t )×f (r (x) |m(x),o1:t ) .

Samples are generated from this distribution hierarchically
by first drawing a sample from the distribution overm(x) and
then using the resulting samples to draw from the conditional
distribution over r(x). We model the belief f (m(x) |o1:t ) as
a particle set and update it using an importance resampling
particle filter (Del Moral, 1996; Liu and Chen, 1998). The
conditional belief f (r (x) |m(x), o1:t ) is modeled as a con-
ditional Gaussian process.

A particle set is an ensemble of realizations of the state
variable with a sample distribution approximating the true
state distribution. The initial particle set is generated by
first sampling an ensemble from the uniform prior distri-
bution. For an n particle set, this corresponds to an ensem-
ble of

(
mi (x) , r i (x)

)
, i = 1, . . . n, where each particle is

equiprobable.
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When new information ot is observed, the particle filter
updates the belief by updating the ensemble such that the new
particles are sampled according to the posterior distribution
f (m(x) |o1:t ). To do this, a posterior weight is calculated
for each particle according to Bayes’ rule as

wi ∝ f (ot |m(x), o1:t−1).

Note that each particle is treated as equiprobable in the par-
ticle set, so the prior probability is dropped in the above ex-
pression. The observed measurement ot is determined by the
sum of m(x) and r(x) at the location of the measurement.
We denote these values as omt and ort , respectively, such that
ot = o

m
t +o

r
t . Using this notation, we can decompose the par-

ticle weight function into

wi ∝ f
(
otm |m(x)

)
× f

(
otr |m(x), o1:t−1

)
.

Because the value of otm is completely determined by m(x),
we can simplify this further to

wi ∝ f
(
ot − o

t
m |o1:t−1−m(x)

)
,

which is given by the Gaussian process model conditioned
on the difference between the previous measurements and
the m(x) values at their corresponding locations.

Once a weight has been calculated for each particle in the
set, a new ensemble is generated. The new set is generated by
sampling n particles from the weighted set, with each parti-
cle being sampled with probability given by its weight. For
each particle sampled, a new r(x) field is generated with con-
ditional Gaussian simulation, conditioning on the residual of
the observed measurements and the sampled m(x) field as

r (x)∼N(µr , Cr |o1:t −m(x)).

Sampling a particle ensemble with replacement in this way
can lead to degeneracy, in which only a few values of m(x)
are represented in the filtered ensemble. To prevent this,
particles that are duplicated in the ensemble are perturbed
slightly by adding zero-mean Gaussian noise to the σ param-
eter generating m(x). The complete belief update is summa-
rized in pseudocode in Algorithm 1 and described in the text
below.

4.3.2 Online Monte Carlo planning

To solve the POMDP, we search for the optimal action at
each step using a variant of POMCPOW (Partially Observ-
able Monte Carlo Planning with Observation Widening; Sun-
berg and Kochenderfer, 2018), a Monte Carlo tree search al-
gorithm for POMDPs. At each time step t , the POMCPOW
algorithm builds a tree of possible trajectories, with the root
node of the tree representing the belief bt . The tree construc-
tion process completes before taking any action at that step.
The action with the highest estimated value is then returned
from the search process.

POMCPOW generates a fixed number of trial trajectories
m by sampling m states from the root belief. For each sam-
pled state, POMCPOW simulates taking a series of actions
at , . . .,at+k and encodes the resulting series of observations
as a branch of the tree. For each action visited along the
branch, POMCPOW updates the estimate of the expected
value of taking that action in the sequence using the rewards
simulated in that trial. We modified the baseline POMCPOW
algorithm by replacing the Monte Carlo value estimation
with generalized mean estimation. The value of an action
node in a tree is then given as

Q(b, a) =
1
n

∑
b′ ∈Ch

V (b′),

where Ch is the set of n child belief nodes of action node a.
The V (b) term gives the estimated value of each belief node,
defined as

V (b) =

(
1
n

∑
a∈Ch

Q(b, a)α

)1/α

,

where Ch is the set of child action nodes of the estimated
belief node. The value α > 0 is a parameter for which values
of α > 1 more heavily weight actions with higher estimated
values. We used α = ∞, which resulted in backing up the
maximum action node estimate at each belief node.

At each step of a simulated trial, POMCPOW simulates
taking the action with the highest upper confidence bound on
its estimated value. In this way, POMCPOW optimistically
explores the action space. This strategy has been proven to
converge to the optimal action in the limit of infinite samples.
After all m trials have been generated, POMCPOW returns
the root node child action with the highest estimated value.

For POMDPs with large action spaces, POMCPOW lim-
its how often new actions can be added to the search
tree through a progressive widening rule. Under progressive
widening, the total number of child action nodes that a given
belief node may have is defined as a function of the total
number of times that node has been visited in previous trials.
The limit is defined as Cmax = kn

α , where n is the total num-
ber of previous visits. Actions added to the tree are sampled
according to a stochastic policy. We defined the k–σ upper
confidence bound for each point in the exploration area as
UCB(x)=m(x)+µ(x)+ kσ(x), where µ and σ are given
by the distribution of the parent node belief. Actions were
then sampled in proportion to the upper confidence bound
(UCB) value at the target location. Intuitively, this guided
POMCPOW to search actions that had both high expected
value and high uncertainty.

4.4 Illustration case

In this section, we present the result of solving the problem
for the mineral field shown in Fig. 6. In all problems, rewards
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Algorithm 1 UPDATEBELIEF. Pseudo algorithm for model inversion (belief update) using a hierarchical particle filter.

are measured in units of massive ore; one pixel in the mas-
sive ore map (Fig. 3) represents one unit of ore. In all the
problems studied, the massive ore threshold was set to 0.7
and the extraction cost was set to 150 units. This example
case has a total volume of 158 units of massive ore, making
it a marginally profitable case. The measurement cost was
0.1 units per measurement taken. In this example, we con-
strained the measurements to be taken a maximum distance
of 10 distance units away from the previous measurement;
each pixel is one distance unit.

Figure 7 shows the mean and standard deviation mineral-
ization z(x) at each point in the exploration area calculated
from the initial belief ensemble before any measurements
have been taken. The histogram in Fig. 8 shows the distri-
bution of massive ore quantities for the realizations in the
ensemble. The vertical line shows the volume of 158 units of
massive ore in the illustration case realization.

We ran POMCPOW for 10 000 trial simulations (trajecto-
ries) per step. The resulting actions taken in the first five steps
are shown in Fig. 9. As can be seen, the deviation of the belief
about the ore quantities decreases as measurements are taken,
and the expected value tends toward the true value. The agent
tends to take an “extent-finding” approach, whereby it alter-
nates taking actions closer and then farther from the expected

Figure 6. Illustration case. Panel (a) shows the mineralization z(x)
of the example case. Panel (b) shows the massive ore mass of the
mineral field i(x).

center of the ore body. This pattern may be interpreted as
searching for the maximum extent of the ore body edge.

The complete 22-measurement trajectory is shown in
Fig. 10, along with the final histogram. At the conclusion of
the measurements, the algorithm correctly decided to mine
the deposit. As can be seen, at the time it made its decision,
the expected value of the ore quantity was approximately
1 standard deviation above the extraction cost threshold of
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Figure 7. Initial ore belief. Panel (a) shows the mean mineralization
from the prior belief at each point in the exploration area. Panel
(b) shows the marginal standard deviation of mineralization at each
point.

Figure 8. Initial belief ore histogram. The figure shows the distri-
bution of massive ore volumes in the initial belief ensemble. The
vertical line shows the actual volume of ore in the illustration case.

150. The agent did not stop exploring once the expected
value exceeded the threshold, but only once it had exceeded it
by a significant threshold. This suggests that the agent would
stop only when the value of the information gained by a mea-
surement was exceeded by the cost of the measurement.

5 Experiments and comparison with baseline methods

5.1 Overview of test cases

To test the proposed approach, we conducted experiments on
a variety of problem configurations. For these experiments,
we tested three different ore settings.

1. Single body, fixed position: a single mineralization pro-
cess generated an ore body with a known centroid loca-
tion at the center of the exploration domain.

2. Single body, variable position: a single mineralization
process generated an ore body with an unknown cen-
troid location somewhere in the exploration domain.

3. Two bodies, variable positions: two mineralization pro-
cesses generated ore bodies, both with unknown cen-
troid locations within the exploration domain.

The illustration case previously presented was from the
single-body, fixed-position problem configuration. Examples
of the single-body, variable-position, and two-body cases are
shown in Fig. 11. For each problem configuration we tested
the POMCPOW agent with measurements constrained to a
distance of 10 units from the previous location and without
constraints on measurement location. We limited the agent to
a maximum of 25 measurements.

We also tested the performance of POMCPOW against
a baseline grid-pattern approach. In this method, measure-
ments were taken at locations defined by k-by-k grids, as
shown in Fig. 12. Each grid pattern covers a square area lo-
cated at the center of the exploration domain, with measure-
ment coordinates taken at regularly spaced intervals along
the Cartesian directions of the grid. We solved for the opti-
mal grid area for a 3-by-3 measurement grid by minimizing
the expected standard deviation of the resulting belief. We
solved for this value by first optimizing with Nelder–Mead
simplex search (Nelder and Mead, 1965) on the continuous
range [5, 50] and then rounding the resulting value. The grid
area was set to 30-by-30 for all grid patterns.

We tested grids with 4, 9, and 16 measurements, as well as
a single point fixed at the center of the exploration area. We
also tested a baseline in which measurement locations were
selected at random at each step. This allows us to understand
the improvement of the approaches relative to an achievable
lower bound.

We ran Monte Carlo tests on the problem configurations
described. For each case, we generated a set of 100 mineral-
field realizations, each one assumed as a possible truth. For
each realization, measurements were taken according to the
constrained and unconstrained POMCPOW solvers, the grid
policy, and the random policy. The change in mean error and
standard deviation for all the approaches was calculated. For
the POMCPOW solver, we also measured the expected num-
ber of measurements as a function of the total deposit size
and the accuracy of the final MINE or ABANDON decision.

The data from the tests suggested that different behav-
ior emerged through POMCPOW for cases that were non-
economic, highly economic, and borderline–economic. To
investigate this, we solved one of each economic level for
the three deposit settings using POMCPOW with action con-
straints. At the end of this section, we present the results of
these trials and a plot of the observed trend in the Monte
Carlo data.

5.2 Single body, fixed location

In this section, we present the results for the Monte Carlo
tests on the case with a single, unimodal mineralization pro-
cess located at the center of the exploration domain. For ev-
ery solver, we measured the belief accuracy by calculating
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Figure 9. Initial measurement trajectory. Each panel shows the belief resulting from the measurements taken by the agent. The circles show
the locations at which measurements were taken. The arrows indicate the sequence in which actions were taken.

the relative mean absolute error (RMAE) of the estimated
deposit volume resulting from each measurement. The rel-
ative MAE is the estimate error relative to the true deposit
volume and is defined as

RMAE =
1
n

n∑
i=1

|vl − vi |

vi
,

where vl and vi are the estimated and true deposit volumes
for trial i, respectively. We calculated the RMAE after each
measurement was taken by the POMCPOW policies and the
random baseline. We also calculated the RMAE after all
measurements were taken for the grid patterns with 1, 4,
9, and 16 measurements. The resulting trends are shown in
Fig. 13 with 1 standard error bounds.
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Figure 10. Complete measurement trajectory. The panel on the left shows the complete trajectory of all measurements taken in the illustration
case. The panel on the right shows the resulting histogram.

Figure 11. (a, b) Single-body, variable-location realization. Panel
(a) shows the mineral field generated by a primary process with a
randomly selected centroid location. Panel (b) is the correspond-
ing massive ore map. (c, d) Two-body realization. Panel (c) shows
the mineral field generated by two primary processes, each with a
randomly selected centroid location. Panel (d) is the corresponding
massive ore map.

We also measured the change in uncertainty (belief) by
calculating the standard deviation resulting from each mea-
surement. After each measurement, we calculated the ratio
of the resulting volume standard deviation relative to the ini-
tial belief standard deviation (the Bayesian prior of volume).
After measurement t in the sequence, the standard deviation
ratio is given by σt

σ0
, where σt is the belief standard devia-

tion after the measurement (posterior standard deviation of
volume), and σ0 is the standard deviation of the initial belief.
We calculated this ratio after each measurement was taken by
the POMCPOW policies and the random baseline. We also
calculated the ratio after all measurements were taken for the

grid patterns with 1, 4, 9, and 16 measurements. The mean
standard deviation ratios over the Monte Carlo trials for each
of the solvers are shown in Fig. 14 along with 1 standard
error bounds.

In addition to the belief trends shown above, we also fur-
ther analyzed the behavior of the POMCPOW methods with
and without action distance constraints. For each, we exam-
ined the accuracy of the algorithm in making its final MINE
or ABANDON decision, as well as how many measurements
it took before reaching a decision. We also looked at the gen-
eral trend in where it took measurements relative to the min-
eralization centroid location. These are presented in the fol-
lowing subsections.

5.2.1 POMCPOW, constrained actions

The final decision results for the POMCPOW solver with
constraints on the maximum distance between measurement
locations are shown in Table 2. This table presents the pro-
portions of profitable and unprofitable deposits that POM-
CPOW decided to MINE or ABANDON at the end of each
trial. A deposit is profitable if the ore volume exceeds the ex-
traction threshold. A decision to MINE a profitable deposit
or to ABANDON an unprofitable deposit is considered cor-
rect. The total amount of ore in profitable deposits that was
mined is also presented. The average number of measure-
ments taken before making a decision is shown for each de-
posit type and for all cases.

Among the assumed “true” deposits, 32 % are profitable.
Among all the profitable cases, there is a total of 1154 units
of ore, with POMCPOW deciding to mine 1097 units cor-
responding to 95 % of profitable ore correctly extracted. On
average, POMCPOW took 1.8 more measurements in prof-
itable cases than in unprofitable cases.

POMCPOW was able to decide when to terminate taking
measurements at any point during the campaign. If it did not
decide to terminate, it was limited to a total of 25 measure-
ments. Figure 15 below shows the histogram of the number
of measurements before termination taken by POMCPOW
over the Monte Carlo trials.
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Figure 12. Baseline grid patterns. The panels show the baseline grid patterns for 2-by-2, 3-by-3, and 4-by-4 grids, each with a total of
4, 9, and 16 measurements, respectively. The grids cover the extent of a w-by-w area in the center of the exploration domain. A single
measurement at the center of the domain is also shown in the leftmost panel.

Table 2. Single-body, fixed-location POMCPOW results with action constraints.

Mined Abandoned Total Accuracy

Profitable 28 4 32 87.5 %
Unprofitable 2 66 68 97.1 %

Total 30 70 100 94.0 %

Profitable ore 1097 57 1154 95.0%

Mean measures 7.8 5.9 6.5 –

Figure 13. Relative MAE single mineralization, fixed location. The
plot shows the mean relative absolute error after a given number of
measurements taken under each tested method. The mean absolute
error is shown along with 1 standard error bounds for each trend.

We recorded the distance between each measurement in
the sequence and the center of the mineralization. The aver-
age distance for each point in the sequence is shown for 10
measurements in Fig. 16, along with 1 standard error bars.
One notices how the agent starts away from the center of the
ore body, steps in toward the center, and then gradually steps
away from the center.

Figure 14. Single-body, fixed-location standard deviation ratios.
The plot shows the mean standard deviation ratio after a given num-
ber of measurements taken under each tested method. The mean
ratio is shown along with 1 standard error bounds for each trend.

5.2.2 POMCPOW, unconstrained actions

The final decision results for the POMCPOW solver with no
constraints on measurement locations are shown in Table 3.
The same set of trial deposits was used to test both the con-
strained and unconstrained cases. The same results as pre-
sented in the constrained case are presented here for the un-
constrained case.
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Table 3. Single-body, fixed-location POMCPOW results without action constraints.

Mined Abandoned Total Accuracy

Profitable 27 5 32 84.4 %
Unprofitable 5 63 68 92.6 %

Total 30 70 100 90.0 %

Profitable ore 1058 96 1154 91.6 %

Mean no. of measurements 7.6 5.9 6.4 –

Figure 15. Measurement histogram, POMCPOW with action con-
straints, single body with fixed location. This figure shows a his-
togram of the number of measurements taken by the POMCPOW
solver over all Monte Carlo trials. The trials were limited to a max-
imum of 25 measurements.

Among all the profitable cases, there is a total of 1154 units
of ore, with POMCPOW deciding to mine 1058 units corre-
sponding to 91.6 % of profitable ore correctly extracted. On
average, POMCPOW took 1.7 more measurements in prof-
itable cases than in unprofitable cases.

As in the constrained test, we plot the number of measure-
ments taken before making the final decision in Fig. 17. We
also present the average distance from the deposit center in
Fig. 18.

5.3 Single body, variable location

In this section, we present the results for the Monte Carlo
tests on the case with a single, unimodal mineralization pro-
cess located at a variable, unknown point in the exploration
domain. For every solver, we measured the belief accuracy
by calculating the relative mean absolute error (RMAE) of
the estimated deposit volume resulting from each measure-
ment. The resulting trends are shown in Fig. 19 with 1 stan-
dard error bounds.

Figure 16. Measurement distance to center, POMCPOW with ac-
tion constraints, single body with fixed location. The plot shows the
average distance between the measurement location and the miner-
alization center for the measurements at each time step. 1 standard
error bars are also presented. The dotted line is the maximum ore
body radius, and the dash–dotted line is the mean ore body radius.
Note that the intelligent agent steps further out because of the im-
perfect measuring of the ore body size.

We also measured the change in belief uncertainty by cal-
culating the standard deviation ratios of the belief volume
estimate resulting from each measurement. The mean stan-
dard deviation ratios over the Monte Carlo trials for each of
the solvers are shown in Fig. 20 along with 1 standard error
bounds.

5.3.1 POMCPOW, constrained actions

The final decision results for the POMCPOW solver with dis-
tance constraints on measurement locations are shown in Ta-
ble 4. The same set of trial deposits was used to test both the
constrained and unconstrained cases.

For the deposits tested, 19 % were profitable. Among all
the profitable cases, there was a total of 814 units of ore,
with POMCPOW deciding to mine 778 units corresponding
to 95.6 % of profitable ore correctly extracted. On average,
POMCPOW took 4.0 more measurements in profitable cases
than in unprofitable cases.
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Table 4. Single-body, variable-location POMCPOW results with action constraints.

Mined Abandoned Total Accuracy

Profitable 18 1 19 94.7 %
Unprofitable 3 78 81 96.3 %

Total 21 79 100 96.0 %

Profitable ore 778 36 814 95.6%

Mean no. of measurements 9.6 5.6 6.5 –

Figure 17. Measurement histogram, POMCPOW without action
constraints, single body with fixed location. This figure shows a his-
togram of the number of measurements taken by the POMCPOW
solver over all Monte Carlo trials. The trials were limited to a max-
imum of 25 measurements.

Figure 18. Measurement distance to center, POMCPOW without
action constraints, single body with fixed location. The plot shows
the average distance between the measurement location and the
mineralization center for the measurements at each time step. 1 stan-
dard error bars are also presented.

Figure 19. Relative MAE for single mineralization, variable loca-
tion. The plot shows the mean relative absolute error after a given
number of measurements taken under each tested method. The
mean absolute error is shown along with 1 standard error bounds
for each trend.

Figure 20. Single-body, variable-location standard deviation ratios.
The plot shows the mean standard deviation ratio after a given num-
ber of measurements taken under each tested method. The mean
ratio is shown along with 1 standard error bounds for each trend.
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Figure 21. Measurement histogram, POMCPOW with action con-
straints, single body with variable location. This figure shows a his-
togram of the number of measurements taken by the POMCPOW
solver over all Monte Carlo trials. The trials were limited to a max-
imum of 25 measurements.

Figure 22. Measurement distance to center, POMCPOW with ac-
tion constraints, single body with variable location. The plot shows
the average distance between the measurement location and the
mineralization center for the measurements at each time step. 1 stan-
dard error bars are also presented.

We plotted the number of measurements taken before
making the final decision in Fig. 21. We also present the av-
erage distance from the deposit center in Fig. 22.

5.3.2 POMCPOW, unconstrained actions

The final decision results for the POMCPOW solver with no
constraints on measurement locations are shown in Table 5.

Among all the profitable cases, there was a total of 814
units of ore, with POMCPOW deciding to mine 754 units
corresponding to 92.6 % of profitable ore correctly extracted.

Figure 23. Measurement histogram, POMCPOW without action
constraints, single body with variable location. This figure shows
a histogram of the number of measurements taken by the POM-
CPOW solver over all Monte Carlo trials. The trials were limited to
a maximum of 25 measurements.

Figure 24. Measurement distance to center, POMCPOW without
action constraints, single body with variable location. The plot
shows the average distance between the measurement location and
the mineralization center for the measurements at each time step.
1 standard error bars are also presented.

On average, POMCPOW took 4.4 more measurements in
profitable cases than in unprofitable cases.

As in the constrained test, we plotted the number of mea-
surements taken before making the final decision in Fig. 23.
We also present the average distance from the deposit center
in Fig. 24.

5.4 Multiple bodies

In this section, we present the results for the Monte Carlo
tests on the case with two mineralization processes located
at variable, unknown points in the exploration domain. For
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Table 5. Single-body, variable-location POMCPOW results without action constraints.

Mined Abandoned Total Accuracy

Profitable 17 2 19 89.4 %
Unprofitable 4 77 81 95.1 %

Total 21 79 100 94.0%

Profitable ore 754 60 814 92.6 %

Mean no. of measurements 8.6 4.2 5.1 –

Figure 25. Relative MAE, two mineralization processes. The plot
shows the mean relative absolute error after a given number of mea-
surements taken under each tested method. The mean absolute error
is shown along with 1 standard error bounds for each trend.

every solver, we measured the belief accuracy by calculating
the relative mean absolute error (RMAE) of the estimated de-
posit volume resulting from each measurement. The resulting
trends are shown in Fig. 25 with 1 standard error bounds.

We also measured the change in belief uncertainty by cal-
culating the standard deviation ratios of the belief volume
estimate resulting from each measurement. The mean stan-
dard deviation ratios over the Monte Carlo trials for each of
the solvers are shown in Fig. 26 along with 1 standard error
bounds.

5.4.1 POMCPOW, constrained actions

The final decision results for the POMCPOW solver with no
constraints on measurement locations are shown in Table 6.
The same set of trial deposits was used to test both the con-
strained and unconstrained cases.

For the deposits tested, 19 % were profitable. Among all
the profitable cases, there was a total of 808 units of ore,
with POMCPOW deciding to mine 713 units corresponding
to 88.2 % of profitable ore correctly extracted. On average,

Figure 26. Two-mineralization-process standard deviation ratios.
The plot shows the mean standard deviation ratio after a given num-
ber of measurements taken under each tested method. The mean
ratio is shown along with 1 standard error bounds for each trend.

POMCPOW took 4.7 more measurements in profitable cases
than in unprofitable cases.

We plotted the number of measurements taken before
making the final decision in Fig. 27.

5.4.2 POMCPOW, unconstrained actions

The final decision results for the POMCPOW solver with no
constraints on measurement locations are shown in Table 7.

Among all the profitable cases, there was a total of 814
units of ore, with POMCPOW deciding to mine 764 units
corresponding to 93.0 % of profitable ore correctly extracted.
On average, POMCPOW took 3.8 more measurements in
profitable cases than in unprofitable cases.

As in the constrained test, we plotted the number of mea-
surements taken before making the final decision in Fig. 28.

5.5 Deposit size sensitivity studies

The POMCPOW solver was allowed to terminate the mea-
surement campaign at any point before the maximum of 25
measurements were taken. We hypothesized that the size of
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Table 6. Multi-body POMCPOW results with action constraints.

Mined Abandoned Total Accuracy

Profitable 13 6 19 68.4 %
Unprofitable 1 80 81 98.8 %

Total 14 86 100 93.0%

Profitable ore 713 95 808 88.2 %

Mean no. of measurements 10.1 5.4 6.2 –

Table 7. Multi-body POMCPOW results with action constraints.

Mined Abandoned Total Accuracy

Profitable 13 6 19 68.4 %
Unprofitable 1 80 81 98.8%

Total 14 86 100 93.0%

Profitable ore 764 44 808 94.6 %

Mean no. of measurements 8.9 6.1 6.5 –

Figure 27. Measurement histogram, POMCPOW with action con-
straints, multiple ore bodies. This figure shows a histogram of the
number of measurements taken by the POMCPOW solver over all
Monte Carlo trials. The trials were limited to a maximum of 25
measurements.

the deposit being measured would impact how many mea-
surements POMCPOW decided to take. To test this, we ran
POMCPOW on three different deposit sizes for each of the
three problem configurations.

1. Sub-economic: the total massive ore was below the eco-
nomic cutoff threshold by more than 30 % of the thresh-
old value.

Figure 28. Measurement histogram, POMCPOW without action
constraints, multiple ore bodies. This figure shows a histogram of
the number of measurements taken by the POMCPOW solver over
all Monte Carlo trials. The trials were limited to a maximum of 25
measurements.

2. Borderline–economic: the total massive ore was within
10 % of the economic cutoff threshold value.

3. Economic: the total massive ore was above the eco-
nomic cutoff threshold by at least 20 % of the economic
threshold value.

The resulting trajectory of measurements taken by POM-
CPOW for each of these configurations is shown in Figs. 29,
30, and 31 for the single body with fixed location, single
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Figure 29. Deposit size study results for the case of a single body with fixed centroid location. The sub-economic, borderline, and economic
cases are shown in the left, center, and right columns, respectively. The top row shows the massive ore present in the tested case. The center
row shows the trajectory taken by POMCPOW and the standard deviation of the resultant belief. The bottom row shows the histogram of the
ore volumes in the final belief along with the true massive ore volume.

body with variable location, and multi-body cases, respec-
tively.

The number of measurements taken in each tested configu-
ration is summarized in Table 8. In all three problem configu-
rations, POMCPOW made significantly fewer measurements
on the sub-economic deposits than it did on the borderline
or economic deposits. In the single-body cases, POMCPOW
measured the borderline–economic deposits more than the
economic case. In the multi-body case, POMCPOW reached
the maximum of 25 measurements for both the borderline
and economic cases.

We examined the results of the Monte Carlo studies for
a trend in the measurement campaign length. There was a
positive correlation between the size of the mineral deposit
and the number of measurements taken in the single-body
cases. This trend is shown in Fig. 32. The multi-body cases

did not have a significant number of trials with fewer than 10
measurements.

6 Discussion

In all three deposit configurations tested in the Monte Carlo
studies, the measurements taken by POMCPOW tended to
improve the RMAE and the standard deviation ratio of the re-
sulting belief significantly more quickly than the grid-pattern
and random methods. In all cases, POMCPOW tended to
reach the accuracy and precision of the full 16-measurement
grid after just 7 to 10 measurements. With increasing com-
plexity of the problem (more uncertainty, more bodies) the
difference in performance between the AI and the grid-
pattern method increases.
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Figure 30. Deposit size study results for the case of a single body with variable centroid location. The sub-economic, borderline, and
economic cases are shown in the left, center, and right columns, respectively. The top row shows the massive ore present in the tested case.
The center row shows the trajectory taken by POMCPOW and the standard deviation of the resultant belief. The bottom row shows the
histogram of the ore volumes in the final belief along with the true massive ore volume.

Table 8. Deposit size study summary. The total number of measurements taken by POMCPOW before terminating the measurement cam-
paign is shown for each test configuration and deposit size. Cases in which the maximum 25 measurements were taken are shown in bold.

Sub-economic Borderline Economic

Single body, fixed location 4 22 10
Single body, variable location 5 25 23
Multi-body 13 25 25

In the single-body cases, the performance of the POM-
CPOW solver with and without action constraints was
not significantly different. In several cases, the constrained
trajectories outperformed the unconstrained trajectories in
terms of both belief accuracy and variance. This suggests
that the POMCPOW solver did not completely converge in
the unconstrained cases, since the constrained trajectories are
necessarily a subset of those reachable in the unconstrained

case. This is likely a result of the unconstrained problem
having significantly more locations for POMCPOW to se-
lect from at each step. Converging on larger search spaces
tends to require more trial simulations in POMCPOW to con-
verge. In the presented experiments, the POMCPOW trials
were run with the same number of rollouts in both the con-
strained and unconstrained cases. In the multi-body cases, the
unconstrained solver did tend to outperform the constrained
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Figure 31. Deposit size study results for multi-body case. The sub-economic, borderline, and economic cases are shown in the left, center,
and right columns, respectively. The top row shows the massive ore present in the tested case. The center row shows the trajectory taken by
POMCPOW and the standard deviation of the resultant belief. The bottom row shows the histogram of the ore volumes in the final belief
along with the true massive ore volume.

solution. This suggests that the constraints pose a more sig-
nificant limitation to the solution in the multi-body case than
in the single-body case.

In the single-body cases, the final MINE or ABANDON
decisions made by POMCPOW were accurate in both eco-
nomic and non-economic cases, with the correct decision
made in over 90 % of cases in most test configurations.
The accuracy in non-economic cases tended to be slightly
higher than in economic cases. This is likely the result of
sub-economic deposits being more common in the prior
distribution than economic deposits and the initial belief
expected ore volume starting below the economic thresh-
old. The percentage of profitable ore mined tended to be
higher than the ratio of correct mining decisions. For exam-
ple, in the single-body fixed-location case with measurement
constraints, POMCPOW correctly identified approximately

89 % of the profitable cases, though it mined 95 % of all the
profitable ore. This suggests that the economic cases which
POMCPOW failed to correctly identify were only marginally
economic.

The accuracy of the final POMCPOW decisions decreased
significantly in the multi-body cases. In approximately 32 %
of profitable cases, the algorithm incorrectly decided to aban-
don the prospect. Inspection of the test results suggested
that this was due to the belief model (Bayes’ model) fail-
ing to correctly resolve one of the two ore bodies before
making a decision. An example of this is shown in Fig. 32,
where the algorithm incorrectly abandoned the marginally
economic deposit after seven measurements before resolving
both bodies. This behavior is likely caused by the belief in-
correctly concentrating probability on sub-economic, single-
body cases, not by the POMCPOW algorithm. The observed
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Figure 32. Measurement campaign length and deposit size. The
mean deposit size is shown for different measurement campaign
lengths, along with 1 standard error bounds.

belief behavior was likely a result of the particle ensemble
failing to retain a sufficient number of multi-body instances.
Many methods have been proposed to monitor and prevent
this type of particle filter degeneracy (Thrun et al., 2005), and
hence future research will focus on including better particle
filter methods for these types of problems

Interesting emergent behavior was observed in the single-
body cases. The initial measurement was not typically taken
at the center of the belief distribution but was instead offset
slightly. The subsequent measurements tended to step in to-
wards the center before gradually moving outward. This be-
havior can be understood as intuitive extent-finding method-
ology. Each measurement is taken to try to locate the edge
of the deposit, where the most information about the deposit
size can be learned. As more information is gained near the
center, where positive observations are more likely, the mea-
surements tend to move outward toward more information,
but higher-variance data may be gathered.

One important feature of the defined POMDP is that it
allows the solver to make a variable number of measure-
ments before concluding. In each case studied, a wide va-
riety of trajectory lengths were observed. Because there is
a cost per measurement and a time discount on the even-
tual reward, POMCPOW tended to prefer shorter measure-
ment campaigns when possible, with fewer than five mea-
surements being the mode in most cases. However, clear ev-
idence of truncation at the upper end can be seen in the mea-
surement histograms, suggesting that in some cases, more
than the maximum allowed 25 measurements would have
been taken had the limit not been imposed. In general, it
was observed that POMCPOW took more measurements on
cases that we would consider more difficult. In cases that
were borderline–economic, in which resolving the deposit
size with good fidelity was necessary to make the correct

final decision, POMCPOW tended to take more measure-
ments. For clearly sub-economic cases, POMCPOW aban-
doned after just a few measurements. For clearly economic
cases, POMCPOW took more measurements than in clearly
sub-economic cases. This is likely caused by the initial belief
starting with an expected sub-economic value. This would
require more Bayesian updates to converge toward an eco-
nomic value than a sub-economic value. We also noted that
fewer measurements were taken in the fixed-location cases
than in the variable location cases. This is likely the result of
the latter cases requiring the POMCPOW solver to localize
the deposit in addition to measuring its extent.

The hyperparameters of the POMCPOW were set through
a basic grid search over widening and search parameters. To
limit the computational expense, the total number of trial tra-
jectories was fixed at 10 000, which allowed the study to be
run with tractable computational limits. Changing progres-
sive widening parameters also changed the computational
expense and depth of search and therefore the greediness of
the resultant policy. Overly aggressive widening tended to re-
sult in short-sighted policies that are one-step greedy, since
the Monte Carlo estimates for each action will tend to be
dominated by very short horizon trajectories. In our problem,
this would tend to result in the degenerative policy of always
abandoning the prospect on the first step, since that was the
only action with a non-negative expected one-step return.

7 Conclusion

In this work, we presented a Bayesian sequential decision-
making approach to improving geoscientific models through
sequential data acquisition planning, with application to min-
eral exploration. We presented a framework to model chal-
lenges like mineral exploration problems by means of par-
tially observable Markov decision processes (POMDPs). We
demonstrated the general method with a specific example
case in which we solved a 2D mineral exploration problem
with a known exploration area. To solve this problem, we
developed a hierarchical Bayesian belief using a particle fil-
ter, Gaussian process regression, and the Monte Carlo search
algorithm POMCPOW.

The results of our studies demonstrate that a closed-loop
sequential decision-making approach significantly outper-
forms a typical fixed-pattern grid approach. The measure-
ments recommended by POMCPOW improved the accuracy
and variance of the belief over the deposit extent significantly
faster than the baseline methods. The resulting behavior that
emerged from POMCPOW was intuitive and tended to re-
sult in shorter measurement campaigns than a fixed pattern,
resulting in comparable accuracy.

The methods presented in this work are general to many ar-
eas of resource exploration. The belief and solver presented
for the test case are not necessarily required to implement
this approach. Future work should apply these methods to
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Figure 33. Multi-body failure example. This figure shows an example of an incorrect ABANDON decision made based on the multi-body
case. In this trial, the belief converged too quickly to a sub-economic case with a single ore body before resolving the second ore body in the
southwest.

higher-fidelity exploration problems using more realistic ge-
ological models and measurement simulations, such as geo-
physical surveys. The POMCPOW solver was chosen be-
cause it is generally applicable to many POMDPs without
modification. However, as seen in the unconstrained cases,
POMCPOW may not have converged to an approximately
optimal solution. Future work should investigate modifica-
tions to the baseline POMCPOW algorithm to improve its
performance in exploration tasks. Extensions to POMCPOW
should be explored to use the fact that the deposit state un-
derlying the belief is static to reduce the variance of the value
estimates and the required sample complexity of the search.
Future work should also investigate other solver types, such
as point-based value iteration (PBVI), that may handle high-
variance beliefs more efficiently.
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