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Abstract. As resolutions of ocean circulation models in-
crease, the advective Courant number – the ratio between the
distance travelled by a fluid parcel in one time step and the
grid size – becomes the most stringent factor limiting model
time steps. Some atmospheric models have escaped this limit
by using an implicit or semi-implicit semi-Lagrangian for-
mulation of advection, which calculates materially conserved
fluid properties along trajectories which follow the fluid mo-
tion and end at prescribed grid points. Unfortunately, this for-
mulation is not straightforward in ocean contexts, where the
irregular, interior boundaries imposed by the shore and bot-
tom orography are incompatible with traditional trajectory
calculations.

This work describes the adaptation of the semi-Lagrangian
method as an advection module for an operational ocean
model. We solve the difficulties of the ocean’s internal
boundaries by calculating parcel trajectories using a time-
exponential formulation, which ensures that all parcel tra-
jectories remain inside the ocean domain despite strong ac-
celerations near the boundary. Additionally, we derive this
method in a way that is compatible with the leapfrog time-
stepping scheme used in the NEMO-OPA (Nucleus for Eu-
ropean Modelling of the Ocean, Océan Parallélisé) ocean
model, and we present simulation results for a simplified test
case of flow past a model island and for 10-year free runs of
the global ocean on the quarter-degree ORCA025 grid.

1 Introduction

Recent work by Smith et al. (2018) has shown that over the
medium term (up to 7 d), a coupled forecasting system in-
volving ocean, ice, and atmospheric models can significantly

improve forecasting skill over forecasts that extend initial
ocean and ice conditions over the atmospheric forecast pe-
riod. While this is an exciting development for the future
of numerical weather prediction, coupling adds a new di-
mension to the computational cost. Developing a deployable
forecast system, especially with regional or ensemble com-
ponents, requires exploiting every reasonable opportunity for
optimization. One straightforward optimization is to maxi-
mize the admissible time step of the ocean component, and
we intend to improve the ocean time step limit by implement-
ing a semi-Lagrangian advection module into the popular
NEMO-OPA (Nucleus for European Modelling of the Ocean,
Océan Parallélisé; Madec, 2008, version 3.1) model, used in
this coupled system. This module is intended as a drop-in re-
placement for the model’s other advection modules, and in
particular it does not interfere with NEMO’s time-stepping
algorithm (leapfrog).

1.1 Time step constraints in the ocean

A numerical model with an explicit time-marching scheme
must generally limit its time step to satisfy a Courant–
Friedrichs–Lewy (CFL) condition: information must not
propagate more than a discretization-defined maximum num-
ber of cells in a single step, leading to a maximum stable
Courant number. For systems such as the Euler equations (for
the atmosphere) or hydrostatic equations (as implemented by
NEMO-OPA), the information propagation speeds are con-
trolled by the admissible wave modes of the systems, which
become characteristic curves.

In the atmosphere, the most restrictive wave mode is
that corresponding to sound waves. These waves are fast
compared to atmospheric motions, and in response, atmo-
spheric models generally treat sound waves either implicitly
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or through subcycling, especially in the most restrictive ver-
tical direction. The second-most stringent restriction comes
from simple advection by winds in the upper atmosphere.
At the Canadian Meteorological Centre (CMC), the atmo-
spheric forecasting system (and atmospheric component of
the coupled forecasting system) uses the GEM (Global Envi-
ronmental Multiscale; Girard et al., 2014) model, which ad-
dresses this time step restriction through a semi-Lagrangian
treatment of advection (Robert, 1982).

In the ocean, the Boussinesq assumption eliminates sound
waves, but the model is left with the problem of surface grav-
ity waves. Here, NEMO-OPA takes a similar approach to
that used by atmospheric models for sound waves, by either
treating the surface pressure gradient in a time-implicit man-
ner (with a linearized free surface, used in this work) or by
subcycling. The ocean lacks any direct equivalent to the at-
mosphere’s strong upper-air winds, and so advection by the
background velocity and internal gravity wave modes com-
pete as the next most limiting factor for the maximum stable
time step. Lemarié et al. (2015) finds that the Courant num-
ber associated with vertical advection is more limiting than
that associated with internal (baroclinic) gravity waves at res-
olutions of 1/2◦, and the Courant number associated with
horizontal advection catches up with that of gravity waves at
resolutions of 1/4◦ and finer.

1.1.1 Grid stretching

In order to cover the entire ocean in a single, continuous do-
main, global NEMO-OPA model configurations typically use
grids based on the ORCA “tripolar” grid (Madec and Im-
bard, 1996; Murray, 1996). This grid is defined in the North-
ern Hemisphere by an elliptical coordinate system, where the
latitude-like coordinate is defined by ellipses with a shared
pair of foci and the longitude-like coordinate is defined by
the hyperbolas orthogonal to these ellipses. These coordi-
nates match continuously at the Equator to lines of latitude
and longitude in a Mercator projection. By placing the foci
of the ellipses on land, the grid contains no singularities in
the ocean domain.

Unfortunately, this placement causes an abundance of
small grid cells in the north polar region, especially in the
Canadian Arctic Archipelago. Figure 1 depicts this situation
at a nominal 1/4◦ resolution: the grid point spacing of 25–
30 km near the Equator falls to 3–4 km in the archipelago.
The areas in Fig. 1 with the narrowest grid spacing are also
shallow seas, with depths of 200 m or less and non-tidal cur-
rents of 15–30 cm s−1. This grid stretching is of particular
concern when adapted to regional models such as that of
Lemieux et al. (2016), which refine this grid while retaining
its tripolar structure to use conforming boundary conditions.

The coordinate system is also stretched in the vertical di-
rection. Using the z-level grid option of the NEMO-OPA
model, layers near the surface are spaced much more closely
together than layers nearer the ocean bottom, in order to pro-

Figure 1. Grid size, defined as min(e1t,e2t), on the ORCA025
grid. (a) In the global view, grid-point spacing gradually decreases
from the Equator towards the north and south poles. (b) In a detail
view of the north polar region, the grid is especially high resolution
in the southern portion of the Canadian Arctic Archipelago, with
grid-point spacing as low as 3 km.

vide adequate resolution of the mixing layer. This stretch-
ing enhances the impact of vertical advection on the vertical
Courant number, even if vertical-current magnitudes are low
in absolute terms; Lemarié et al. (2015) notes that vertical
advection provides a tighter bound on the time step than hor-
izontal advection.

Semi-Lagrangian advection alleviates both vertical and
horizontal Courant number restrictions by tracing fluid
parcels in a Lagrangian, fluid-following coordinate system.
This coordinate system is defined so that the end of each
time step the fluid parcels arrive on the prescribed compu-
tational grid, and the properties of the fluid parcels (in the
ocean setting, temperature, salinity, and horizontal velocity)
at the end of the time step (on the computational grid) are
found by interpolating the previous-step, gridded values to
the origin point of each parcel’s trajectory. This method pro-
vides an implicit treatment of advection, allowing time steps
with advective Courant numbers greater than those usually
permitted by explicit, Eulerian-form models.

In this work, we describe the initial implementation of a
semi-Lagrangian advection routine in NEMO-OPA, based on
the configuration of Smith et al. (2018). This configuration
uses a linear free surface where the vertical coordinate does
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not move in time, but we believe that the described method
can be generalized.

1.2 Existing work

In the atmosphere, semi-Lagrangian advection is a standard
technique (Robert, 1982) for the implicit treatment of ad-
vection, but especially at large scales the effects of topogra-
phy are relatively gentle. In particular, trajectory calculations
can proceed under the assumption that the fluid parcel does
not experience strong boundary-related acceleration. In the
ocean domain this assumption is strongly violated, particu-
larly for z-level vertical grids where the bathymetry changes
abruptly at lateral cell boundaries.

Some attempts have been made previously to incorporate
semi-Lagrangian advection into the ocean context. The work
of Casulli and Cheng (1992), which is used as part of the EL-
COM lake and estuary model (Hodges and Dallimore, 2006),
calculates parcel trajectories via a substepping approach,
where fluid parcel trajectories are integrated via an explicit
Euler method over many short steps per model time step. The
two-dimensional, unstructured shallow water model of Wal-
ters et al. (2007) takes a similar approach, where it also must
take at least one substep per element boundary traversed by
a fluid parcel.

In this work, we overcome this difficulty with an iterative
trajectory calculation which reduces in the limit to an im-
plicit trapezoidal rule. In addition, we also derive the semi-
Lagrangian advection scheme in a form which calculates ef-
fective advective tendencies, such that the advection routine
can operate as a “plug-in” scheme for models which tradi-
tionally use Eulerian fluxes. We apply this to the NEMO-
OPA model, and we believe this algorithm may be useful
when applied to other ocean models with a structured grid.

In exchange, however, the semi-Lagrangian advection for-
mulation departs from NEMO’s finite-volume interpretation
of its tracer and velocity components. By tracing infinites-
imal fluid parcels, semi-Lagrangian advection treats grid-
point values analogously to a finite-difference method, and
as a consequence the scheme does not naturally offer conser-
vation guarantees. This is not a primary concern for the short-
to medium-term forecasting applications that form the direct
target for this work, but extensions of the semi-Lagrangian
scheme to ensure conservation (Lauritzen, 2007) may be
needed before the technique is applicable to longer-term cli-
mate simulations.

Additionally, Leclair and Madec (2011) has developed an
“arbitrary Lagrangian–Eulerian” vertical coordinate scheme,
implemented in recent versions of NEMO. This scheme
splits vertical motions into fast (high temporal frequency)
and slow motions, and the former are treated by co-moving
vertical coordinate surfaces with a regridding step. This co-
ordinate system reduces spurious diapycnal mixing caused
by the high-frequency vertical motions, and its Lagrangian

treatment of these motions relaxes the corresponding stabil-
ity restriction.

1.3 Organization

We first introduce the time discretization of the semi-
Lagrangian scheme in Sect. 2, in order to develop a formu-
lation that remains compatible with the common leapfrog
scheme. In Sect. 3, we begin to spatially discretize the semi-
Lagrangian scheme by specifying the horizontal and vertical
interpolation operators, and in Sect. 4 we complete the dis-
cretization by defining the trajectory calculations. We present
preliminary numerical examples in Sect. 5, demonstrating
the stability of the advection scheme.

2 Time discretization

The first requirement of a semi-Lagrangian advection
scheme for the NEMO-OPA model is that it be consistent
with the model’s overall time-stepping approach: the advec-
tion scheme is but one component of the full model.

In version 3 of NEMO-OPA, non-diffusive, non-damping
processes such as advection are implemented via the leapfrog
scheme (Mesinger and Arakawa, 1976), where at each time
step a field f receives its new value at f A (f “after” the time
step) based on its value at the previous time step and forcing
terms, which are all evaluated on the reference grid xref. This
gives a schematic of

f A(xref)= f
B(xref)+ 21tF(xref), (1)

where f A is the field calculated at time t0+1t , f B is the field
evaluated at the known prior time t0−1t (“before”), f N is
the field at the provided time t0 (“now”), and F is the forcing
operator. The forcing operator includes advective processes
at the now time level, but diffusive, damping, and hydrostatic
pressure terms might be evaluated at either the before or after
time levels.

This is an Eulerian approach to fluid motion, where tracer
and momentum values are tracked along the fixed reference
grid at all times, and fluid flows through this grid.

2.1 Semi-Lagrangian advection

In contrast, the Lagrangian advection schemes consider the
fluid parcel to be the fundamental unit of discretization. In
this perspective, if f is a property of a fluid parcel that is con-
served along a trajectory1, it satisfies the continuous equa-
tions:

D
Dt
f (x(t))= FL(x(t)), (2)

1This is true for temperature, salinity, and momentum provided
the ocean is treated as an incompressible fluid. This assumption is
satisfied by NEMO-OPA’s adoption of the Boussinesq approxima-
tion.
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where D
Dt = ∂t +u · ∇ is the material derivative, and FL (La-

grangian right-hand side) contains all the same forcing terms
as F except those arising from tracer and momentum flux,
which are included inside the material derivative.

Ordinarily, Eq. (2) is discretized so that FL is evaluated
following the Lagrangian particles in the moving coordinate
frame x(t), satisfying the trajectory equation:

D
Dt

x(t)= u(x(t)). (3)

From an Eulerian point of view, Eq. (3) is a trivial identity
based on the definition of the material derivative, but from
the Lagrangian point of view, Eq. (3) must be solved to define
x over time.

One technique for solving Eqs. (2) and (3) is the two-time-
level implicit semi-Lagrangian method, used in the GEM at-
mospheric model (Girard et al., 2014), among others. Here,
the FL terms are evaluated with a trapezoidal rule, discretiz-
ing Eqs. (2) and (3) as

f A(xref)= f
N(xD)+

1t

2

(
FAL(xref)+FNL (x

D)
)

and (4a)

xref = xD
+
1t

2

(
uA(xref)+uN (xD)

)
. (4b)

The trajectory Eq. (4b) acts to implicitly define the paths of
the traced fluid parcels, where each location on xref is associ-
ated with a corresponding departure-point location xD. Over
the single time step, fluid parcels depart from xD (which in
general is not aligned with the grid) and arrive on the refer-
ence grid.

This off-grid, departure point evaluation of u and FL is
fundamental to Lagrangian and semi-Lagrangian methods,
and f N(xD) (FNL (x

D)) can be written more simply as f D

(FD
L) for “departure-point f (F)”. Neither the time-implicit

evaluations (generally) nor the off-grid evaluations (of non-
advective forcing) are compatible with the core structure
of NEMO-OPA, which considers advection to be just one
of many independent operators influencing the F term of
Eq. (1).

2.2 Reconciliation

Implementing semi-Lagrangian advection in NEMO-OPA
requires adopting as much of the framework of Eq. (1) as
possible, without changing the evaluation of non-advective
forcing terms. Effectively, the semi-Lagrangian advection
routine must ultimately supply a time trend that, from the
perspective of the leapfrog time-step algorithm, is indistin-
guishable from a conventional flux-form advection operator.

To effect this, consider Eq. (2) without forcing terms
(FL = 0). The function f is preserved following the flow, so
this gives the simply written

f A
= f D. (5)

This is approximated by taking one time step of Eq. (1)
(with only advective forcing Fadv), but the latter involves in-
tegrating over the whole interval from t0−1t to t0+1t .
Thus, we should identify f D (and the departure points gen-
erally) not with the now time level in the leapfrog scheme
but rather with the before time level. Doing so and equating
Eqs. (5) and (1) gives

f A
= f B

+ 21tFadv = f
B(xD), or (6)

Fadv =
1

21t
(f B
− f B(xD)). (7)

Equation (7) is prescriptive, and it gives the necessary
trend for the leapfrog algorithm. Evaluating it requires f
only at the already known, before time level and calculation
of the departure points xD. This calculation is further simpli-
fied by basing the departure points on the time-centered ve-
locities uN , and the exact algorithm for this calculation will
be discussed in more detail in Sect. 4.

2.3 Effects of the Asselin filter

To prevent decoupling of odd and even time steps (damp-
ing the computational mode), NEMO-OPA is typically con-
figured to use the Asselin time filter (Asselin, 1972), which
adds a small time damping proportional to ∂2

∂t2
f . Using the

notation of Shchepetkin and McWilliams (2005) adapted to
Eq. (1), the filter extends the time-marching scheme to the
sequence:

f A∗
← f B

+ 21tFN∗ (8a)

f N
← εf A∗

+ (1− 2ε)f N∗
+ εf B (8b)

f N∗
← f A∗ (8c)

f B
← f N. (8d)

Equation (8a) is the direct equivalent of Eq. (1), creating a
provisional after value f A∗. Equation (8b) applies the filter
(with a strength parameter ε) with this value and the previous
step’s provisional field to define a final now field, and finally
Eqs. (8c) and (8d) are “bookkeeping” steps to shift field la-
bels to become ready for the next time step. The forcing op-
erator FN∗ is evaluated based on the provisionally defined
fields.

In applying this filter with the semi-Lagrangian forcing,
Eq. (7) is oblivious to the presence of the filter or the differ-
ence between f N and f N∗. Substituting Eq. (7) into Eq. (8a)
and applying Eqs. (8c) and (8d) to Eqs. (8a) and (8b) gives
the update equation:(
f N∗

f B

)
←

(
f B(xD)

ε(f B(xD)+ f B(xref))+ (1− 2ε)f N∗(xref)

)
. (9)

In the case of one-dimensional advection by a constant ve-
locity u0, the trajectory calculation is trivial, and

xD
= xD

= xref− 21tu0. (10)

Geosci. Model Dev., 13, 4379–4398, 2020 https://doi.org/10.5194/gmd-13-4379-2020



C. Subich et al.: Semi-Lagrangian in NEMO 4383

Since Eq. (9) is linear, we can also take its Fourier decom-
position in space and consider only a single, arbitrary wave
mode, giving f = f̂ (t)exp ikx for a time-varying coefficient
f̂ . Applying this to Eq. (9) casts the update in a matrix form
as(
f̂N∗

f̂B

)
←

(
0 exp(−2iku01t)

1− 2ε ε(1+ exp(−2iku01t))

)(
f̂N∗

f̂B

)
. (11)

The time stability of this filter is then governed by
the eigenvalues of this matrix. Using the shorthand ω =

−ku01t , these eigenvalues are

λ1,2 =

1
2

(
ε(1+ e(2iω))±

√
ε2(1+ e(2iω))2+ (4− 8ε)e(2iω)

)
, (12)

and to leading order in ε, these eigenvalues have squared
magnitudes of

|λ1,2|
2
= 1− 2ε± 2ε cos(ω)+O(ε2), (13)

signifying stability (|λ| ≤ 1) for all values of ω and thus all
Courant numbers.

3 Interpolation

To perform the off-grid interpolations in Eq. (7) to find
f B(xD), this method fits a cubic polynomial to the under-
lying function. If the single departure point xd = (xd,yd,zd)

lies within2 (xa,xa+1)× (yb,yb+1)× (zc,zc+1) for integer
values of a, b, and c coinciding with grid-point locations,
the full interpolation stencil consists of the grid-index cube
i ∈ [a− 1,a+ 2], j ∈ [b− 1,b+ 2], and k ∈ [c− 1,c+ 2].

This grid cube contains up to 64 grid points where f (x)
might be defined (subject to boundary conditions), and build-
ing a complete interpolation stencil would be cumbersome
and inefficient. Instead, the interpolation procedure takes ad-
vantage of the tensor-product nature of the grid to separate
interpolation along each dimension:

To effect the one-dimensional interpolations in Algo-
rithm 1, we make use of the cubic Hermite polynomials

2If xd lies along an edge or corner of this interval, then at least
one of the resulting interpolations will be trivial. In that case, the
choice of which neighbouring interval xd lies “within” is arbitrary.

(Hildebrand, 1974). On the interval 0≤ χ ≤ 1, these poly-
nomials are

h00(χ)= 2χ3
− 3χ2

+ 1,

h01(χ)=−2χ3
+ 3χ2,

h10(χ)= χ
3
− 2χ2

+χ , and

h01(χ)= χ
3
−χ2,

(14)

and a function f (χ) defined on this interval is interpolated
via

f (χ)≈f (0)h00(χ)+ f
′(0)h10(χ)+ f (1)h01(χ)

+ f ′(1)h11(χ). (15)

Here, we prefer to use the cubic Hermite polynomials
over simple Lagrange polynomial interpolation because the
former choice allows greater freedom (via Eq. 15) in im-
plementation. If f ′ is approximated by a four-point finite-
difference stencil, then Eq. (15) reduces to Lagrange inter-
polation. However, we can also make other choices for f ′ to
impose desirable properties: restricting f ′ to have the same
sign as the discrete difference imposes a type of slope limit-
ing, and calculating f ′ through a three-point stencil provides
for continuous derivatives. These approaches are discussed
in more detail in the following sections.

Interpolation using the above algorithm involves appropri-
ately defining the interval to be scaled to [0,1] and approxi-
mating f ′ at the endpoints. Because of the high aspect ratio
of oceanic flows and the special character of vertical motion
in a stratified ocean, these approximations differ between the
horizontal and vertical interpolations.

3.1 Horizontal interpolation

In the horizontal, the interpolation in Eq. (15) can be directly
conducted in grid-index space. Even when the underlying
grid is mapped to the sphere, such as in the ORCA global
grid (Madec, 2008, chap. 16), the grid generally transitions
smoothly and slowly from point to point3. The physical tra-
jectory departure location xd (and yd) can be translated into
a fractional grid index offset by dividing by the appropri-
ate grid scale factor, available inside the NEMO-OPA source
code as one of e[12][tuv].

Achieving third-order accuracy inside Eq. (15) is possible,
but doing so requires an equally accurate estimate for f ′.
Unfortunately, interpolating successively in one dimension
using the above algorithm does not allow for precomputa-
tion of these derivatives: after the vertical interpolation step,
all of the function values need to be taken off grid, so any

3This is not necessarily the case, however, for grids that have
manually specified, non-smooth regions of enhanced resolution. In
such cases a more nuanced treatment of interpolation would be ad-
visable.
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precomputed derivatives would themselves require interpo-
lation. Instead, sufficiently accurate estimates of the deriva-
tive are available by applying a finite-difference formula to
the function values themselves.

3.1.1 Derivative estimates

For notational simplicity, begin with the last step of the above
algorithm where we have f (xd,yj ,zd) and would like to es-
timate f (xd,yd,zd). If yd lies between y0 and y1, then the
four-point interpolation stencil implies that we have com-
puted f (xd,yj ,zd) for j =−1,0,1,2. To emphasize that this
is now a one-dimensional interpolation problem, let g(j)=
f (xd,yj ,zd), such that f (xd,yd,zd)= g(j

′) for some j ′ ∈
[0,1]. In this domain, g′(0) and g′(1) can be approximated
by the finite differences:

g′(0)≈−
1
3
g(−1)−

1
2
g(0)+ g(1)−

1
6
g(2) and (16a)

g′(1)≈
1
6
g(−1)− g(0)+

1
2
g(1)+

1
3
g(2), (16b)

which then substitute for the appropriate derivatives in
Eq. (15).

These finite differences are exact expressions for the first
derivative for polynomials up to third order in j , and their use
essentially converts Eq. (15) to interpolation via Lagrange
polynomials. The Hermite polynomial form, however, allows
for an easier imposition of boundary conditions.

3.1.2 Boundary conditions

On the NEMO-OPA z-level grid, the lateral boundaries coin-
cide with u and v points (velocity points), which are spaced
halfway between t points (tracer points). Tracer points that
lie inside the land region are masked (tmask= 0) as are ve-
locity points that are at the edge of or within the masked re-
gion. This arrangement is illustrated for a sample region in
Fig. 2.

The physical interpretation of the boundary varies with
respect to the field being interpolated. For tracers, lateral
boundaries imply no-flux conditions for the purposes of ad-
vection, which in turn implies a zero derivative at the bound-
ary. The normal velocity (u with respect to a boundary along
the first grid dimension, v with respect to a grid boundary
along the second) is obviously constrained to zero by ge-
ometry to give a Dirichlet boundary condition, whereas the
tangential velocity can be set as free-slip, no-slip, or some
combination via a namelist entry. In the subsequent, we as-
sume that velocity has a free-slip boundary condition, with
boundary friction left for future work.

If a boundary occurs in the left portion of the interpolation
stencil, there are a total of seven cases (see Algorithm 2).

Figure 2. Grid point locations (letters) and land region (grey re-
gion) for a sample horizontal plane in the Gulf of Saint Lawrence,
between Nova Scotia and New Brunswick. The horizontal velocities
(u and v) are staggered with respect to temperature and salinity (t),
and the edge of the land area is coincident with the lines between
velocity-point locations.

For boundaries that occur in the right portion of the inter-
polation stencil, the values taken for ghost points are given
symmetrically.

The combination of “the grid point is at the boundary”
and “the boundary is of Neumann-type” is missing from Al-
gorithm 2. This construction is forbidden by the grid struc-
ture of NEMO-OPA, where tangential velocity is located one
half-cell away from a boundary.
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For two-dimensional interpolation, Algorithm 2 applies
independently to each dimension. When interpolating along
x, the points f (xd,yj ,zd) will each individually be either
in the ocean domain and valid or in the land domain and
masked, which provides the values necessary to compute
f (xd,yd,zd). This off-grid point itself must lie in water,
which imposes a strong requirement on the trajectory cal-
culations to be discussed in Sect. 4.

3.1.3 Slope limiting

As a final step, once values for the function and its derivative
at the interval endpoints are specified, the derivative values
are limited to help prevent new maxima in the interpolated
function. In particular, if g(0) is a local minimum (maxi-
mum) among itself, g(−1), and g(1), then g′(0) is set to zero
if the above procedure finds that it would be negative (posi-
tive). A similar procedure applies symmetrically for g′(1) if
g(1) is a relative extremum.

This limiting is milder than methods derived from
Bermejo and Staniforth (1992), which would strictly pre-
serve positivity for any j ′, but it effectively limits excursions
when j ′ is close to 0 or 1. Without such limiting, numerical
testing showed that semi-Lagrangian advection of tempera-
ture and salinity could cause weak instabilities near the coast-
line, where a locally extreme temperature or salinity could
become “trapped” near the coast and slowly amplified.

3.2 Vertical interpolation

Vertical motion in the NEMO-OPA model differs from hori-
zontal motion in a number of respects:

– Vertical gradients of temperature and density are much
stronger than typical horizontal gradients, especially
near the surface.

– Typical vertical grids used with NEMO-OPA are
strongly stretched, with a higher resolution near the sur-
face and a lower resolution in the deep ocean.

– Vertical flow is often oscillatory, where vertical motion
is driven by barotropic and baroclinic waves.

The horizontal interpolation described in Sect. 3.1 is third-
order accurate; with the provided one-sided formulas for
calculating the endpoint derivatives it reduces to a four-
point (cubic) Lagrangian interpolation process. However, the
smooth field implied by this interpolation process is only C0

continuous: f (xj − ε) “sees” f ′j calculated from f (xj−2)

to f (xj+1), whereas f (xj + ε) sees f ′j from f (xj−1) to
f (xj+2).

We do not find this to be a practical concern for hor-
izontal interpolation, since horizontal currents in most of
the ocean tend to be dominated by relatively steady quasi-
geostrophic motions. In the vertical, however, we found that
even low-amplitude oscillations caused by high-frequency

gravity waves would cause the temperature and salinity fields
to drift. The mechanism is that a fluid parcel displaced up-
wards by ε in one time step and downwards by ε in the next
time step would see an effective diffusion proportional to the
jump between the upward- and downward-looking vertical
derivatives.

To maintain global accuracy, we impose C1 continuity in
the vertical direction through an alternative treatment of the
vertical derivative. Instead of applying Eqs. (16), we treat the
physical depth (rather than grid index) as the relevant coor-
dinate and construct a centered estimate of the derivative.

For a function f (zn) defined at the zn levels, define
1f+ = f (zn+1)−f (zn), 1f− = f (zn)−f (zn−1), 1z+ =
zn+1−zn, and1z− = zn−zn−1. These differences combine
to give the estimated derivative:

fz(zn)≈
1

1z−+1z+

(
1z−

1z+
1f++

1z+

1z−
1f−

)
, (17)

which is accurate toO(1z2) for the derivative and accurately
reproduces quadratic functions of z. In the limiting case of
a constant 1z (equispaced vertical levels), this formula re-
duces to the classic centered difference.

Because vertical interpolation comes first in Algorithm 1,
Eq. (17) need be evaluated only at grid points, and in fact it
may be precomputed for the entire grid for a given function
and time step. This is a key advantage of placing vertical
interpolation first in the interpolation sequence, and it avoids
duplication of work.

Whereas interpolation near the horizontal boundaries is
complicated by the many combinations of grid staggering
and physical boundary conditions, interpolation near the ver-
tical boundaries is much simpler. On the NEMO grid, tracers
and horizontal velocities lie along the same vertical level, and
these levels are staggered one half-cell away from the bound-
aries. Likewise, the natural vertical boundary condition for
both tracer and horizontal velocity fields is a no-flux bound-
ary condition; NEMO-OPA models boundary-layer friction
in another module. Interpolation near the boundaries then
proceeds in two steps.

The first step is to define fz at the top and bottom points in
the water column, for which the central difference formula
of Eq. (17) is not directly valid. Here, we approximate the
physical no-flux condition through a fictitious ghost point
such that 1f− = 0 at the top boundary and 1f+ = 0 at the
bottom boundary, with the respective 1z matching the layer
thickness (e3t).

The second step is to define how Eq. (15) applies to the in-
terval between the grid level and the physical boundary. Here,
the no-flux boundary conditions reduce to even symmetry,
and the derivative at the ghost points is the negative of the
vertical derivative calculated for the in-boundary point. Near
the free surface, if the interpolation point is above the level of
the free surface (above z= 0), then it is clamped to the sur-
face itself. Near the ocean bottom, if the interpolation point
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is below the level of the ocean bottom (below z= zmax) then
the point is masked and is treated as an “inside the boundary”
point for the purposes of horizontal interpolation above.

3.2.1 Treatment of partial cells

Over most of the domain, this interpolation works well. Al-
though there is no guarantee of positivity in the derivative
formulation of Eq. (17), overshoots and the consequent gen-
eration of spurious maxima are limited. For the tests pre-
sented in Sect. 5, there was no need for slope limiting for
vertical interpolation over most of the domain.

One exception to this rule is at the bottom boundary. Here,
vertical levels are spaced far apart, but to better represent
the ocean bottom the z-level grid of NEMO-OPA uses a
partial cell configuration (Madec, 2008, sec. 5.9). For wa-
ter columns where the bottom-most cell is much deeper than
its neighbours, a local (small) upwelling can cause an over-
shoot of temperature or salinity that spuriously increases the
local density but does not diminish the upwelling. Over time,
the maxima-increasing trend can accumulate and cause some
points at the bottom boundary to reach implausibly cold tem-
peratures (below −10◦C, for example) or high salinities. In
the absence of explicit horizontal diffusion (which would
mix this maximum into more dynamically active regions),
these spurious maxima do not generally corrupt the flow, al-
though they obviously would corrupt whole-ocean (or whole-
level) statistics such as average or extreme temperatures.

Near these boundary cells, vertical limiting is imple-
mented in the simplest possible way: the interpolation of
Eq. (15) is replaced with a constant, such that f (z)= f (zk)
over the interval from zk downwards to the physical bound-
ary.

Implementing this limiting over the whole bottom level is
possible, but that is far stronger than necessary and leads
to erroneous diffusion along gentle slopes. When the bot-
tom layer is composed of partial cells of varying thickness,
even interpolation along a horizontal plane (that is, without
changing physical depth) requires vertical interpolation in
grid space to find that constant level in adjoining columns.
Imposing vertical limiting along the whole bottom level ef-
fects undesired horizontal diffusion, even though the prob-
lem solved by limiting is observed when adjoining cells have
large relative thickness variations.

As a compromise between these two errors, we only apply
the described limiting to vertical interpolation for cells at the
bottom boundary which have a layer thickness greater than
1.75 times that of their “thinnest” neighbour.

This exact threshold is empirical, and other grids might
require a retuning of this parameter. Ideally, the grid genera-
tion itself would avoid abrupt transitions in cell-layer thick-
nesses, but adding such a restriction would make this advec-
tion scheme useless as a drop-in replacement for the standard
advection routines of NEMO-OPA.

3.3 A numerical example

As a simple numerical example, consider the case of a tracer
being advected in a rectangular, two-dimensional domain by
an internal wave and a background current. This tracer satis-
fies the advection equation

∂σ

∂t
− u(x,z, t)

∂σ

∂x
−w(x,z, t)

∂σ

∂z
= 0 (18)

for some prescribed velocity field (u,w).
If this tracer field σ(x,z, t) would be a function of z alone,

i.e. σ̄ (z), if not for the wave motion, then its motion is ana-
lytically given by

σ(x,z, t)= σ̄
(
z− η(x− (c+ u0)t,z)

)
, (19)

where η(x,z) is the isopycnal displacement, u0 is the x-
directed background current (uniform in z), and c is the phase
speed of the wave. Following Turkington et al. (1991), a
streamfunction defined as

ψ(x,z, t)= cη(x,z, t)− u0z (20)

gives velocities

u=−ψz (21a)
w = ψx, (21b)

which are exact solutions of Eq. (18) for σ(x,z, t).
To give an internal wave that respects no-flux conditions

at the top and bottom of the domain, we set

η(x,z, t)= Acos
(
k(x− (c+ u0)t)

)
sin(mz), (22)

where k and m are horizontal and vertical wavenumbers re-
spectively, and A is the wave amplitude. For a domain of
size Lx in the horizontal (periodic) and Lz in the verti-
cal, k = 2π/Lx and m= π/Lz give the lowest internal wave
mode, used here.

In dimensional units, we take the model domain to be a
channel Lx = 1 km long and Lz = 100 m deep with a back-
ground current of u0 = 1ms−1, and we set c =N/

√
k2+m2

based on a mean buoyancy frequency ofN = 0.03s−1, which
corresponds to a 1 % density change from the surface to the
bottom of the channel. With a wave amplitude of A= 10 m,
the maximum wave-induced current is about 10 % of u0, and
the phase speed is c ≈ 0.94ms−1.

In order to represent the pycnocline found in many ocean
waters, we choose4 σ̄ (z)= tanh

( 1
2 −

1
10zL

−1
y

)
.

4Since this section tests advection alone, the scaling of σ is not
dynamically relevant. In fact, the wave structure of Eq. (22) cor-
responds to an exact internal mode of the incompressible Navier–
Stokes equations for a linear stratification.
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The domain is discretized by Nx ×Ny points, defined as

xi =−
Lx

2
+Lx

i− 0.5
Nx

and (23a)

zj =
Lz

2

(
1+

αj +α
3
j

2

)
, (23b)

where i = 1,2, · · ·,Nx , j = 1,2, · · ·,Nz, and

αj = 2
j − 0.5
Nz

− 1. (23c)

This implements a stretched vertical coordinate that in-
creases the vertical resolution in the vicinity of the pycno-
cline.

3.3.1 Semi-Lagrangian advection

In integrating this system with semi-Lagrangian advection,
the leapfrog method reduces to an Euler method of twice
the time step because there is no external forcing. The time-
discrete equation is

σ(xi,zj , t + 21t)= σ(xd(ij),zd(ij), t), (24)

where (xd(ij),zd(ij)) is the departure point of the trajectory
that arrives at the grid point (xi,zj ), and the off-grid evalua-
tion of σ proceeds via the interpolation processes described
earlier without slope limiting.

The departure points are given by the trapezoidal rule5

with a time-centered evaluation of velocity:

xi − xd(ij) =1t
(
u
(
xi,zj , t +1t

)
+ u

(
xd(ij),zd(ij), t +1t

))
(25a)

zj − zd(ij) =1t
(
w
(
xi,zj , t +1t

)
+w

(
xd(ij),zd(ij), t +1t

))
, (25b)

where the velocities are evaluated exactly via Eq. (21). The
overall system Eq. (25) is solved via simple iteration, with an
initial guess given by setting (x,z)d(ij) = (x,z)ij .

This algorithm is stable for large time steps, so we tested
this system for time steps corresponding to Courant numbers
of 0.2 and 2.1, with spatial grid resolutions between 40× 4
and 2560× 256. The final integration time was chosen to be
tfin = 5Lx/u0, which allowed the wave to propagate through
the domain several times. Since the exact solution is analyt-
ically known, we recorded the maximum error experienced
over the integration, and error convergence rates are shown
in Fig. 3.

5The trajectory calculation scheme of Sect. 4 could be used in-
stead, but since the overall trajectory lengths are small compared
to the length scales of the velocity field (Lx and Lz), that method
would give equivalent results to the trapezoidal rule.

3.3.2 Flux-form advection

As a control, we also integrate this system in flux form, i.e.
σt −∇ · (uσ)= 0, via centered differences, with σ evaluated
at the midpoints between grid cells via a simple average,
matching the central difference tracer advection scheme in
NEMO-OPA.

The velocity field given by Eq. (20) is divergence free, so
this form of the equation is pointwise equivalent to Eq. (18).
However, this no longer holds after discretization. In order
to eliminate the divergence error, the velocity field is de-
fined by creating the streamfunction at the staggered points
(xi+1/2,zj+1/2) and defining discrete velocities u and w via
the discrete equivalents to Eq. (21). With this modification,
the discrete flux-form operator is equivalent to a discrete ad-
vection equation.

After leapfrog discretization in time, the discretized equa-
tion is
σ(xi,zj , t +1t)= σ(xi,zj , t −1t)

+ 2
1t

1x1zj

(1zj
2

(
u(xi−1/2,zj , t)(σ (xi−1,zj , t)

+ σ(xi,zj , t))

− u(xi+1/2,zj , t)(σ (xi,zj , t)+ σ(xi+1,zj , t))
)

+
1x

2

(
w(xi,zj−1/2, t)(σ (xi,zj−1, t)+ σ(xi,zj , t))

−w(xi,zj+1/2, t)(σ (xi,zj , t)+ σ(xi,zj+1, t))
))
,

(26)

where1zj = zj+1/2−zj−1/2 =
1
2 (zj+1−zj−1). For the first

time step, a single Euler step is taken of size 1t with time-
centered velocities (t =1t/2).

As usual, this leapfrog time-stepping algorithm is only sta-
ble to a maximum Courant number of 1. With this staggered
grid and vertical grid stretching, the Courant number can be
defined by

Cij =1t
(max(ui+1/2,j ,0)−min(ui−1/2,j ,0)

1x

+
max(wi,j+1/2,0)−min(wi,j−1/2,0)

1zj

)
. (27)

For the mode-one internal wave with background current
used in this section, the maximum Courant number is reached
at the top and bottom of the domain (where w = 0), so
max(C)=max(u)/1x.

We present results for Eq. (26) at a maximum Courant
number of 0.2, chosen to give a “small time step” for later
comparison with semi-Lagrangian results. The results are in-
sensitive to the time step within the stable range, with less
than 5 % change in maximum-norm error over the range
0.2≤max(C)≤ 0.99.

3.3.3 Results

The error over time of this test case is shown in Fig. 3. As
expected, each method achieves second-order convergence.
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Figure 3. (a) Maximum L2 error, i.e. (
∫
(σ−σex)

2dA/(LxLz))1/2,
over the integration period for the test case of Sect. 3.3 vs. resolu-
tion for flux-form Eulerian advection with a Courant number of 0.2
(solid blue), semi-Lagrangian advection with a Courant number of
2.1 (dashed red), and semi-Lagrangian advection with a Courant
number of 0.2 (dash-dotted green), showing second-order conver-
gence (line). (b) L2 error over time for these algorithms, on the
2560× 256 grid.

For the Eulerian advection control case, this is governed
by its two-point central difference scheme. For the semi-
Lagrangian cases, the dominant contribution to the error field
comes from the lower-order vertical interpolation. While the
semi-Lagrangian method has a higher order of accuracy for
horizontal motion, here the problem is constructed such that
horizontal and vertical motions are of equal importance.

As is often observed with semi-Lagrangian methods, the
overall error of the scheme is somewhat lower for the high-
CFL case than for the low-CFL case. The interpolation used
to evaluate σ off the grid introduces error with each interpo-
lation, and the overall contribution of this error necessarily
scales in proportion to the number of interpolations and in-
versely with the time step size.

Overall, this simplified test case supports the conclusion
that the semi-Lagrangian treatment of advection is a viable
replacement for flux-form advection. The semi-Lagrangian
method achieves similar (for low-CFL flows) or better (for
high-CFL flows) error, and it remains stable for CFL values
substantially larger than unity.

4 Trajectory calculation

With the mechanism for evaluating the f B(xD) term in
Eq. (7) established in Sect. 3, the remaining half of the semi-
Lagrangian advection algorithm is the estimation of the xD

departure points. This corresponds to the positions at the be-
fore time level (t0−1t) of those fluid parcels that will arrive
on the reference grid xref the after time level (t0+1t). One
such upstream location exists for each valid grid location,
so in general xd needs to be estimated for each t, u, and v

point on the NEMO-OPA grid to provide for (respectively)
the tracer and velocity advective forcings.

In general, calculation of the departure points is an implicit
and nonlinear problem, requiring knowledge of the flow ve-
locity at every subgrid place and time between the before and
after time levels, before the flow at the latter has been com-
puted. To make this problem tractable, we make a series of
simplifying assumptions.

The first such assumption is to freeze the flow, such that
trajectories are computed based on strictly the now veloci-
ties (that is, u, v, and w at the intermediate time level). This
is consistent with the underlying leapfrog time-stepping al-
gorithm and the other advection schemes in NEMO-OPA,
where most fluxes are computed instantaneously with respect
to the same now velocities. In physical terms, this constrains
fluid parcels to follow paths based on estimated, instanta-
neous streamlines. In exchange, this decouples the trajectory
computation from the after velocities and makes the process
time explicit, which eliminates what would otherwise be a
need to iterate the entire time-stepping process.

4.1 Exponential integration

Ordinarily, the next assumption in the trajectory calculation
is to approximate the particle paths, either by a straight line
or by a low-degree polynomial. In this case, the Lagrangian
equation

dx

dt
= v(x) (28)

is integrated with an approximate quadrature. Using the
trapezoidal rule gives the approximation

xa− xd =1t(v(xd)+ v(xa)), (29)

where xa = x(t0+1t) is the on-grid “arrival” point of the
fluid parcel. This approximation is second-order in time, and
it results in an iterative method where v(xd) is interpolated,
leading to a revised estimate of xd.

Unfortunately, this approximation is not suitable for tra-
jectory calculations in the general ocean because it does not
appropriately handle flow near a solid boundary. Consider
the case of two-dimensional flow in the positive half-plane,
where fluid velocities are prescribed as (u,v)= (x,−y).
This forms an analytic continuation of flow near a boundary
along the line x = 0.

Now, apply equation Eq. (29) to the fluid parcel that arrives
at xa = (1,0). Along this streamline, v = 0 by inspection so
this equation reduces to one dimension and has the solution

xd =
1−1t
1+1t

. (30)

For small values of 1t , this solution is reasonable. For
1t > 1, however, this solution leads an unphysical trajectory,
where the departure point is found to lie in the left half-plane
(and thus lies inside the boundary).
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The failure here is a specific example of Eq. (29) failing
the Lipschitz trajectory-crossing criterion (Smolarkiewicz
and Pudykiewicz, 1992), which requires ux1t < C ≈ 1. The
trajectory implied by Eq. (30) crosses the trajectories of fluid
parcels that arrive at xa = (1±ε,0), and the resulting advec-
tion loses its physical meaning.

This trajectory-crossing criterion is a physical limit for so-
lutions which develop discontinuous shocks, such as those
that can arise in simulations of the nondispersive, nonlinear
shallow water equations. However, these shocks are not typ-
ical of three-dimensional hydrostatic flows in the ocean, and
they are certainly not universally seen at solid boundaries.
The true trajectories of fluid parcels, if evaluated exactly, do
not cross (and do not have origins inside the land domain), so
a better approach is to directly integrate Eq. (28) without ap-
proximating the time derivative. Here, this one-dimensional
system reduces to the ordinary differential equation

xt = x, (31)

with the boundary condition x(t0+1t)= xa = 1. The solu-
tion to this equation is obviously of the form x(t)= C exp(t)
for some constant C, and applying the boundary condition
gives x(t)= exp(t−(t0+1t)) and a departure point of xd =

exp(−21t).
This solution is very well behaved, lying exclusively in

the right half-plane and asymptotically approaching the wall
at x = 0 as 1t→∞. This approach works when that of
Eq. (29) fails because the direct integration properly captures
the exponential-in-time path of the fluid parcel.

A generalization of this approach forms the basis for tra-
jectory calculation in this work. Since the solution of Eq. (28)
is not analytically possible with an arbitrary velocity field,
we exactly solve Eq. (28) based on an approximate, linearly
varying velocity field. This is similar to an approach dis-
cussed by Walters et al. (2007), where within a single, two-
dimensional finite-element cell the linear velocity form is ex-
actly given by the underlying discretization rather than an
approximation.

Assume that an arbitrary fluid parcel arrives at xa and that
we know the velocity there (va) and at another point v(xc)=

vc. We know that the fluid parcel must arrive at xa travelling
in the direction of v̂a = va/αa , with αa = ‖va‖. Then vc can
be written in terms of this direction as vc = αcv̂a+βcn̂a , for
scalar αc and βc and some n̂a normal to v̂a .

This forms a two-dimensional system spanned by vectors
v̂a and n̂a . If we additionally make the assumption that v(x)

varies linearly in this plane, we can construct a simplified,
two-dimensional coordinate system to solve Eq. (28). Here,
the origin of the coordinate system corresponds to xa, and the
rotated coordinates x̂ and ŷ align with v̂a and n̂a respectively.
This implies that xc projects onto the point (xc ·v̂a,xc ·n̂a)=
(xc,yc). The linearly interpolated velocities lie strictly in this
plane, so the equations of motion for a fluid parcel are

xt = αa + (αc−αa)
x

xc
, and (32a)

yt = βc
x

xc
, (32b)

subject to the boundary condition that x(t0+1t)= y(t0+
1t)= 0. Equation (32a) can be solved first, and applying the
boundary condition x(t0+1t)= 0 gives

x(t)=
αaxc

αc−αa

(
exp

(αc−αa
xc

(t − (t0+1t))
)
− 1

)
. (33a)

Applying this to Eq. (32b) along with its boundary condition
y(t0+1t)= 0 gives

y(t)=
βcαa

αc−αa

( xc

αc−αa

(
exp

(αc−αa
xc

(t − (t0+1t))
)
− 1

)
− (t − (t0+1t))

)
. (33b)

When the along-trajectory acceleration is small (|(αc−
αa)1t/xc| � 1), Eq. (33) reduces to a trapezoidal rule with
second-order accuracy in time.

4.1.1 Trajectory iteration

Evaluating Eq. (33) at t = t0−1t and re-projecting the co-
ordinates to the grid forms the basis of an iterative algorithm
for trajectories.

This algorithm is ideally suited to cases that look like flow
away from a stagnation point, where a fluid parcel is accel-
erating as it reaches the grid point at t0+1t . In those cases,
the (αc−αa)/xc terms will be positive, and the exponential
terms will limit the size of the trajectory for finite 1t . In
the opposite case, however, the exponential terms will tend
to lengthen the trajectory. For large 1t or large deceleration,
this effectively demands that Eqs. (7)–(33) extrapolate be-
yond the velocity sample at xc, a potential source of instabil-
ity.

To remedy this, a limiter is added to step 3 of Algorithm 3,
whereby x(t0− 21t) is constrained to the greater6 of that

6Since the rotated x axis is aligned with the fluid velocity at xa,
xc is generally negative in the rotated frame.
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from Eq. (33a) and−21tmax(αa,αc). When limiting is nec-
essary, it effectively reduces the time step used for the trajec-
tory iteration, so for consistency a revised 1t ′ is computed
by inverting Eq. (33a) with the limited x′c, which is then used
to evaluate Eq. (33b).

4.2 Underrelaxation and land boundaries

While the construction of Algorithm 3 guarantees that trajec-
tories cannot converge to an out-of-boundary point, there are
no guarantees that the algorithm remains in boundary dur-
ing the iteration process or that the iteration converges. The
problem of a divergent or oscillatory iteration is more likely
when the underlying velocity field does not resemble the lin-
early approximated velocity field integrated by Eq. (7), as
then each iteration might result in very different approxima-
tions.

Addressing the latter point first, this work heuristically
applies underrelaxation when Algorithm 3 is slow to con-
verge. After 10 local iterations, step 3 is replaced by xc←
1
2 (xc+ x′c); after 20 iterations the right-hand side becomes
1
4 (3xc+ x′c), and after 30 iterations the right-hand side be-
comes 1

8 (7xc+ x′c). At 40 iterations, the trajectory is trun-
cated by ending the iteration with the first in-domain point
returned from the process; this ensures some sort of advec-
tion even if the iterative process enters a limit cycle.

This underrelaxation also addresses the possibility that xc
might lie outside of the ocean domain. If xc is masked, then
there is no valid velocity to provide via off-grid interpolation,
so instead of evaluating Eq. (33), x′c is set to xa in step 3 of
Algorithm 3. This combines with the underrelaxation after 10
iterations to reduce the trajectory length until an in-boundary
point is found, whereupon iteration resumes normally.

These values for iteration counts and underrelaxation pa-
rameters are conservatively specified. In the numerical tests
discussed in this work, the vast majority of trajectories con-
verge after one or two iterations, without needing to resort to
underrelaxation or trajectory truncation.

4.3 Velocity interpolation

The trajectory algorithm requires the off-grid interpolation of
velocities at each iteration. In principle, these velocities can
be interpolated using the interpolation process of Sect. 3. Do-
ing so would be ideal for ultimate consistency with the final
off-grid interpolation, but this process is also computation-
ally expensive. In practice, it is more efficient to evaluate the
off-grid velocity field in step 2 of Algorithm 3 using trilinear
interpolation; doing so causes little change in the numerical
test cases in this work.

Trilinear interpolation proceeds with the same order of op-
erations as Algorithm 1: velocities are first interpolated in
depth to the (x,y) corners of the grid box at the off-grid level,
then along the x direction, and finally along the y direction.
Each individual interpolation respects the relevant boundary

Figure 4. Illustration of modified linear interpolation near corners.
In (a), linear interpolation results in an interpolated velocity field
that does not respect the boundary conditions along 0< y < 0.5 and
a discontinuous interpolated field at 0.5< y < 1. In (b), modifying
the linear interpolation with a corner solution results in a field that
respects the boundary condition.

condition, so for example the u velocity is considered to re-
flect symmetrically around a boundary in y and z but is con-
strained to zero at a boundary in x.

One complication of linear interpolation, however, is that
the velocity points are staggered by half a cell with respect to
the physical boundary. In two dimensions, if the tracer point
T (0,0) (to use grid-cell coordinates for the tracer grid de-
noted T ) is a land point but T (0,1), T (1,0), and T (1,1)
are all ocean points, then u-velocity point U(0,0) (denot-
ing the u-velocity grid as U ), halfway between T (0,0) and
T (1,0), lies along the boundary. The boundary continues
to U(0,0.5), whereupon U(0,0.5)–U(0,1) lies inside the
ocean. This violates a basic assumption of linear interpola-
tion, that the velocity should vary smoothly (and approxi-
mately linearly) within the u cell.

This causes two problems for trajectory computation. The
first problem is that after repeated one-dimensional interpo-
lation, the boundary condition is no longer necessarily re-
spected by the interpolated velocity, which can result in a
trajectory iteration that “pushes” the departure point into the
wall, causing non-convergence. The second problem is that
while the interpolation process guarantees continuity of the
interpolated field at the cell corners, the boundary conditions
can cause large discontinuities along the cell edges, again re-
sulting in a convergence failure. In the above example, the
interpolated velocity at U(+ε,0.6) would be influenced by
both U(0,1) and the zero velocity at the physical boundary
of U(0,0), but the interpolated velocity at U(−ε,0.6) would
be influenced by U(0,1) and its reflection at a ghost point.
These problems are illustrated in Fig. 4a.

The solution to both of these problems is to blend the
linearly interpolated function with a corner singularity so-
lution. A bilinear function is a solution to Laplace’s equation
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(∇2f = 0), so it is reasonable to consider corner solutions
that are also solutions to Laplace’s equation.

Without loss of generality, consider a grid cell defined
by (x,y) ∈ [0,1]2, such that there is a solid boundary along
(x = 0,y < 0.5) as depicted in Fig. 4. Treating the bound-
ary as an infinite half-plane, with f (0,y)= 0 for y < 0.5
and f (0,y)= f (0,1) for y > 0.5, the “corner” solution to
Laplace’s equation is

fcorner(x,y)=
f (0,1)

2

(
1+ cos

(
tan−1(y− 0.5

x

)))
, (34)

while bilinear interpolation would give

fbilinear(x,y)=(1− x)yf (1,0)+ x(1− y)f (0,1)

+ xyf (1,1). (35)

These two solutions are blended together, with Eq. (34)
taking precedence along the solid boundary (x = 0 and 0≤
y ≤ 0.5) and Eq. (35) taking precedence along the x = 1 and
y = 1 boundaries of the cell. This gives

fblend(x,y)=σ(x,y)fbilinear(x,y)

+ (1− σ(x,y))fcorner(x,y), (36)

where σ =max(1− x,2(y− 0.5)).
The blended function exactly respects the solid boundary

condition, and the discontinuity at the cell edges is signif-
icantly reduced. Blended functions for other configurations
of the solid wall are given by applying the appropriate reflec-
tions and rotations to Eq. (36).

5 Results

5.1 Flow past an island

To demonstrate the impacts of semi-Lagrangian advection on
a simple test case with a lengthened time step, we first present
the quasi-two-dimensional test case of isothermal flow past
an interposed island.

This test case consists of a 280× 70× 3 point grid, with
grid resolution 1x =1y = 5m and 1z= 10m. A 50m×
50m region (10 points×10 points) is masked as land in the
middle of the domain. The inflow boundary condition is set
to u= 0.03ms−1, v = 0; this was also imposed throughout
the domain as an initial condition. The reference frame was
also irrotational, with a Coriolis parameter of 0.

Relevant namelist parameters are given in Table 1, with pa-
rameters that differ between the control and semi-Lagrangian
runs highlighted. The control run used flux-form velocity ad-
vection7 via the QUICKEST scheme (Leonard, 1979, 1991),
whereas the semi-Lagrangian run used semi-Lagrangian ad-
vection of momentum in flux form as described in Sects. 3

7This choice of velocity advection provided the best results for
the control run, of the advection models supported in NEMO ver-
sion 3.1.

and 4. To emphasize the dynamical differences between the
advection schemes, both test cases were run with no explicit
horizontal diffusion of momentum. Vertical mixing terms,
largely irrelevant for this quasi-two-dimensional case, were
set consistently with the ORCA025 simulations in Sect. 5.2.

Both series of runs used the implicit free-surface
formulation (enabled with the compile-time key
key_dynspg_flt), which damped the large initial
surface gravity waves caused by the imposition of the
blocking island on the steady-state flow.

After the initial gravity-wave adjustment, this test case
quickly develops a set of recirculating vortices in the lee of
the island. Over time these vortices grow in extent and would
begin detaching to form a vortex street, but this does not hap-
pen before the 8000 s end of the simulation. Although there is
no explicit horizontal diffusion of momentum in these runs,
the flow regime is much more laminar than would be implied
by the physical Reynolds number of 1.5× 106, based on the
free-stream velocity, edge-length of the island, and molecular
viscosity of water.

In moving around the box, the flow locally accelerates to a
maximum steady velocity of about 0.05ms−1, and this max-
imum velocity is reached in the vicinity of the leading-edge
corners of the box. The exact value of this maximum de-
pends on both the simulation time and the time step, but
our expected pattern holds: the control simulation is stable
with a time step of 64 s, which corresponded to a maximum
steady Courant number, i.e. max(usteady)/1x, above 0.6 (and
a maximum transient CFL of 0.95), but it is unstable with a
time step of 80 s.

Semi-Lagrangian advection maintains stability for much
longer time steps. Figure 5 shows the free-surface height
and flow streamlines for 1t between 5 and 160 s, and only
the semi-Lagrangian method remains stable for 80 and 160 s
time steps. For both advection schemes, the longer time step
is associated with a more diffuse flow pattern, with lengthen-
ing (and less intense) recirculating vortices in the lee of the
island.

This effect is stronger with semi-Lagrangian advection
than with Eulerian advection. We attribute this to the na-
ture of the flow at the leading edge of the island. Here, the
dominant flow balance is cyclostrophic, where the pressure
gradient at these corners balances the local vorticity. The op-
erator splitting method used here treats the advective terms in
a frame following the flow, but it can only apply the pressure
force at the destination cell. This results in an inconsistency
that grows with 1t , related to the forces in equation Eq. (2)
being available only at the endpoint of the Lagrangian trajec-
tory – an O(1t) approximation to the integral.

This inconsistency is most evident in the 160 s time step
case (bottom panel in Fig. 5b), where the maximum steady
Courant number of 1.6 implies that fluid parcels are advected
by about three grid cells over the 21t leapfrog step. There,
the lowest pressure region at the leading edge of the flow has
moved slightly further downstream.
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Table 1. Selected namelist parameters for the test case of Sect. 5.1.

Parameter Value Comments

rdt Varies Varied from 5 to 160 s
nitend Varies Set so that rdt ∗nitend= 8000s
ln_zps .TRUE. Enables the z-level coordinate; no partial steps were necessary
atfp 0.1 Asselin time filter parameter
ln_dynvor_een .FALSE. Flux-form advection
ln_dynvol_qck .TRUE. QUICKEST velocity advection (for control run)
ahm0 0 Horizontal eddy viscosity for momentum
avm0 1.2e-4 Vertical eddy viscosity
ln_zdfevd .TRUE. Enhanced vertical diffusion
avevd 100 Vertical coefficient of enhanced diffusion
n_evdm 1 Apply enhanced vertical diffusion to momentum
nn_botfr 3 Free-slip bottom boundary condition

In the full ocean, the geostrophic effect predominates, with
a leading-order balance between the pressure gradient and
the Coriolis force (planetary vorticity), so we expect this is-
sue to be less pronounced.

5.2 Global forced runs

To evaluate semi-Lagrangian advection in a more realistic
forecasting setting, we conducted a preliminary series of free
runs of the NEMO-OPA model. The runs consisted of the
following:

– a control run, based on the configuration of En-
vironment and Climate Change Canada’s 1/4◦

nominal-resolution Global Ice/Ocean Prediction Sys-
tem (GIOPS) (Smith et al., 2016) with a 10 min model
time step;8 tracers were advected with the model’s
tracer variance dissipation scheme (Lévy et al., 2001),
and momentums were advected in vector form with
the model’s energy and enstrophy conserving scheme9

(Arakawa and Lamb, 1981);

– a “semi-Lagrangian tracer” run, where momentum was
advected as in the control scheme and the semi-
Lagrangian advection described in this work was used
for advection of salinity and temperature; additionally,

8This time step is shorter than other commonly-used ORCA025
configurations, such as in the ocean reanalysis of Ferry et al. (2016).
This shorter time step is required to stabilize the coupling of ocean–
ice stress with the CICE model, where following Roy et al. (2015)
the ice–ocean drag coefficient is larger than typically considered.
We chose to maintain this configuration and coupling approach to
provide for the cleanest like-for-like comparisons against the oper-
ational configuration

9For compatibility with the operational model, as run in this
work, the scheme did not include the “fix” for the Hollingsworth
instability (Hollingsworth et al., 1983) reported in Ducousso et al.
(2017). This instability is more prominent at higher resolutions, and
we do not believe it meaningfully impacted the results as presented
in this section.

Figure 5. Free-surface height and streamlines for the test case of
Sect. 5.1, after 8000s for 1t = 5, 10, 20, 40, 64, and 160 s (top to
bottom, with the approximate Courant number listed). Results for
the Eulerian advection scheme are shown in (a), and results for the
semi-Lagrangian advection of momentum are shown in (b). As the
time step increases both advection schemes show more diffuse be-
haviour; however the semi-Lagrangian advection scheme remains
stable to 1t = 160s, whereas the Eulerian scheme becomes unsta-
ble after 1t = 64s.
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this run disabled horizontal diffusion of salinity and
temperature; and

– a “semi-Lagrangian momentum and tracer” run, where
momentum as well is advected with the semi-
Lagrangian scheme; the configuration was otherwise
the same as the semi-Lagrangian tracer run, save for a
15 min model time step.

The runs were all initialized at 1 October 2001 on the
ORCA025 grid. The ocean was at rest, and temperature and
salinity were given by the 2011 World Ocean Atlas climatol-
ogy (Locarnini et al., 2013; Zweng et al., 2013). Atmospheric
forcing was provided at 1 h intervals from Environment and
Climate Change Canada’s 1/4◦ global atmospheric refore-
cast, and sea ice was modeled via coupling with version 4.0
of the CICE model (Hunke and Dukowicz, 1997), with dy-
namically active (moving) ice. Selected namelist parameters
are provided in Table 2.

As with Sect. 5.1, the test cases used NEMO-OPA’s lin-
ear free-surface with a time-implicit solver, and tidal forc-
ing was not present in these configurations. In a typical
time step, the vast majority of semi-Lagrangian trajecto-
ries converged in one iteration (mean 1.004 over the semi-
Lagrangian tracer run). A very small minority of cells re-
quired an extended number of iterations or underrelaxation
as described in Sect. 4.2, but this did not affect the overall
trajectory-calculation performance because convergence was
measured (and iterations limited) on a per-cell basis.

Each run continued through late 2009. For reasons of
space efficiency, we recorded the two-dimensional sea
surface height, temperature, and salinity fields for each
model day, and we preserved every fifth daily-mean, three-
dimensional output of temperature, salinity, and horizontal
ocean velocity.

For short- and medium-term forecasts, the operational
coupled forecasting systems at CMC are constrained by ob-
servations and periodic re-initialization. With a focus on this
forecasting horizon, the objectives of these long free-runs
were as follows:

– to provide a test of model stability with semi-
Lagrangian advection, in terms of both avoiding crashes
and providing plausible ocean fields;

– to check for any large-scale conservation errors, which
might be difficult to correct given the sparsity of obser-
vation data for the deep ocean; and

– to note any qualitative improvement or deterioration in
the effective resolution of the model.

This first goal of model stability was met in part by the
successful completion of these runs. Use of semi-Lagrangian
advection for both tracers and momentum allowed us to in-
crease the effective time step from 10 min (with typical max-

Figure 6. (a) The 61 d mean transports for the Atlantic overturning
circulation (net northward flux above 1000 m depth at 27.25◦ N lat-
itude in the Atlantic Ocean) and (b) Antarctic circumpolar current
(net eastward flux at 67.75◦W longitude in the Drake Passage) over
time for the test cases of Sect. 5.2

imum Courant number10 of 0.2, found in the vertical direc-
tion) to 15 min (Courant number 0.3). Further increases led to
instability and model crashes not from the advection compo-
nent, but from the ice model. In this version of the model, the
ocean–ice stress is coupled in a time-explicit way between
the water and ice components. Concurrent work towards a
time-implicit coupling has given encouraging preliminary re-
sults on further time step increases.

The use of semi-Lagrangian advection also gives global
flows qualitatively similar to the control run, and average
transports in the Atlantic overturning circulation and Cir-
cumpolar current are comparable between the control and
semi-Lagrangian runs (Fig. 6). The semi-Lagrangian runs
appear to result in a slightly weaker overturning circulation
and a slightly stronger circumpolar current than the control
run, but these results may not be robust to retuned physical
parameterizations. Using semi-Lagrangian advection for the
velocity components results in a significant decrease to over-
all ocean kinetic energy (Fig. 7), both during and after the
spin-up period.

The cause of this energy disparity is under investigation,
but we believe the most likely cause is the application of
slope limiting to the u and v fields independently. Future
work will focus on taking a more nuanced approach to fil-
tering, but this effect may not be very significant in a shorter-
term forecast setting with frequent re-initializations from an
analysis.

The second goal of global conservation was met. Al-
though semi-Lagrangian advection does not guarantee con-
servation of tracers, the impact on the global balance of tem-

10Defining the Courant numbers in each direction as
max(|u|)/e1u, max(|v|)/e2v, and max(|w|)/e3w.
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Table 2. Selected dynamical and numerical namelist parameters for the test cases of Sect. 5.2.

Parameter Value Comments

Parameters common to all runs

atfp 0.1 Asselin time filter parameter
ln_zps .TRUE. z-level vertical coordinate with partial (cut) cells
e3zps_min 25 Absolute minimum thickness of a cut cell
e3zps_rat 0.2 Relative minimum thickness of a cut cell
shlat 0 Free-slip lateral momentum boundary condition
nn_botfr 2 Nonlinear bottom friction
nn_bfro2 1e-3 Nonlinear bottom friction coefficient
nn_bfeb2 2.5e-3 Background turbulent kinetic energy coefficient
ngeo_flux 0 No bottom temperature geothermal heat flux
ln_dynhpg_imp .TRUE. Semi-implicit computation of the hydrostatic pressure gradient
ln_dynldf_bilap .TRUE. Bi-Laplacian hyperdiffusion of momentum
ln_dynldf_hor .TRUE. The above parameter acting in the horizontal direction
ahm0 -3e11 Momentum hyperviscosity coefficients
nsolv 2 Use the successive over-relaxation (SOR) free-surface solver
nsol_arp 0 The above parameter with an absolute-tolerance stopping condition
nn_sstr 0 No sea surface temperature damping
nn_sssr 0 No sea surface salinity damping
ndmp 0 No temperature or salinity damping in the water column

Parameters for the control run

rdt 600 Model time step
ln_traadv_tvd .TRUE. Tracer variance dissipation (TVD) tracer advection scheme
ln_traldf_lap .TRUE. Laplacian diffusion for the tracer
ln_traldf_iso .TRUE. The above parameter acting in the iso-neutral direction
aht0 300 Horizontal tracer diffusion coefficient
ln_dynadv_vec .TRUE. Vector form of the momentum advection operator
ln_dynvor_een .TRUE. The above parameter using the energy- and entropy-conserving scheme
resmax 1e-10 Absolute residual tolerance for the SOR free-surface solver

Parameters for the semi-Lagrangian tracer run

rdt 600 Model time step
ln_traldf_lap .FALSE. No explicit horizontal tracer diffusion
ln_dynadv_vec .TRUE. Vector form of the momentum advection operator
ln_dynvor_een .TRUE. The above parameter using the energy and enstropy conserving scheme
resmax 1e-11 Absolute residual tolerance for the SOR free-surface solver

Parameters for the semi-Lagrangian momentum and tracer run

rdt 900 Model time step
ln_traldf_lap .FALSE. No explicit horizontal tracer diffusion
ln_dynadv_vec .FALSE. Flux form of the momentum advection operator
resmax 1e-11 Absolute residual tolerance for the SOR free-surface solver

perature and salinity was small. Figure 8 shows the evolu-
tion of ocean-average temperature and salinity over time in
these runs, and the effect of non-conservation attributable to
the semi-Lagrangian advection of tracers is comparable to
the magnitude of uncertainty in the global balance of atmo-
spheric forcing – the imbalance seen in the control run. Each
case saw an overall temperature drift of about 0.04K over
the simulated period, with the semi-Lagrangian cases having
a slight warming trend against the control run’s slight cool-

ing trend, and all three runs showed a very small increase in
ocean-average salinity, by about 0.01PSU.

The temperature change vs. depth over the simulated pe-
riod is shown in Fig. 9. Both the control and semi-Lagrangian
runs showed a warming trend in the surface layers, but the
semi-Lagrangian runs showed temperature stability in fluid
layers below 1000m depth, whereas the control run showed
a cooling trend in these waters.
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Figure 7. Total ocean horizontal kinetic energy (EJ) over time for
the test cases of Sect. 5.2. All of the test cases generally repro-
duce the monthly to yearly variability in kinetic energy, but the use
of semi-Lagrangian momentum advection results in significantly
lower total kinetic energy.

Figure 8. (a) Ocean-average temperature (◦C) and (b) salinity
(PSU) over time for the test cases of Sect. 5.2. Although conser-
vation is not guaranteed by semi-Lagrangian advection, long-term
trends are similar between the semi-Lagrangian runs and the control
run.

Despite the energy shortfall with semi-Lagrangian advec-
tion of momentum, we see tentative signs that the method
increases the model’s effective resolution. Figure 10 shows
one particular sea surface temperature realization, from the
31 December 2005 of each test case, along with the magni-
tude of the temperature gradient. The large-scale flows are
similar between the control and semi-Lagrangian runs (and
most similar between the control and semi-Lagrangian tracer
run), but the semi-Lagrangian runs have noticeably stronger
gradients in the sea surface temperature, in patterns that re-
semble smaller-scale eddies.

Figure 9. (a) Initial ocean-average temperature profile (◦C) vs.
depth and (b) change at the end of the simulated period (4 Octo-
ber 2009) for the test cases of Sect. 5.2. Both semi-Lagrangian runs
show temperature stability in deeper waters, whereas the control run
shows a small cooling.

Figure 10. (a, c, e) Sea surface temperature and (b, d, f) the mag-
nitude of its gradient for the (a, b) control, (c, d) semi-Lagrangian
tracer, and (e, f) semi-Lagrangian momentum and tracer test cases
of Sect. 5.2, for 31 December 2005 in the Labrador Sea. Although
the large-scale flows are similar, the runs with semi-Lagrangian ad-
vection of tracers have noticeably more fine-scale variability.

6 Conclusions and further work

This work has derived a semi-Lagrangian advection scheme
for the NEMO-OPA model. After advecting a tracer or mo-
mentum field along estimated fluid parcel trajectories, it cal-
culates a time trend to provide to the remainder of the model;
in this way the semi-Lagrangian scheme serves as a drop-
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in replacement for other tracer and (flux-form) momentum
schemes.

The development of this advection module relied on sev-
eral new or newly applied algorithms that might be relevant
to other ocean models or other domains:

– The “semi-Lagrangian trend” form of equation Eq. (7)
might be useful in other models when researchers
wish to implement semi-Lagrangian advection after the
fact, without disrupting the calculation of other forcing
terms.

– The Hermite interpolation form in Sect. 3, especially
combined with the C1-continuous estimate of the verti-
cal derivative in Sect. 3.2 might find application in other
domains where, as in the ocean, one dimension (the ver-
tical) is more oscillatory than others.

– The exponential integration of trajectories in Eq. (4)
may be useful in other applications that feature strong
accelerations over trajectories. In particular, it forbids
trajectory-crossing in one-dimensional flows, and here
that property ensures that trajectories remain inside the
ocean domain.

– The “corner solution” treatment of velocity for trajec-
tory calculations near corners might find use in other
applications with staggered velocity components.

Overall, we find that the semi-Lagrangian method is ef-
fective at extending the realizable time step in the NEMO-
OPA model. In the simple domain of Sect. 5.1, this method
resulted in a stable simulation with advective Courant num-
bers in excess of 1. Although we only extended the time step
from 10 to 15 min for the semi-Lagrangian momentum run in
Sect. 5.2, this limitation was imposed by the ice model. Dis-
abling ice dynamics allowed us to increase the time step to
30 min, but this would have made the results incomparable
with those of the control and semi-Lagrangian tracer runs.
Preliminary work with the CICE sea model and implicit cou-
pling of the ice–ocean stress seems to allow us to relax the
ice-related time step restriction.

6.1 Performance and implementation

In spite of this increased time step, the semi-Lagrangian
method by itself does not yet improve overall computational
performance. The semi-Lagrangian momentum and tracer
run of Sect. 5.2 took approximately 1 h of computational
time per 5 d of simulated time, using 128 Intel Xeon E5530
processors at 2.4 GHz. With a 10 min time step, the semi-
Lagrangian tracer run took approximately 50 min for the
same 5 d of simulated time, whereas the control run took
just 30 min. We expect these results to improve with further
numerical optimization work. In particular, we did not take
great care to ensure that loops were vectorized where possi-
ble, and it is much more difficult for compilers to automati-

cally vectorize the point-by-point semi-Lagrangian computa-
tions compared to volume flux calculations in the traditional
advection schemes.

About one-third of the additional computational cost
comes from trajectory iterations, and the remainder comes
from the cubic interpolation. This suggests that the relative
cost of semi-Lagrangian advection will be lower than pre-
sented here if trajectories can be reused for multiple tracer
species (such as biogeochemical constituents). Additionally,
it suggests that a further optimization may be to reuse tracer
trajectories for momentum advection, at least away from
the boundaries where interpolating (staggering) trajectories
might be reasonable. It seems unlikely that optimization will
reduce the per-time-step penalty to the 20 % value seen by
Ritchie et al. (1995) for an atmospheric model – owing to the
lack of three-dimensional implicit equations and expensive
physical parameterizations elsewhere in NEMO-0PA – but
we are hopeful that semi-Lagrangian advection will nonethe-
less improve overall system performance.

The parallel (MPI) implementation of this algorithm
was straightforward. With the relatively modest increase
in Courant number for the cases in this work, we simply
needed to increase the interprocessor lateral halo (parameters
jpreci and jprecj) to three points, which was sufficient
to allow a fluid parcel arriving at a processor’s edge to apply
the full interpolating stencil for the Courant numbers reached
in the presented simulations. This increase in halo size was
small compared to the processor tile size of about 50× 260
grid points for the runs in Sect. 5.2. Extending this to support
very large horizontal Courant numbers, however (if another
solution could be found to stabilize baroclinic waves), would
require either prohibitively large halo sizes or additional in-
terprocessor communication to track fluid parcels that cross
MPI boundaries.

6.2 Qualitative comments on results

Although the semi-Lagrangian method does not guarantee
tracer conservation, we see no evidence that its implemen-
tation here leads to a degradation relevant in a weekly to
seasonal forecast setting. In particular, the deep-water tem-
perature stability shown in Fig. 9 is an encouraging sign
that semi-Lagrangian advection will preserve the deep-water
structure that is weakly constrained by data. Even small
imbalances, however, might become significant over the
decade-to-century timescales of climate simulations. Further
work will be necessary to characterize this method before we
can safely recommend semi-Lagrangian advection in such
settings.

For the test cases in Sect. 5.2, semi-Lagrangian advection
of tracers appears to slightly increase the effective resolu-
tion of the model. However, this effect is much more mixed
when momentum is also advected with the semi-Lagrangian
method, in part because the underlying currents differ. Both
of these differences will be the subject of future study, with
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the specific intention of assessing these effects in the setting
of shorter-term forecasts. We speculate that the overall loss of
kinetic energy with semi-Lagrangian advection of momen-
tum is attributable to the use of the slope limiter: limiting
each component of velocity separately may be causing un-
realistic diffusion of smaller-scale structures in the presence
of background vorticity. We hope to address this issue with
more selective limiting.

6.3 Future development

Finally, the development in this paper implicitly assumes that
the coordinate system is static with time. This is not the
case in NEMO-OPA when using its nonlinear free-surface
option, which necessarily implies time-varying vertical lev-
els. Adapting the semi-Lagrangian method to this more gen-
eral coordinate system will be a focus of future work, which
will be required to apply this advection scheme to higher-
resolution domains that require tide-permitting simulations.

Additionally, future versions of NEMO intend to move to
a third-order Runge–Kutta time-stepping algorithm (Shu and
Osher, 1997), which constructs a full time step as a linear
combination of forward Euler steps. We expect that the semi-
Lagrangian “advective trend” of Eq. (7) can be adapted to
this framework in a straightforward manner by basing the
calculated trend on the current-step values of tracers and ve-
locities, but the adaptation may require care to preserve the
higher-order temporal accuracy of the overall scheme.
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