Articles | Volume 9, issue 4
https://doi.org/10.5194/gmd-9-1455-2016
https://doi.org/10.5194/gmd-9-1455-2016
Model description paper
 | 
19 Apr 2016
Model description paper |  | 19 Apr 2016

A stochastic, Lagrangian model of sinking biogenic aggregates in the ocean (SLAMS 1.0): model formulation, validation and sensitivity

Tinna Jokulsdottir and David Archer

Related authors

A model of mercury cycling and isotopic fractionation in the ocean
David E. Archer and Joel D. Blum
Biogeosciences, 15, 6297–6313, https://doi.org/10.5194/bg-15-6297-2018,https://doi.org/10.5194/bg-15-6297-2018, 2018
Short summary
A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin
D. Archer
Biogeosciences, 12, 2953–2974, https://doi.org/10.5194/bg-12-2953-2015,https://doi.org/10.5194/bg-12-2953-2015, 2015
Short summary
Modeling the impediment of methane ebullition bubbles by seasonal lake ice
S. Greene, K. M. Walter Anthony, D. Archer, A. Sepulveda-Jauregui, and K. Martinez-Cruz
Biogeosciences, 11, 6791–6811, https://doi.org/10.5194/bg-11-6791-2014,https://doi.org/10.5194/bg-11-6791-2014, 2014
Short summary

Related subject area

Biogeosciences
Implementing the iCORAL (version 1.0) coral reef CaCO3 production module in the iLOVECLIM climate model
Nathaelle Bouttes, Lester Kwiatkowski, Manon Berger, Victor Brovkin, and Guy Munhoven
Geosci. Model Dev., 17, 6513–6528, https://doi.org/10.5194/gmd-17-6513-2024,https://doi.org/10.5194/gmd-17-6513-2024, 2024
Short summary
Assimilation of carbonyl sulfide (COS) fluxes within the adjoint-based data assimilation system – Nanjing University Carbon Assimilation System (NUCAS v1.0)
Huajie Zhu, Mousong Wu, Fei Jiang, Michael Vossbeck, Thomas Kaminski, Xiuli Xing, Jun Wang, Weimin Ju, and Jing M. Chen
Geosci. Model Dev., 17, 6337–6363, https://doi.org/10.5194/gmd-17-6337-2024,https://doi.org/10.5194/gmd-17-6337-2024, 2024
Short summary
Quantifying the role of ozone-caused damage to vegetation in the Earth system: a new parameterization scheme for photosynthetic and stomatal responses
Fang Li, Zhimin Zhou, Samuel Levis, Stephen Sitch, Felicity Hayes, Zhaozhong Feng, Peter B. Reich, Zhiyi Zhao, and Yanqing Zhou
Geosci. Model Dev., 17, 6173–6193, https://doi.org/10.5194/gmd-17-6173-2024,https://doi.org/10.5194/gmd-17-6173-2024, 2024
Short summary
Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models
Alexander S. Brunmayr, Frank Hagedorn, Margaux Moreno Duborgel, Luisa I. Minich, and Heather D. Graven
Geosci. Model Dev., 17, 5961–5985, https://doi.org/10.5194/gmd-17-5961-2024,https://doi.org/10.5194/gmd-17-5961-2024, 2024
Short summary
Exploring the potential of history matching for land surface model calibration
Nina Raoult, Simon Beylat, James M. Salter, Frédéric Hourdin, Vladislav Bastrikov, Catherine Ottlé, and Philippe Peylin
Geosci. Model Dev., 17, 5779–5801, https://doi.org/10.5194/gmd-17-5779-2024,https://doi.org/10.5194/gmd-17-5779-2024, 2024
Short summary

Cited articles

Alldredge, A. and Gotschalk, C.: In situ settling behavior of marine snow, Limnol. Oceanogr., 33, 339–351, 1988.
Alldredge, A. and McGillivary, P.: The attachment probabilities of marine snow and their implications for particle coagulation in the ocean, Deep-Sea Res., 38, 431–443, 1991.
Alldredge, A. and Silver, M. W.: Characteristics, Dynamics and Significance of Marine Snow, Prog. Oceanogr., 20, 41–82, 1988.
Alldredge, A., Granata, G. C., Gotschalk, C. C., and Dickey, T. D.: The physical strength of marine snow and its implications for particle disaggregation in the ocean, Limnol. Oceanogr., 35, 1415–1428, 1990.
Alldredge, A., Gotschalk, C., Passow, U., and Riebesell, U.: Mass aggregation of diatom blooms: Insights from a mesocosm study, Deep-Sea Res. Pt. II, 42, 9–27, 1995.
Download
Short summary
To better understand what controls the flux of organic and inorganic material down the water column we developed a numerical model that simulates coagulation, settling and bio-chemical transformation of particles in the ocean. To simulate the many types of material the particles constitute, we took a Lagrangian approach. Our results suggest the flux is most sensitive to environmental change in polar regions. We found that zooplankton are the biggest unknown when predicting the flux.