Articles | Volume 15, issue 9
https://doi.org/10.5194/gmd-15-3815-2022
https://doi.org/10.5194/gmd-15-3815-2022
Development and technical paper
 | 
12 May 2022
Development and technical paper |  | 12 May 2022

Lossy checkpoint compression in full waveform inversion: a case study with ZFPv0.5.5 and the overthrust model

Navjot Kukreja, Jan Hückelheim, Mathias Louboutin, John Washbourne, Paul H. J. Kelly, and Gerard J. Gorman

Data sets

SEG/EAGE 3-D Overthrust Models Fred Aminzadeh and Jean Brac https://doi.org/10.5281/zenodo.4252588

Model code and software

navjotk/error\_propagation: v0.1 Navjot Kukreja https://doi.org/10.5281/zenodo.4247199

navjotk/pyzfp: Dummy release to force Zenodo archive Navjot Kukreja, Tim Greaves, Gerard Gorman, and David Wade https://doi.org/10.5281/zenodo.4252530

devitocodes/devito: v4.2.3 Fabio Luporini, Mathias Louboutin, Michael Lange, Navjot Kukreja, rhodrin, George Bisbas, Vincenzo Pandolfo, Lucas Cavalcante, tjb900, Gerard Gorman, VItor Mickus, Maelso Bruno, Paulius Kazakas, Chris Dinneen, Oscar Mojica, Gabriel Sebastian von Conta, Tim Greaves, SSHz, EdCaunt, and vkrGitHub https://doi.org/10.5281/zenodo.3973710

Download
Short summary
Full waveform inversion (FWI) is a partial-differential equation (PDE)-constrained optimization problem that is notorious for its high computational load and memory footprint. In this paper we present a method that combines recomputation with lossy compression to accelerate the computation with minimal loss of precision in the results. We show this using experiments running FWI with a variety of compression settings on a popular academic dataset.