
Geosci. Model Dev., 15, 3815–3829, 2022
https://doi.org/10.5194/gmd-15-3815-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Lossy checkpoint compression in full waveform inversion: a case
study with ZFPv0.5.5 and the overthrust model
Navjot Kukreja1, Jan Hückelheim2, Mathias Louboutin3, John Washbourne4, Paul H. J. Kelly5, and
Gerard J. Gorman6

1Department of Computer Science, University of Liverpool, Liverpool, UK
2Argonne National Laboratory, Chicago, IL, USA
3School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
4Chevron Corporation, San Ramon, CA, USA
5Department of Computing, Imperial College London, London, UK
6Department of Earth Science and Engineering, Imperial College London, London, UK

Correspondence: Navjot Kukreja (n.kukreja@liverpool.ac.uk)

Received: 27 September 2020 – Discussion started: 6 November 2020
Revised: 26 March 2022 – Accepted: 11 April 2022 – Published: 12 May 2022

Abstract. This paper proposes a new method that combines
checkpointing methods with error-controlled lossy compres-
sion for large-scale high-performance full-waveform inver-
sion (FWI), an inverse problem commonly used in geophys-
ical exploration. This combination can significantly reduce
data movement, allowing a reduction in run time as well as
peak memory.

In the exascale computing era, frequent data transfer (e.g.,
memory bandwidth, PCIe bandwidth for GPUs, or network)
is the performance bottleneck rather than the peak FLOPS of
the processing unit.

Like many other adjoint-based optimization problems,
FWI is costly in terms of the number of floating-point oper-
ations, large memory footprint during backpropagation, and
data transfer overheads. Past work for adjoint methods has
developed checkpointing methods that reduce the peak mem-
ory requirements during backpropagation at the cost of addi-
tional floating-point computations.

Combining this traditional checkpointing with error-
controlled lossy compression, we explore the three-way
tradeoff between memory, precision, and time to solution.
We investigate how approximation errors introduced by lossy
compression of the forward solution impact the objective
function gradient and final inverted solution. Empirical re-
sults from these numerical experiments indicate that high
lossy-compression rates (compression factors ranging up to

100) have a relatively minor impact on convergence rates and
the quality of the final solution.

1 Introduction

Full-waveform inversion (FWI) is an adjoint-based optimiza-
tion problem used in seismic imaging to infer the Earth’s
subsurface structure and physical parameters (Virieux and
Operto, 2009). Here, a partial-differential equation (PDE)
describing the propagation of a wave is solved repeatedly,
while modifying the estimate of the physical properties of
the system so that a simulated signal matches the signal
recorded in a physical experiment. The compute and mem-
ory requirements for this and similar PDE-constrained opti-
mization problems can readily push the world’s top super-
computers to their limits. Table 1 estimates the computa-
tional requirements of an FWI problem on the Society of
Exploration Geophysicists (SEG) Advanced Modelling Pro-
gram (SEAM) model (Fehler and Keliher, 2011). Although
the grid-spacing and time step interval depends on various
problem-specific factors, we can do a back-of-the-envelope
calculation to appreciate the scale of FWI. To estimate the
number of operations per grid point, we use the acoustic
anisotropic equation in a Tilted-Transverse Isotropic medium
(Zhang et al., 2011), which is commonly used today in com-
mercial FWI. Such a problem would require almost 90 d of

Published by Copernicus Publications on behalf of the European Geosciences Union.



3816 N. Kukreja et al.: Lossy checkpoint compression in FWI

continuous execution at 1 PFLOP s−1. The memory require-
ments for this problem are also prohibitively high. As can be
seen in Table 1, the gradient computation step is responsible
for this problem’s high memory requirement, and the focus
of this paper is to reduce that requirement.

The FWI algorithm is explained in more detail in Sect. 2.
It is important to note that despite the similar terminology,
the checkpointing we refer to in this paper is not done for
resilience or failure recovery. This is the checkpointing from
automatic-differentiation theory, with the objective of reduc-
ing the memory footprint of a large computation by trading
recomputation for storage. This checkpointing occurs com-
pletely in memory (i.e., RAM), and the discussion in this pa-
per is orthogonal to any issues around disk input and output.

1.1 FWI and other similar problems

FWI is similar to other inverse problems like brain-imaging
(Guasch et al., 2020), shape optimization (Jameson et al.,
1998), and even training a neural network. When training
a neural network, the activations calculated when propagat-
ing forward along the network need to be stored in memory
and used later during backpropagation. The size of the cor-
responding computation in a neural network depends on the
depth of the network and, more importantly, the input size.
We assume the input is an image for the purpose of this expo-
sition. For typical input image sizes of less than 500×500 px,
the computation per data point is relatively small (compared
to FWI), both in the number of operations and memory re-
quired. This is compensated by processing in mini-batches,
where multiple data points are processed at the same time.
This batch dimension’s size is usually adjusted to fill up the
target hardware to its capacity (and no more). This is the
standard method of managing the memory requirements of
a neural network training pipeline. However, for an input im-
age that is large enough or a network that is deep enough, it
is seen that the input image, network weights, and network
activations together require more memory than available on
a single node, even for a single input image (batch size = 1).
We previously addressed this issue in the context of neural
networks (Kukreja et al., 2019b). In this paper we address
the same issue for FWI.

Many algorithmic optimizations and approximations are
commonly applied to reduce the computational load from the
numbers calculated in Table 1. These optimizations could ei-
ther reduce the number of operations or the amount of mem-
ory required. In this paper, we shall focus on the high mem-
ory footprint of this problem. One standard approach is to
save the field at only the boundaries and reconstruct the rest
of the field from the boundaries to reduce the memory foot-
print. However, the applicability of this method is limited
to time-reversible PDEs. In this work, we use the isotropic
acoustic equation as the example. Although this equation is
time-reversible, many other variations used in practice are

Figure 1. An illustration of the approach presented in this paper.
Checkpoints are compressed using lossy compression to combine
lossy compression and the checkpoint-recompute strategies.

not. For this reason, we do not discuss this method in this
paper.

A commonly used method to deal with the problem of
this large memory footprint is domain decomposition over
messaging–passing interface (MPI), where the computa-
tional domain is split into subdomains over multiple compute
nodes to use their memory. The efficacy of this method de-
pends on the ability to hide the MPI communication overhead
behind the computations within the subdomain. For effec-
tive communication–computation overlap, the subdomains
should be big enough that the computations within the sub-
domain take at least as long as the MPI communication. This
places a lower bound on subdomain size (and hence peak
memory consumption per MPI rank) that is a function of the
network interconnect – this lower bound might be too large
for slow interconnects, e.g., on cloud systems.

Some iterative frequency domain methods, e.g., Knibbe
et al. (2014), can alleviate the memory limit but are not com-
petitive with time domain methods in the total time to solu-
tion.

Hybrid methods that combine time domain methods, as
well as frequency domain methods, have also been tried
(Witte et al., 2019). However, this approach can be challeng-
ing because the application code must decide the user’s dis-
crete set of frequencies to achieve a target accuracy.

In the following subsections, we discuss three techniques
that are commonly used to alleviate this memory pressure –
namely numerical approximations, checkpointing, and data
compression. The common element in these techniques is
that all three solve the problem of high memory require-
ment by increasing the operational intensity of the compu-
tation – doing more computations per byte transferred from
memory. With the gap between memory and computational
speeds growing wider as we move into the exaFLOP era, we
expect to use such techniques more moving forward.

1.2 Approximate methods

There has been some recent work on alternate floating-point
representations (Chatelain et al., 2019), although we are
not aware of this technique being applied to FWI. Within

Geosci. Model Dev., 15, 3815–3829, 2022 https://doi.org/10.5194/gmd-15-3815-2022



N. Kukreja et al.: Lossy checkpoint compression in FWI 3817

Table 1. Estimated computational requirements of a full waveform inversion problem based on the SEAM model (Fehler and Keliher, 2011),
a large-scale industry standard geophysical model that is used to benchmark FWI. Note that real-world FWI problems are likely to be larger.

Description Number Peak memory No. of FLOPs

Single grid point (TTI) 1 8 bytes 6300

Complete grid 1000× 1000× 1000 8 GB 6.3× 1012

Forward propagation (time steps) 10000 24 GB 6.3× 1016

Gradient computation 2 (FW+REV)∗ 80 TB 1.26× 1017

Shots 10000 80 TB 1.26× 1021

Optim. iterations 20 80 TB 2.52× 1022

∗ A gradient computation involves a forward simulation followed by a reverse/adjoint computation. For simplicity we
assume the same size of computation during the forward/adjoint pass.

FWI, many approximate methods exist, including on-the-fly
Fourier transforms (Witte et al., 2019). However, it is not
clear whether this method can provide fine-tuned bounds
on the solution’s accuracy. In contrast, other completely
frequency-domain-based formulations can provide clearer
bounds (van Leeuwen and Herrmann, 2014); however, as
previously discussed, this comes at the cost of a much higher
computational complexity. In this paper, we restrict ourselves
to time domain approaches only.

Another approximation commonly applied to reduce the
memory pressure in FWI in the time domain is subsampling.
Here, the time step rate of the gradient computation (See
Eq. 4) is decoupled from the time step rate of the adjoint
wave field computation, with one gradient time step for every
n adjoint steps. This reduces the memory footprint by a fac-
tor of n, since only one in n values of the forward wave field
needs to be stored. The Nyquist theorem is commonly cited
as the justification for this sort of subsampling. However, the
Nyquist theorem only provides a lower bound on the error –
it is unclear whether an upper bound on the error has been
established for this method. Although more thorough empir-
ical measurements of the errors induced in subsampling have
been done before (Louboutin and Herrmann, 2015), we do a
brief empirical study in Sect. 4.7 as a baseline to compare the
error with our method.

1.3 Checkpointing

Instead of storing the wave field at every time step during
the forward computation, it is possible to store it at a sub-
set of the time steps only. During the following computa-
tion that proceeds in a reverse order to calculate the gradi-
ent, if the forward wave field is required at a time step that
was not stored, it can be recovered by restarting the forward
computation from the last available time step. This is com-
monly known as checkpointing. Algorithms have been devel-
oped to define the optimal checkpointing schedule involving
forward, store, backward, load, and recompute events under

different assumptions (Griewank and Walther, 2000; Wang
et al., 2009; Aupy and Herrmann, 2017). This technique has
also been applied to FWI-like computations (Symes, 2007).

In previous work, we introduced the open-source software
pyRevolve, a Python module that can automatically man-
age the checkpointing strategies under different scenarios
with minimal modification to the computation code (Kukreja
et al., 2018). For this work, we extended pyRevolve to in-
tegrate lossy compression. For details on the computational
implementation of lossy checkpoint compression, as well as
a comparison of different compression algorithms based on
their compression as well as overheads, please refer to our
previous publication (Kukreja et al., 2019a).

The most significant advantage of checkpointing is that
the numerical result remains unchanged by applying this
technique. Note that we will shortly combine this technique
with lossy compression, which might introduce an error, but
checkpointing alone is expected to maintain bitwise equiv-
alence. Another advantage is that the increase in run time
incurred by the recomputation is predictable.

1.4 Data compression

Compression or bit-rate reduction is a concept originally
from signal processing. It involves representing information
in fewer bits than the original representation. Since there is
usually some computation required to go from one represen-
tation to another, compression can be seen as a memory–
compute tradeoff.

Perhaps the most commonly known and used compression
algorithm is ZLib (from GZip) (Deutsch and Gailly, 1996).
ZLib is a lossless compression algorithm, i.e., the data re-
covered after compressing and decompressing are an exact
replica of the original data before compression. Although
ZLib is targeted at text data, which are one-dimensional and
often have predictable repetition, other lossless compression
algorithms are designed for other kinds of data. One exam-
ple is FPZIP (Lindstrom and Administration, 2017), which

https://doi.org/10.5194/gmd-15-3815-2022 Geosci. Model Dev., 15, 3815–3829, 2022



3818 N. Kukreja et al.: Lossy checkpoint compression in FWI

Figure 2. Schematic of the checkpointing strategy. Wall-clock time is on the horizontal axis, while the vertical axis represents simulation
time. The blue line represents forward computation. The dotted red line represents how the reverse computation would have proceeded after
the forward computation if there had there been enough memory to store all the necessary checkpoints. Checkpoints are shown as black
dots. The reverse computation under the checkpointing strategy is shown as the solid red line. It can be seen that the reverse computation
proceeds only where the results of the forward computation are available. When not available, the forward computation is restarted from the
last available checkpoint to recompute the results of the forward – shown here as the blue-shaded regions.

is a lossless compression algorithm for multidimensional
floating-point data.

For floating-point data, another possibility is lossy com-
pression, where the compressed and decompressed data are
not exactly the same as the original data but a close approx-
imation. The precision of this approximation is often set by
the user of the compression algorithm. Two popular algo-
rithms in this class are SZ (Di and Cappello, 2016) and ZFP
(Lindstrom, 2014).

Compression has often been used to reduce the mem-
ory footprint of adjoint computations in the past, including
Weiser and Götschel (2012); Boehm et al. (2016); Marin
et al. (2016). However, all of these studies use hand-rolled
compression algorithms specific to the corresponding task –
Weiser and Götschel (2012) focuses on parabolic equations,
Boehm et al. (2016) focuses on wave propagation like us,
and Marin et al. (2016) focuses on fluid flow. All three use
their own lossy compression algorithm to compress the en-
tire time history and look at checkpointing as an alternative
to lossy compression. In this paper we use a more general
floating-point compression algorithm – ZFP. Since this com-
pressor has been extensively used and studied across differ-
ent domains and has implementations for various hardware
platforms – this lends a sense of trust in this compressor, in-
creasing the relevance of our work. None of the previously
mentioned studies combine compression and checkpointing
as we do here.

Cyr et al. (2015) perform numerical experiments to study
the propagation of errors through an adjoint problem us-
ing compression methods like principal component analysis
(PCA). However, they do not consider the combination of
checkpointing and compression in a single strategy.

Figure 3. Schematic of the three-way tradeoff presented in this pa-
per. With the use of checkpointing, it was possible to trade off mem-
ory and execution time (the horizontal line). With the use of com-
pression alone, it was possible to trade off memory and accuracy.
The combined approach presented in this work provides a novel
three-way tradeoff.

Floating-point representation can be seen as a compressed
representation that is not entirely precise. However, the er-
rors introduced by the floating-point representation are al-
ready accounted for in the standard numerical analysis as
noise. The errors introduced by ZFP’s compression of fields
are more subtle since the compression loss is pattern sensi-
tive. Hence, we tackle it empirically here.

Geosci. Model Dev., 15, 3815–3829, 2022 https://doi.org/10.5194/gmd-15-3815-2022



N. Kukreja et al.: Lossy checkpoint compression in FWI 3819

1.5 Contributions

The last few sections discussed some existing methods that
allow tradeoffs that are useful in solving FWI on lim-
ited resources. While checkpointing allows a tradeoff be-
tween computational time and memory, compression allows
a tradeoff between memory and accuracy. This work com-
bines these three approaches into one three-way tradeoff.

In previous work (Kukreja et al., 2019a), we have shown
that it is possible to accelerate generic adjoint-based compu-
tations (of which FWI is a subset), by using lossy compres-
sion on the checkpoints. For a given checkpoint absolute er-
ror tolerance (atol), compression may or may not accelerate
the computation. The performance model from Kukreja et al.
(2019a) helps us answer this question a priori, i.e., without
running any computations.

In this work, we evaluate this method on the specific prob-
lem of FWI, specifically the solver convergence and accu-
racy.

To this end, we conduct an empirical study of the follow-
ing factors:

1. the propagation of errors when starting from a lossy
checkpoint,

2. the effect of checkpoint errors on the gradient computa-
tion,

3. the effect of decimation and subsampling on the gradi-
ent computation,

4. the accumulation of errors through the stacking of mul-
tiple shots,

5. the effect of the lossy gradient on the convergence of
FWI.

The rest of the paper is organized as follows. Section 2
gives an overview of FWI. This is followed by a description
of our experimental setup in Sect. 3. Next, Sect. 4 presents
the results, followed by a discussion in Sect. 5. Finally, we
present our conclusions and future work.

2 Full waveform inversion

FWI is designed to numerically simulate a seismic survey ex-
periment and invert for the Earth parameters that best explain
the observations. In the physical experiment, a ship sends
an acoustic impulse through the water by triggering an ex-
plosion. The waves created as a result of this impulse travel
through the water into the Earth’s subsurface. The reflections
and turning components of these waves are recorded by an
array of receivers being dragged in tow by the ship. A record-
ing of one signal sent and the corresponding signals received
at each of the receiver locations is called a shot. A single
experiment typically consists of 10000 shots.

Having recorded this collection of data (dobs), the next step
is the numerical simulation. This starts with a wave equa-
tion. Many equations exist that can describe the propagation
of a sound wave through a medium – the choice is usually
a tradeoff between accuracy and computational complexity.
We mention here the simplest such equation, which describes
isotropic acoustic wave propagation:

m(x)
∂2u(t,x)

∂t2
−∇

2u(t,x)= qs(t,x), (1)

where m(x)= 1
c2(x)

is the squared slowness, c(x) the spa-
tially dependent speed of sound, u(t,x) is the pressure wave
field, ∇2u(t,x) denotes the Laplacian of the wave field, and
qs(t,x) is a source term. Solving Eq. (1) for a given m and
qs can give us the simulated signal that would be received at
the receivers. Specifically, the simulated data can be written
as follows:

dsim = Pru= PrA(m)
−1P>s qs, (2)

where Pr is the measurement operator that restricts the full
wave field to the receivers locations, A(m) is the linear op-
erator that is the discretization of the operator corresponding
to Eq. (1), and Ps is a linear operator that injects a localized
source (qs) into the computational grid.

Using this, it is possible to set up an optimization problem
that aims to find the value ofm that minimizes the difference
between the simulated signal (dsim) and the observed signal
(dobs):

argmin
m

8s(m)=
1
2
‖dsim− dobs‖

2
2. (3)

This objective function 8s(m) can be minimized using a
gradient descent method. The gradient can be computed as
follows:

∇8s(m)=

nt∑
t=1

u[t]vtt[t] = J
T δd, (4)

where u[t] is the wave field from Eq. (1) and vtt[t] is the sec-
ond derivative of the adjoint field (Tarantola, 1984). The ad-
joint field is computed by solving an adjoint equation back-
wards in time. The appropriate adjoint equation is a result
of the choice of the forward equation. In this example, we
chose the acoustic isotropic equation (Eq. 1), which is self-
adjoint. However, it is not always trivial to derive the adjoint
equation corresponding to a chosen forward equation (Hück-
elheim et al., 2019). This adjoint computation can only be
started once the forward computation (i.e., the one involving
Eq. 1) is complete. Commonly, this is done by storing the in-
termediate values of u during the forward computation, then
starting the adjoint computation to get values of v, and us-
ing that and the previously calculated u to directly calculate
∇8s(m) in the same loop. This need to store the intermedi-
ate values of u during the forward computation is the source
of the high memory footprint of this method.

https://doi.org/10.5194/gmd-15-3815-2022 Geosci. Model Dev., 15, 3815–3829, 2022



3820 N. Kukreja et al.: Lossy checkpoint compression in FWI

The computation described in the previous paragraph is
for a single shot and must be repeated for every shot, and the
final gradient is calculated by averaging the gradients cal-
culated for the individual shots. This is repeated for every
iteration of the minimization. This entire minimization prob-
lem is one step of a multi-grid method that starts by invert-
ing only the low-frequency components on a coarse grid and
adding higher-frequency components that require finer grids
over successive inversions.

3 Experimental setup

3.1 Reference problem

We use Devito (Kukreja et al., 2016; Luporini et al., 2020b;
Louboutin et al., 2019) to build an acoustic wave propaga-
tion experiment. The velocity model was initialized using
the SEG overthrust model. This velocity model was then
smoothed using a Gaussian function to simulate a starting
guess for a complete FWI problem. The original domain was
surrounded by a 40-point deep-absorbing boundary layer.
This led to a total of 287×881×881 grid points. This was run
for 4000 ms with a step of 1.75 ms, making 2286 time steps.
The spatial domain was discretized on a grid with a grid spac-
ing of 20 m, and the discretization was of the 16th order in
space and the second order in time. We used 80 shots for our
experiments with the sources placed along the x dimension,
spaced equally, and located just under the water surface. The
shots were generated by modeling a Ricker source of peak
frequency 8 Hz.

The FWI experiments were run on Azure’s Kubernetes
Service, using the framework described in Zhang et al.
(2021). Each cloud worker instance processed only one shot
at a time, although there were 20 cloud worker instances
running in parallel. The processing of each shot started by
reading shot data, previously written to Azure Blob Storage,
straight to the cloud worker instance. This was followed by a
long gradient computation step (approximately 10 min). Due
to this, we posit that file input–output did not play a role in
the experiments discussed here.

Following the method outlined in Peters et al. (2019), we
avoid inverse crime by generating the shots using a variation
of Eq. (1) that includes density, while using Eq. (1) for inver-
sion. The gradient was scaled by dividing by the norm of the
original gradient in the first iteration. This problem solved
in double precision is what we shall refer to as the reference
problem in the rest of this paper. Note that this reference solu-
tion itself has many sources of error, including floating-point
arithmetic and the discretization itself.

As can be seen in Sect. 2, there is only one wave field in
the isotropic acoustic equation, the pressure field, which is
called u in the equations. This is the field we compress in
all of the experiments. The lossy-compression algorithm ac-
cepts a value for absolute error tolerance (atol) a priori and

is expected to respect this tolerance during the compression–
decompression cycle. We verify this as part of our exper-
iments. Note that the word absolute is used here from the
point of view of the compression – we are choosing an abso-
lute value of error tolerance. The absolute value of acceptable
error will probably change for waves of different amplitudes.
Peak signal-to-noise ratio can be used to calibrate the results
here across different pressure amplitudes.

3.2 Error metrics

Let F(i, j,k) be the original field (i.e., before any compres-
sion or loss) and G(i, j,k) be the field recovered after lossy
compression of F(i, j,k), followed by decompression. We re-
port errors using the following metrics.

PSNR : peak signal-to-noise ratio, we define this as follows:

PSNR (dB)= 10log10
R2

MSE
, (5)

where R is the range of values in the field to be com-
pressed, and MSE is the mean squared error between
the reference and the lossy field. More precisely,

MSE=
1

mnp

p∑
k=0

n∑
j=0

m∑
i=0

[F(i, j,k)−G(i, j,k)]2, (6)

and R =max(F(i, j,k))−min(F(i, j,k)).

Angle : we treat F(i, j,k) and G(i, j,k) as vectors and cal-
culate the angle between them as follows:

cosθ =

−→
F ·
−→
G∥∥∥−→F ∥∥∥ · ∥∥∥−→G∥∥∥ . (7)

Error norms : we also report some errors by defining the
error vector E(i ,j ,k ) as F(i, j,k)−G(i, j,k) and re-
porting L2 and L∞ norms of this vector.

4 Results

4.1 Evolution of compressibility

To understand the evolution of compressibility, we compress
every time step of the reference problem using the same com-
pression setting and report on the achieved compression fac-
tor as a function of the time step.

This is shown in Fig. 4. It can be seen that in the beginning
the field is highly compressible since it consists of mostly
zeros. The compressibility is worst towards the end of the
simulation when the wave has reached most of the domain.

Therefore, we pick the last time step as the reference for
further experiments. A 2D cross section of this snapshot is

Geosci. Model Dev., 15, 3815–3829, 2022 https://doi.org/10.5194/gmd-15-3815-2022



N. Kukreja et al.: Lossy checkpoint compression in FWI 3821

Figure 4. Evolution of compressibility through the simulation. We
compressed every time step of the reference problem using an ab-
solute error tolerance (atol) setting of 10−4. The compression fac-
tor achieved is plotted here as a function of the time step number.
Higher is more compression. The dotted line represents no com-
pression. We can see that the first few time steps are compressible
to 1000x since they are mostly zeros. The achievable compression
factor drops as the wave propagates through the domain and seems
to stabilize to 20x towards the end. We pick the last time step as the
reference field for further experiments.

Figure 5. A 2D slice of the last time step of the reference solution.
The wave has spread through most of the domain. The values in this
figure have been thresholded to ±0.01 for easy visualization. For
pressure amplitudes, see Fig. 6.

shown in Fig. 5. Figure 6 shows a histogram of pressure val-
ues in order to give us an idea of the absolute pressure am-
plitude present in the wave field being compressed. This plot
can be used to give context to the absolute error tolerances in
the rest of the results.

4.2 Direct compression

To understand the direct effects of compression, we com-
pressed the reference wave field using different absolute tol-
erance (atol) settings and observed the errors incurred as a
function of atol. The error is a tensor of the same shape as the
original field and results from subtracting the reference field
and the lossy field. Figure 7 shows the peak signal-to-noise

Figure 6. A histogram of pressure values in the wave field shown
in Fig. 5. These values can be used to give context to the absolute
error tolerances used in the rest of the experiments.

Figure 7. Direct compression. We compress the wave field at the
last time step of the reference solution using different absolute error
tolerance (atol) settings and report the peak signal-to-noise ratio
(PSNR) achieved. Higher PSNR is lower error. The PSNR is very
high for low atol and drops predictably as atol is increased. See
Fig. A1 for more metrics on this comparison.

ratio achieved for each atol setting. Figure A1 in Appendix
A shows some additional norms for this error tensor.

4.3 Forward propagation

Next, we ran the simulation for 550 steps and compressed
the field’s final state after this time. We then compress and
decompress this through the lossy compression algorithm,
getting two checkpoints – a reference checkpoint and a lossy

https://doi.org/10.5194/gmd-15-3815-2022 Geosci. Model Dev., 15, 3815–3829, 2022



3822 N. Kukreja et al.: Lossy checkpoint compression in FWI

Figure 8. Forward propagation. We stop the simulation after about
500 time steps. We then compress the state of the wave field at this
point using atol = 10−6. We then continue the simulation from the
lossy checkpoint and compare it with the reference version. Here
we show the error as PSNR. In these plots, higher is better, whereas
lower implies more error. The PSNR dropped slightly over the first
few time steps and then remains essentially constant after.

checkpoint. We then restarted the simulation from step 550,
comparing the progression of the simulation restarted from
the lossy checkpoint vs. a reference simulation that was
started from the original checkpoint. We run this test for an-
other 250 time steps.

Figure 8 shows the evolution of the PSNR between wave
fields at corresponding time steps as a function of the number
of time steps evolved. There is a slight initial drop followed
by essentially constant values for the 250 time steps propa-
gated. This tells us that the numerical method is robust to the
error induced by lossy compression and that the error does
not appear to be forcing the system to a different solution.

4.4 Gradient computation

In this experiment, we do the complete gradient computation,
as shown in Fig. 1, once for the reference problem and for
a few different lossy settings. We measured the error in the
gradient computation as a function of atol using the same
compression settings for all checkpoints.

In Fig. 9, we report the error between the reference gradi-
ent and the lossy gradient as PSNR (see Sect. 3.2 for defini-
tion). The PSNR remains unchanged until an atol of 10−6,
and even at its lowest it is at a very high value of 80.

In Fig. 10, we look at the same experiment but through
a different metric. Here we report the angle between the
reference gradient vector and the lossy gradient vector. We
see that the error remains constant at a very small value of
5×10−4 radian up to atol = 10−2. This same plot also shows

Figure 9. Gradient computation. In this experiment we carry out the
full forward–reverse computation to get a gradient for a single shot
while compressing the checkpoints at different atol settings. This
plot shows the PSNR of reference vs. lossy gradient as a function of
atol on the lossy checkpoints. We can see that the PSNR remains
unchanged until about atol = 10−6, and that it is very high even at
very high values of atol.

that the number of time steps do not appear to change the er-
ror by much (for a constant number of checkpoints).

In Fig. 11, we report the error as L∞ and L2 norms with
respect to achieved compression factor. This makes it easier
to compare with the subsampling strategy presented later (see
Fig. 19).

We also repeated the gradient computation for differ-
ent number of checkpoints. Fewer checkpoints would apply
lossy compression at fewer points in the calculation, while
the amount of recomputation would be higher. More check-
points would require less recomputation but would apply
lossy compression at more points during the calculation. Fig-
ure 12 shows the results of this experiment. We see that the
PSNR is largely dependent on the value of atol and does not
change much when the number of checkpoints is changed by
2 orders of magnitude.

It can be seen from the plots that the errors induced in the
checkpoint compression do not propagate significantly until
the gradient computation step. In fact, the atol compression
setting does not affect the error in the gradient computation
until a cutoff point. It is likely that the cross-correlation step
in the gradient computation is acting as an error-correcting
step since the adjoint computation continues at the same pre-
cision as before – the only errors introduced are in the values
from the forward computation used in the cross-correlation
step (the dotted arrows in Fig. 1).

Geosci. Model Dev., 15, 3815–3829, 2022 https://doi.org/10.5194/gmd-15-3815-2022



N. Kukreja et al.: Lossy checkpoint compression in FWI 3823

Figure 10. Gradient computation. Angle between the lossy gradient vector and the reference gradient vector (in radians) vs. atol (a) and vs.
compression factor (b). If the lossy gradient vector was pointing in a significantly different direction compared to the reference gradient, we
could expect to see that on this plot. The angles are quite small. The number of time steps do not affect the result by much. The results are
also resilient to increasing atol up to 10−2. Compression factors of over 100x do not seem to significantly distort the results either.

Figure 11. Gradient error. L∞ (a) and L2 (b) norms of the gradient error as a function of the achieved compression factor (CF). It can be
seen that error is negligible in the range of CF up to 16. Figure 19 repeats a part of these results to aid comparison with the subsampling
strategy.

4.5 Stacking

After gradient computation on a single shot, the next step in
FWI is the accumulation of the gradients for individual shots
by averaging them into a single gradient. We call this stack-
ing. In this experiment we studied the accumulation of errors
through this stacking process. Figure 13 shows the error in
the gradient computation (compared to a similarly processed
reference problem) as a function of the number of shots.

This plot shows us that the errors across the different shots
are not adding up and that the cumulative error is not growing
with the number of shots, except for the compression setting
of atol = 10−1, which is chosen as an example of unreason-
ably high compression.

4.6 Convergence

Finally, we measure the effect of an approximate gradient
on the convergence of the FWI problem. In practice, FWI is
run for only a few iterations at a time as a fine-tuning step
interspersed with other imaging steps. Here we run a fixed
number of FWI iterations (30) to make it easier to compare
different experiments. To make this a practical test problem,
we extract a 2D slice from the original 3D velocity model and
run a 2D FWI instead of a 3D FWI. We compare the conver-
gence trajectory with the reference problem and report. For
reference, Fig. 14 shows the known true velocity model for
this problem. Figure 15 shows the final velocity model after
running a reference FWI for 30 iterations. Figure 17 shows
the final velocity model after running FWI with compression
enabled at different atol settings (also for 30 iterations).

https://doi.org/10.5194/gmd-15-3815-2022 Geosci. Model Dev., 15, 3815–3829, 2022



3824 N. Kukreja et al.: Lossy checkpoint compression in FWI

Figure 12. Gradient error. In this plot we measure the effect of vary-
ing number of checkpoints on the error in the gradient. We report
PSNR of lossy vs. reference gradient as a function of number of
checkpoints for four different compression settings.

Figure 13. Shot stacking. The gradient is first computed for each
individual shot and then added up for all the shots. In this experi-
ment we measure the propagation of errors through this step. This
plot shows that while errors do have the potential to accumulate
through the step, as can be seen from the curve for atol = 10−1

for compression settings that are useful otherwise, the errors do not
accumulate significantly.

Figure 16 shows the convergence trajectory – the objective
function value as a function of the iteration number. We show
this convergence trajectory for two different compression set-
tings. It can be seen that the compressed version does indeed
follow a very similar trajectory to the original problem.

Figure 14. True model used for FWI.

Figure 15. Reference solution for the complete FWI problem. This
is the solution after running reference FWI for 30 iterations.

4.7 Subsampling

As a comparison baseline, we also use subsampling to reduce
the memory footprint as a separate experiment and track the
errors. Subsampling is another method to reduce the memory
footprint of FWI that is often used in industry. The method is
set up so that the forward and adjoint computations continue
at the same time step as the reference problem. However, the
gradient computation is now not done at the same rate – it is
reduced by a factor f . We plot results for varying f .

Figure 19 shows some error metrics as a function of the
compression factor f .

Comparing Fig. 19 with 11, it can be seen that the pro-
posed method produces significantly smaller errors for simi-
lar compression factors.

5 Discussion

The results indicate that significant lossy compression can
be applied to the checkpoints before the solution is adversely
affected. This is an interesting result because, while it is com-
mon to see approximate methods leading to approximate so-
lutions, this is not what we see in our results: the solution er-
ror does not change much for large compression error. This
being an empirical study, we can only speculate on the rea-
sons for this. We know that in the proposed method, the ad-
joint computation is not affected at all – the only effect is
in the wave field carried over from the forward computation
to the gradient computation step. Since the gradient compu-
tation is a cross-correlation, we only expect correlated sig-
nals to grow in magnitude in the gradient calculation and
when gradients are stacked. The optimization steps are likely
to be error-correcting processes as well, since even with an
approximate gradient (atol > 10−4) the convergence trajec-
tory and the final results do not appear to change much –

Geosci. Model Dev., 15, 3815–3829, 2022 https://doi.org/10.5194/gmd-15-3815-2022



N. Kukreja et al.: Lossy checkpoint compression in FWI 3825

Figure 16. Convergence. As the last experiment, we run complete FWI to convergence (up to max 30 iterations). Here we show the conver-
gence profiles for atol = 10−1 (a) and atol = 10−2 (b) vs. the reference problem. The reference curve is so closely followed by the lossy
curve that the reference curve is hidden behind it.

Figure 17. The final image after running FWI atol = 10−1. It is
visually indistinguishable from the reference solution in Fig. 15.

Figure 18. Final image after running FWI atol = 10−2. It is visu-
ally indistinguishable from the reference solution in Fig. 15.

indicating that the errors in the gradient might be canceling
out over successive iterations. There is even the possibility
that these errors in the gradient act as a regularization (Tao
et al., 2019). This is likely since we know from Diffend-
erfer et al. (2019) that ZFP’s errors are likely to smoothen
the field being compressed. We also know from Tao et al.
(2019) that ZFP’s errors are likely to be (close to) normally
distributed with zero mean, which reinforces the idea that
this is likely to act as a regularizer. We only tried this with
the ZFP compression algorithm in this work. ZFP being a
generic floating-point compression algorithm, is likely to be
more broadly applicable than application-specific compres-
sors. This makes it more broadly useful for Devito, which
was the domain-specific language (DSL) that provided the

context for this work. Some clear choices for the next com-
pressors to try would be SZ (Di and Cappello, 2016), which
is also a generic floating-point compression library, and the
application-specific compressors from Weiser and Götschel
(2012); Boehm et al. (2016); Marin et al. (2016). A different
compression algorithm would change the following parame-
ters:

– the error distribution,

– the compression and decompression times, and

– the achieved compression factors.

Based on the experiments from Tao et al. (2019), we would
expect the errors in SZ to be (nearly) uniformly distributed
with a zero mean. It would be interesting to see the effect this
new distribution has on the method we describe here. If a new
compressor can achieve higher compression factors than ZFP
(for illustration) with less compression and decompression
time than ZFP, then it will clearly speed up the application
relative to ZFP. In reality, the relationship is likely to be more
complex, and the performance model from Kukreja et al.
(2019a) helps compare the performance of various compres-
sors on this problem without running the full problem. The
number of checkpoints has some effect on the error – more
checkpoints incur less error for the same compression set-
ting – as would be expected. Since we showed the benefits of
compression for inversion, the expected speedup does not de-
pend on the medium that varies between iterations from ex-
tremely smooth to very heterogeneous. While we focused on
acoustic waves in this work for simplicity, different physics
should not impact the compression factor due to the strong
similarity between the solutions of different wave equations.
However, different physics might require more fields in the
solution – increasing the memory requirements, while also

https://doi.org/10.5194/gmd-15-3815-2022 Geosci. Model Dev., 15, 3815–3829, 2022



3826 N. Kukreja et al.: Lossy checkpoint compression in FWI

Figure 19. Subsampling. We set up an experiment with subsampling as a baseline for comparison. Subsampling is when the gradient
computation is carried at a lower time step than the simulation itself. This requires less data to be carried over from the forward to the reverse
computation at the cost of solution accuracy, and thus it is comparable to lossy checkpoint compression. This plot shows the angle between
the lossy gradient and the reference gradient vs. the compression factor CF (a) and L2 norm of gradient error vs. the compression factor CF
(b) for this experiment. Compare this to the errors in Fig. 11 that apply for lossy checkpoint compression.

increasing the computational requirements. Whether this in-
crease favors compression or recomputation more depends
on the operational intensity of the specific wave equation
kernel. The choice of misfit function is also not expected to
impact our results since the wave field does not depend on
the misfit function. A more thorough study will, however, be
necessary to generalize our results to other problem domains
such as computational fluid dynamics that involve drastically
different solutions.

Our method accepts an acceptable error tolerance as input
for every gradient evaluation. We expect this to be provided
as part of an adaptive optimization scheme that requires ap-
proximate gradients in the first few iterations of the optimiza-
tion and progressively more accurate gradients as the solu-
tion approaches the optimum. Such a scheme was previously
described in Blanchet et al. (2019). Implementing such an
adaptive optimizer and using it in practice is ongoing work.

6 Conclusions and future work

In the preceding sections, we have shown that by us-
ing lossy compression, high-compression factors can be
achieved without significantly impacting the convergence or
final solution of the inversion solver. This is a very promis-
ing result for the use of lossy compression in FWI. The use of
compression in large computations like this is especially im-
portant in the exascale era, where the gap between computing
and memory speed is increasingly large. Compression can
reduce the strain on the memory bandwidth by trading it off
for extra computation. This is especially useful since modern
CPUs are hard to saturate with low operational intensity (OI)
computations.

In future work, we would like to study the interaction be-
tween compression errors and the velocity model for which
FWI is being solved, as well as the source frequency. We
would also like to compare multiple lossy compression algo-
rithms, e.g., SZ.

Geosci. Model Dev., 15, 3815–3829, 2022 https://doi.org/10.5194/gmd-15-3815-2022



N. Kukreja et al.: Lossy checkpoint compression in FWI 3827

Appendix A: Additional results

A1 Direct compression

Figure A1. Direct compression. On the left, L∞ norm of error vs. atol is shown. This plot verifies that ZFP respects the tolerance we set.
On the right, L1 norm of error vs. atol is shown. From the difference in magnitude between the L∞ plot and this one, we can see how the
error is spread across the domain.

A2 Gradient computation

Figure A2. Gradient computation. L∞ norm of gradient error vs. atol (a) and L2 norm of gradient error vs. atol are shown. It can be seen
that the error stays almost constant and very low up to a threshold value of 10−4.

https://doi.org/10.5194/gmd-15-3815-2022 Geosci. Model Dev., 15, 3815–3829, 2022



3828 N. Kukreja et al.: Lossy checkpoint compression in FWI

Code and data availability. The data used are from the overthrust
model, provided by SEG/EAGE (Aminzadeh and Brac, 1997). The
code for the scripts used here (Kukreja, 2020), the Devito DSL (Lu-
porini et al., 2020a), and pyzfp (Kukreja et al., 2020) is all available
online through Zenodo.

Author contributions. Most of the coding and experimentation was
done by NK. The experiments were planned between JH and NK.
ML helped set up meaningful experiments. JW contributed in fine-
tuning the experiments and the presentation of results. PHJK and
GJG gave the overall direction of the work. Everybody contributed
to the writing.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. This research was carried out with the support
of Georgia Research Alliance and partners of the ML4Seismic Cen-
ter. We would like to thank the anonymous reviewers for the con-
structive feedback that helped us improve this paper.

Financial support. This research has been supported by the En-
gineering and Physical Sciences Research Council (grant no.
EP/R029423/1) and the Department of Energy, Labor and Eco-
nomic Growth (grant no. DE-AC02-06CH11357).

Review statement. This paper was edited by Adrian Sandu and re-
viewed by Arash Sarshar and two anonymous referees.

References

Aminzadeh, F. and Brac, J.: SEG/EAGE 3-D Overthrust Mod-
els, Zenodo [data set], https://doi.org/10.5281/zenodo.4252588,
1997.

Aupy, G. and Herrmann, J.: Periodicity in optimal hi-
erarchical checkpointing schemes for adjoint com-
putations, Optim. Method. Softw., 32, 594–624,
https://doi.org/10.1080/10556788.2016.1230612, 2017.

Blanchet, J., Cartis, C., Menickelly, M., and Scheinberg, K.: Con-
vergence rate analysis of a stochastic trust-region method via su-
permartingales, INFORMS journal on optimization, 1, 92–119,
https://doi.org/10.1287/ijoo.2019.0016, 2019.

Boehm, C., Hanzich, M., de la Puente, J., and Ficht-
ner, A.: Wavefield compression for adjoint methods in
full-waveform inversion, Geophysics, 81, R385–R397,
https://doi.org/10.1190/geo2015-0653.1, 2016.

Chatelain, Y., Petit, E., de Oliveira Castro, P., Lartigue, G., and De-
four, D.: Automatic exploration of reduced floating-point repre-
sentations in iterative methods, in: European Conference on Par-
allel Processing, Springer, 481–494, https://doi.org/10.1007/978-
3-030-29400-7_34, 2019.

Cyr, E. C., Shadid, J., and Wildey, T.: Towards efficient
backward-in-time adjoint computations using data compres-
sion techniques, Comput. Method. Appl. M., 288, 24–44,
https://doi.org/10.1016/j.cma.2014.12.001, 2015.

Deutsch, P. and Gailly, J.-L.: Zlib compressed data for-
mat specification version 3.3, Tech. rep., RFC 1950, May,
https://doi.org/10.17487/RFC1950, 1996.

Di, S. and Cappello, F.: Fast error-bounded lossy HPC data com-
pression with SZ, in: 2016 IEEE Int. Parall. Distrib. P. (IPDPS),
730–739, IEEE, https://doi.org/10.1109/IPDPS.2016.11, 2016.

Diffenderfer, J., Fox, A. L., Hittinger, J. A., Sanders, G., and
Lindstrom, P. G.: Error analysis of zfp compression for
floating-point data, SIAM J. Sci. Comput., 41, A1867–A1898,
https://doi.org/10.1137/18M1168832, 2019.

Fehler, M. and Keliher, P. J.: SEAM phase 1: Challenges of
subsalt imaging in tertiary basins, with emphasis on deep-
water Gulf of Mexico, Society of Exploration Geophysicists,
https://doi.org/10.1190/1.9781560802945, 2011.

Griewank, A. and Walther, A.: Algorithm 799: revolve: an imple-
mentation of checkpointing for the reverse or adjoint mode of
computational differentiation, ACM T. Math. Software (TOMS),
26, 19–45, https://doi.org/10.1145/347837.347846, 2000.

Guasch, L., Agudo, O. C., Tang, M.-X., Nachev, P., and Warner, M.:
Full-waveform inversion imaging of the human brain, npj Digital
Medicine, 3, 1–12, https://doi.org/10.1038/s41746-020-0240-8,
2020.

Hückelheim, J., Kukreja, N., Narayanan, S. H. K., Lu-
porini, F., Gorman, G., and Hovland, P.: Automatic differ-
entiation for adjoint stencil loops, in: Proceedings of the
48th International Conference on Parallel Processing, 1–10,
https://doi.org/10.1145/3337821.3337906, 2019.

Jameson, A., Martinelli, L., and Pierce, N.: Optimum aerodynamic
design using the Navier–Stokes equations, Theor. Comp. Fluid
Dyn., 10, 213–237, https://doi.org/10.1007/s001620050060,
1998.

Knibbe, H., Mulder, W., Oosterlee, C., and Vuik, C.: Clos-
ing the performance gap between an iterative frequency-
domain solver and an explicit time-domain scheme for 3D
migration on parallel architectures, Geophysics, 79, S47–S61,
https://doi.org/10.1190/geo2013-0214.1, 2014.

Kukreja, N.: navjotk/error_propagation: v0.1, Zenodo [code],
https://doi.org/10.5281/zenodo.4247199, 2020.

Kukreja, N., Louboutin, M., Vieira, F., Luporini, F., Lange,
M., and Gorman, G.: Devito: Automated fast finite differ-
ence computation, in: 2016 Sixth International Workshop on
Domain-Specific Languages and High-Level Frameworks for
High Performance Computing (WOLFHPC), IEEE, 11–19,
https://doi.org/10.1109/WOLFHPC.2016.06, 2016.

Kukreja, N., Hückelheim, J., Lange, M., Louboutin, M.,
Walther, A., Funke, S. W., and Gorman, G.: High-
level python abstractions for optimal checkpointing
in inversion problems, arXiv preprint, 1802.02474,
https://doi.org/10.48550/arXiv.1802.02474, 2018.

Geosci. Model Dev., 15, 3815–3829, 2022 https://doi.org/10.5194/gmd-15-3815-2022

https://doi.org/10.5281/zenodo.4252588
https://doi.org/10.1080/10556788.2016.1230612
https://doi.org/10.1287/ijoo.2019.0016
https://doi.org/10.1190/geo2015-0653.1
https://doi.org/10.1007/978-3-030-29400-7_34
https://doi.org/10.1007/978-3-030-29400-7_34
https://doi.org/10.1016/j.cma.2014.12.001
https://doi.org/10.17487/RFC1950
https://doi.org/10.1109/IPDPS.2016.11
https://doi.org/10.1137/18M1168832
https://doi.org/10.1190/1.9781560802945
https://doi.org/10.1145/347837.347846
https://doi.org/10.1038/s41746-020-0240-8
https://doi.org/10.1145/3337821.3337906
https://doi.org/10.1007/s001620050060
https://doi.org/10.1190/geo2013-0214.1
https://doi.org/10.5281/zenodo.4247199
https://doi.org/10.1109/WOLFHPC.2016.06
https://doi.org/10.48550/arXiv.1802.02474


N. Kukreja et al.: Lossy checkpoint compression in FWI 3829

Kukreja, N., Hückelheim, J., Louboutin, M., Hovland, P., and
Gorman, G.: Combining Checkpointing and Data Compression
to Accelerate Adjoint-Based Optimization Problems, in: Eu-
ropean Conference on Parallel Processing, Springer, 87–100,
https://doi.org/10.1007/978-3-030-29400-7_7, 2019a.

Kukreja, N., Shilova, A., Beaumont, O., Huckelheim, J.,
Ferrier, N., Hovland, P., and Gorman, G.: Training on
the Edge: The why and the how, in: 2019 IEEE Int.
Parall. Distrib. P. Workshops (IPDPSW), IEEE, 899–903,
https://doi.org/10.1109/IPDPSW.2019.00148, 2019b.

Kukreja, N., Greaves, T., Gorman, G., and Wade, D.: navjotk/pyzfp:
Dummy release to force Zenodo archive, Zenodo [code],
https://doi.org/10.5281/zenodo.4252530, 2020.

Lindstrom, P.: Fixed-rate compressed floating-point ar-
rays, IEEE T. Vis. Comput. Gr., 20, 2674–2683,
https://doi.org/10.1109/TVCG.2014.2346458, 2014.

Lindstrom, P. G. and Administration, U. N. N. S.: FPZIP, Tech.
rep., Lawrence Livermore National Lab. (LLNL), Livermore, CA
(United States), https://doi.org/10.11578/dc.20191219.2, 2017.

Louboutin, M. and Herrmann, F. J.: Time compressively sam-
pled full-waveform inversion with stochastic optimiza-
tion, in: SEG Technical Program Expanded Abstracts
2015, 5153–5157, Society of Exploration Geophysicists,
https://doi.org/10.1190/segam2015-5924937.1, 2015.

Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P. A.,
Herrmann, F. J., Velesko, P., and Gorman, G. J.: Devito (v3.1.0):
an embedded domain-specific language for finite differences and
geophysical exploration, Geosci. Model Dev., 12, 1165–1187,
https://doi.org/10.5194/gmd-12-1165-2019, 2019.

Luporini, F., Louboutin, M., Lange, M., Kukreja, N., rhodrin,
Bisbas, G., Pandolfo, V., Cavalcante, L., tjb900, Gorman,
G., Mickus, V., Bruno, M., Kazakas, P., Dinneen, C., Mo-
jica, O., von Conta, G. S., Greaves, T., SSHz, EdCaunt,
de Souza, J. F., Speglich, J. H., Jr., T. A., Jan, Witte, P.,
BlockSprintZIf, gamdow, Hester, K., Rami, L., Washbourne,
R., and vkrGitHub: devitocodes/devito: v4.2.3, Zenodo [code],
https://doi.org/10.5281/zenodo.3973710, 2020a.

Luporini, F., Louboutin, M., Lange, M., Kukreja, N., Witte, P.,
Hückelheim, J., Yount, C., Kelly, P. H., Herrmann, F. J.,
and Gorman, G. J.: Architecture and performance of De-
vito, a system for automated stencil computation, ACM
Transactions on Mathematical Software (TOMS), 46, 1–28,
https://doi.org/10.1145/3374916, 2020b.

Marin, O., Schanen, M., and Fischer, P.: Large-scale lossy
data compression based on an a priori error estimator in
a spectral element code, Tech. rep., ANL/MCS-P6024-0616,
https://doi.org/10.13140/RG.2.2.34515.09766, 2016.

Peters, B., Smithyman, B. R., and Herrmann, F. J.: Projection
methods and applications for seismic nonlinear inverse prob-
lems with multiple constraints, Geophysics, 84, R251–R269,
https://doi.org/10.1190/geo2018-0192.1, 2019.

Symes, W. W.: Reverse time migration with opti-
mal checkpointing, Geophysics, 72, SM213–SM221,
https://doi.org/10.1190/1.2742686, 2007.

Tao, D., Di, S., Guo, H., Chen, Z., and Cappello, F.: Z-
checker: A framework for assessing lossy compression of
scientific data, Int. J. High Perform. C., 33, 285–303,
https://doi.org/10.1177/1094342017737147, 2019.

Tarantola, A.: Inversion of seismic reflection data in the
acoustic approximation, Geophysics, 49, 1259–1266,
https://doi.org/10.1190/1.1441754, 1984.

van Leeuwen, T. and Herrmann, F. J.: 3D frequency-domain seismic
inversion with controlled sloppiness, SIAM J. Sci. Comput., 36,
S192–S217, https://doi.org/10.1137/130918629, 2014.

Virieux, J. and Operto, S.: An overview of full-waveform inversion
in exploration geophysics, Geophysics, 74, WCC1–WCC26,
https://doi.org/10.1190/1.3238367, 2009.

Wang, Q., Moin, P., and Iaccarino, G.: Minimal repeti-
tion dynamic checkpointing algorithm for unsteady ad-
joint calculation, SIAM J. Sci. Comput., 31, 2549–2567,
https://doi.org/10.1137/080727890, 2009.

Weiser, M. and Götschel, S.: State trajectory compression for op-
timal control with parabolic PDEs, SIAM J. Sci. Comput., 34,
A161–A184, https://doi.org/10.1137/11082172X, 2012.

Witte, P. A., Louboutin, M., Luporini, F., Gorman, G. J.,
and Herrmann, F. J.: Compressive least-squares migration
with on-the-fly Fourier transforms, Geophysics, 84, 1–76,
https://doi.org/10.1190/geo2018-0490.1, 2019.

Zhang, Q., Iordanescu, G., Tok, W. H., Brandsberg-Dahl, S., Srini-
vasan, H. K., Chandra, R., Kukreja, N., and Gorman, G.: Hy-
perwavve: A cloud-native solution for hyperscale seismic imag-
ing on Azure, in: First International Meeting for Applied Geo-
science & Energy, 782–786, Society of Exploration Geophysi-
cists, https://doi.org/10.1190/segam2021-3594908.1, 2021.

Zhang, Y., Zhang, H., and Zhang, G.: A stable TTI reverse time
migration and its implementation, Geophysics, 76, WA3–WA11,
https://doi.org/10.1190/1.3554411, 2011.

https://doi.org/10.5194/gmd-15-3815-2022 Geosci. Model Dev., 15, 3815–3829, 2022

https://doi.org/10.1007/978-3-030-29400-7_7
https://doi.org/10.1109/IPDPSW.2019.00148
https://doi.org/10.5281/zenodo.4252530
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.11578/dc.20191219.2
https://doi.org/10.1190/segam2015-5924937.1
https://doi.org/10.5194/gmd-12-1165-2019
https://doi.org/10.5281/zenodo.3973710
https://doi.org/10.1145/3374916
https://doi.org/10.13140/RG.2.2.34515.09766
https://doi.org/10.1190/geo2018-0192.1
https://doi.org/10.1190/1.2742686
https://doi.org/10.1177/1094342017737147
https://doi.org/10.1190/1.1441754
https://doi.org/10.1137/130918629
https://doi.org/10.1190/1.3238367
https://doi.org/10.1137/080727890
https://doi.org/10.1137/11082172X
https://doi.org/10.1190/geo2018-0490.1
https://doi.org/10.1190/segam2021-3594908.1
https://doi.org/10.1190/1.3554411

	Abstract
	Introduction
	FWI and other similar problems
	Approximate methods
	Checkpointing
	Data compression
	Contributions

	Full waveform inversion
	Experimental setup
	Reference problem
	Error metrics

	Results
	Evolution of compressibility
	Direct compression
	Forward propagation
	Gradient computation
	Stacking
	Convergence
	Subsampling

	Discussion
	Conclusions and future work
	Appendix A: Additional results
	Appendix A1: Direct compression
	Appendix A2: Gradient computation

	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

