Articles | Volume 15, issue 9
https://doi.org/10.5194/gmd-15-3815-2022
https://doi.org/10.5194/gmd-15-3815-2022
Development and technical paper
 | 
12 May 2022
Development and technical paper |  | 12 May 2022

Lossy checkpoint compression in full waveform inversion: a case study with ZFPv0.5.5 and the overthrust model

Navjot Kukreja, Jan Hückelheim, Mathias Louboutin, John Washbourne, Paul H. J. Kelly, and Gerard J. Gorman

Related authors

Devito (v3.1.0): an embedded domain-specific language for finite differences and geophysical exploration
Mathias Louboutin, Michael Lange, Fabio Luporini, Navjot Kukreja, Philipp A. Witte, Felix J. Herrmann, Paulius Velesko, and Gerard J. Gorman
Geosci. Model Dev., 12, 1165–1187, https://doi.org/10.5194/gmd-12-1165-2019,https://doi.org/10.5194/gmd-12-1165-2019, 2019
Short summary
A structure-exploiting numbering algorithm for finite elements on extruded meshes, and its performance evaluation in Firedrake
Gheorghe-Teodor Bercea, Andrew T. T. McRae, David A. Ham, Lawrence Mitchell, Florian Rathgeber, Luigi Nardi, Fabio Luporini, and Paul H. J. Kelly
Geosci. Model Dev., 9, 3803–3815, https://doi.org/10.5194/gmd-9-3803-2016,https://doi.org/10.5194/gmd-9-3803-2016, 2016
Short summary

Related subject area

Numerical methods
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary
Assessing the benefits of approximately exact step sizes for Picard and Newton solver in simulating ice flow (FEniCS-full-Stokes v.1.3.2)
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024,https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary

Cited articles

Aminzadeh, F. and Brac, J.: SEG/EAGE 3-D Overthrust Models, Zenodo [data set], https://doi.org/10.5281/zenodo.4252588, 1997. a
Aupy, G. and Herrmann, J.: Periodicity in optimal hierarchical checkpointing schemes for adjoint computations, Optim. Method. Softw., 32, 594–624, https://doi.org/10.1080/10556788.2016.1230612, 2017. a
Blanchet, J., Cartis, C., Menickelly, M., and Scheinberg, K.: Convergence rate analysis of a stochastic trust-region method via supermartingales, INFORMS journal on optimization, 1, 92–119, https://doi.org/10.1287/ijoo.2019.0016, 2019. a
Boehm, C., Hanzich, M., de la Puente, J., and Fichtner, A.: Wavefield compression for adjoint methods in full-waveform inversion, Geophysics, 81, R385–R397, https://doi.org/10.1190/geo2015-0653.1, 2016. a, b, c
Chatelain, Y., Petit, E., de Oliveira Castro, P., Lartigue, G., and Defour, D.: Automatic exploration of reduced floating-point representations in iterative methods, in: European Conference on Parallel Processing, Springer, 481–494, https://doi.org/10.1007/978-3-030-29400-7_34, 2019. a
Download
Short summary
Full waveform inversion (FWI) is a partial-differential equation (PDE)-constrained optimization problem that is notorious for its high computational load and memory footprint. In this paper we present a method that combines recomputation with lossy compression to accelerate the computation with minimal loss of precision in the results. We show this using experiments running FWI with a variety of compression settings on a popular academic dataset.