Articles | Volume 13, issue 9
https://doi.org/10.5194/gmd-13-4379-2020
https://doi.org/10.5194/gmd-13-4379-2020
Development and technical paper
 | 
18 Sep 2020
Development and technical paper |  | 18 Sep 2020

Development of a semi-Lagrangian advection scheme for the NEMO ocean model (3.1)

Christopher Subich, Pierre Pellerin, Gregory Smith, and Frederic Dupont

Related authors

CICE on a C-grid: new momentum, stress, and transport schemes for CICEv6.5
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024,https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
Using Icepack to reproduce ice mass balance buoy observations in landfast ice: improvements from the mushy-layer thermodynamics
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Adrienne Tivy, Joey Angnatok, François Roy, Gregory Smith, Frédéric Dupont, and Adrian K. Turner
The Cryosphere, 18, 1685–1708, https://doi.org/10.5194/tc-18-1685-2024,https://doi.org/10.5194/tc-18-1685-2024, 2024
Short summary
A new high-resolution Coastal Ice-Ocean Prediction System for the East Coast of Canada
Jean-Philippe Paquin, François Roy, Gregory C. Smith, Sarah MacDermid, Ji Lei, Frédéric Dupont, Youyu Lu, Stephanne Taylor, Simon St-Onge-Drouin, Hauke Blanken, Michael Dunphy, and Nancy Soontiens
EGUsphere, https://doi.org/10.5194/egusphere-2023-42,https://doi.org/10.5194/egusphere-2023-42, 2023
Preprint withdrawn
Short summary
A probabilistic seabed–ice keel interaction model
Frédéric Dupont, Dany Dumont, Jean-François Lemieux, Elie Dumas-Lefebvre, and Alain Caya
The Cryosphere, 16, 1963–1977, https://doi.org/10.5194/tc-16-1963-2022,https://doi.org/10.5194/tc-16-1963-2022, 2022
Short summary
The Regional Ice Ocean Prediction System v2: a pan-Canadian ocean analysis system using an online tidal harmonic analysis
Gregory C. Smith, Yimin Liu, Mounir Benkiran, Kamel Chikhar, Dorina Surcel Colan, Audrey-Anne Gauthier, Charles-Emmanuel Testut, Frederic Dupont, Ji Lei, François Roy, Jean-François Lemieux, and Fraser Davidson
Geosci. Model Dev., 14, 1445–1467, https://doi.org/10.5194/gmd-14-1445-2021,https://doi.org/10.5194/gmd-14-1445-2021, 2021
Short summary

Related subject area

Numerical methods
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary
Assessing the benefits of approximately exact step sizes for Picard and Newton solver in simulating ice flow (FEniCS-full-Stokes v.1.3.2)
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024,https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary

Cited articles

Arakawa, A. and Lamb, V. R.: A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations, Mon. Weather Rev., 109, 18–36, https://doi.org/10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2, 1981. a
Asselin, R.: Frequency Filter for Time Integrations, Mon. Weather Rev., 100, 487–490, https://doi.org/10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO;2, 1972. a
Bermejo, R. and Staniforth, A.: The Conversion of Semi-Lagrangian Advection Schemes to Quasi-Monotone Schemes, Mon. Weather Rev., 120, 2622–2632, https://doi.org/10.1175/1520-0493(1992)120<2622:TCOSLA>2.0.CO;2, 1992. a
Casulli, V. and Cheng, R. T.: Semi-implicit finite difference methods for three-dimensional shallow water flow, Int. J. Numer. Methods Fluid., 15, 629–648, https://doi.org/10.1002/fld.1650150602, 1992. a
Ducousso, N., Le Sommer, J., Molines, J. M., and Bell, M.: Impact of the “Symmetric Instability of the Computational Kind” at mesoscale- and submesoscale-permitting resolutions, Ocean Model., 120, 18–26, https://doi.org/10.1016/j.ocemod.2017.10.006, 2017. a
Download
Short summary
This work presents a semi-Lagrangian advection module for the NEMO (OPA) ocean model. Semi-Lagrangian advection transports fluid properties (temperature, salinity, velocity) between time steps by following fluid motion and interpolating from upstream locations of fluid parcels. This method is commonly used in atmospheric models to extend time step size, but it has not previously been applied to operational ocean models. Overcoming this required a new approach for solid boundaries (coastlines).