Articles | Volume 15, issue 9
https://doi.org/10.5194/gmd-15-3815-2022
https://doi.org/10.5194/gmd-15-3815-2022
Development and technical paper
 | 
12 May 2022
Development and technical paper |  | 12 May 2022

Lossy checkpoint compression in full waveform inversion: a case study with ZFPv0.5.5 and the overthrust model

Navjot Kukreja, Jan Hückelheim, Mathias Louboutin, John Washbourne, Paul H. J. Kelly, and Gerard J. Gorman

Related authors

Devito (v3.1.0): an embedded domain-specific language for finite differences and geophysical exploration
Mathias Louboutin, Michael Lange, Fabio Luporini, Navjot Kukreja, Philipp A. Witte, Felix J. Herrmann, Paulius Velesko, and Gerard J. Gorman
Geosci. Model Dev., 12, 1165–1187, https://doi.org/10.5194/gmd-12-1165-2019,https://doi.org/10.5194/gmd-12-1165-2019, 2019
Short summary
A structure-exploiting numbering algorithm for finite elements on extruded meshes, and its performance evaluation in Firedrake
Gheorghe-Teodor Bercea, Andrew T. T. McRae, David A. Ham, Lawrence Mitchell, Florian Rathgeber, Luigi Nardi, Fabio Luporini, and Paul H. J. Kelly
Geosci. Model Dev., 9, 3803–3815, https://doi.org/10.5194/gmd-9-3803-2016,https://doi.org/10.5194/gmd-9-3803-2016, 2016
Short summary

Related subject area

Numerical methods
Modeling large‐scale landform evolution with a stream power law for glacial erosion (OpenLEM v37): benchmarking experiments against a more process-based description of ice flow (iSOSIA v3.4.3)
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023,https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
A mixed finite-element discretisation of the shallow-water equations
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev., 16, 1265–1276, https://doi.org/10.5194/gmd-16-1265-2023,https://doi.org/10.5194/gmd-16-1265-2023, 2023
Short summary
Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling
Anthony Gruber, Max Gunzburger, Lili Ju, Rihui Lan, and Zhu Wang
Geosci. Model Dev., 16, 1213–1229, https://doi.org/10.5194/gmd-16-1213-2023,https://doi.org/10.5194/gmd-16-1213-2023, 2023
Short summary
Massively parallel modeling and inversion of electrical resistivity tomography data using PFLOTRAN
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev., 16, 961–976, https://doi.org/10.5194/gmd-16-961-2023,https://doi.org/10.5194/gmd-16-961-2023, 2023
Short summary
Parallelized domain decomposition for multi-dimensional Lagrangian random walk mass-transfer particle tracking schemes
Lucas Schauer, Michael J. Schmidt, Nicholas B. Engdahl, Stephen D. Pankavich, David A. Benson, and Diogo Bolster
Geosci. Model Dev., 16, 833–849, https://doi.org/10.5194/gmd-16-833-2023,https://doi.org/10.5194/gmd-16-833-2023, 2023
Short summary

Cited articles

Aminzadeh, F. and Brac, J.: SEG/EAGE 3-D Overthrust Models, Zenodo [data set], https://doi.org/10.5281/zenodo.4252588, 1997. a
Aupy, G. and Herrmann, J.: Periodicity in optimal hierarchical checkpointing schemes for adjoint computations, Optim. Method. Softw., 32, 594–624, https://doi.org/10.1080/10556788.2016.1230612, 2017. a
Blanchet, J., Cartis, C., Menickelly, M., and Scheinberg, K.: Convergence rate analysis of a stochastic trust-region method via supermartingales, INFORMS journal on optimization, 1, 92–119, https://doi.org/10.1287/ijoo.2019.0016, 2019. a
Boehm, C., Hanzich, M., de la Puente, J., and Fichtner, A.: Wavefield compression for adjoint methods in full-waveform inversion, Geophysics, 81, R385–R397, https://doi.org/10.1190/geo2015-0653.1, 2016. a, b, c
Chatelain, Y., Petit, E., de Oliveira Castro, P., Lartigue, G., and Defour, D.: Automatic exploration of reduced floating-point representations in iterative methods, in: European Conference on Parallel Processing, Springer, 481–494, https://doi.org/10.1007/978-3-030-29400-7_34, 2019. a
Download
Short summary
Full waveform inversion (FWI) is a partial-differential equation (PDE)-constrained optimization problem that is notorious for its high computational load and memory footprint. In this paper we present a method that combines recomputation with lossy compression to accelerate the computation with minimal loss of precision in the results. We show this using experiments running FWI with a variety of compression settings on a popular academic dataset.