Articles | Volume 7, issue 1
Geosci. Model Dev., 7, 407–417, 2014
https://doi.org/10.5194/gmd-7-407-2014

Special issue: Isaac Newton Institute programme on multiscale numerics for...

Geosci. Model Dev., 7, 407–417, 2014
https://doi.org/10.5194/gmd-7-407-2014

Development and technical paper 21 Feb 2014

Development and technical paper | 21 Feb 2014

Inherently mass-conservative version of the semi-Lagrangian absolute vorticity (SL-AV) atmospheric model dynamical core

V. V. Shashkin and M. A. Tolstykh

Related authors

Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core
Mikhail Tolstykh, Vladimir Shashkin, Rostislav Fadeev, and Gordey Goyman
Geosci. Model Dev., 10, 1961–1983, https://doi.org/10.5194/gmd-10-1961-2017,https://doi.org/10.5194/gmd-10-1961-2017, 2017
Short summary
A standard test case suite for two-dimensional linear transport on the sphere: results from a collection of state-of-the-art schemes
P. H. Lauritzen, P. A. Ullrich, C. Jablonowski, P. A. Bosler, D. Calhoun, A. J. Conley, T. Enomoto, L. Dong, S. Dubey, O. Guba, A. B. Hansen, E. Kaas, J. Kent, J.-F. Lamarque, M. J. Prather, D. Reinert, V. V. Shashkin, W. C. Skamarock, B. Sørensen, M. A. Taylor, and M. A. Tolstykh
Geosci. Model Dev., 7, 105–145, https://doi.org/10.5194/gmd-7-105-2014,https://doi.org/10.5194/gmd-7-105-2014, 2014

Related subject area

Numerical Methods
A note on precision-preserving compression of scientific data
Rostislav Kouznetsov
Geosci. Model Dev., 14, 377–389, https://doi.org/10.5194/gmd-14-377-2021,https://doi.org/10.5194/gmd-14-377-2021, 2021
Short summary
An N-dimensional Fortran interpolation programme (NterGeo.v2020a) for geophysics sciences – application to a back-trajectory programme (Backplumes.v2020r1) using CHIMERE or WRF outputs
Bertrand Bessagnet, Laurent Menut, and Maxime Beauchamp
Geosci. Model Dev., 14, 91–106, https://doi.org/10.5194/gmd-14-91-2021,https://doi.org/10.5194/gmd-14-91-2021, 2021
Short summary
A framework to evaluate IMEX schemes for atmospheric models
Oksana Guba, Mark A. Taylor, Andrew M. Bradley, Peter A. Bosler, and Andrew Steyer
Geosci. Model Dev., 13, 6467–6480, https://doi.org/10.5194/gmd-13-6467-2020,https://doi.org/10.5194/gmd-13-6467-2020, 2020
Inequality-constrained free-surface evolution in a full Stokes ice flow model (evolve_glacier v1.1)
Anna Wirbel and Alexander Helmut Jarosch
Geosci. Model Dev., 13, 6425–6445, https://doi.org/10.5194/gmd-13-6425-2020,https://doi.org/10.5194/gmd-13-6425-2020, 2020
Short summary
A fast and efficient MATLAB-based MPM solver: fMPMM-solver v1.1
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 13, 6265–6284, https://doi.org/10.5194/gmd-13-6265-2020,https://doi.org/10.5194/gmd-13-6265-2020, 2020
Short summary

Cited articles

Bates, J. R., Moorthi, S., and Higgins, R. W.: A global multilevel atmospheric model using a vector semi-Lagrangian finite-difference scheme, Mon. Weather Rev., 121, 244–263, https://doi.org/10.1175/1520-0493(1993)121<0244:AGMAMU>2.0.CO;2, 1993.
Colella, P. and Woodward, P. R.: The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations, J. Comput. Phys., 54, 174–201, 1984.
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Kiehl, J. T., Briegleb, B., Bitz, C., Lin, S.-J., Zhang, M., and Dai, Y.: Description of the NCAR Community Atmosphere Model (CAM 3.0), NCAR Technical Note NCAR/TN-464+STR, NCAR, 2004.
Fadeev, R. Yu.: Algorithm for Reduced Grid Generation on a Sphere for a Global Finite-Difference Atmospheric Model, Comput. Math. Math. Phys., 53, 237–252, https://doi.org/10.1134/S0965542513020073, 2013
Giorgetta, M. A., Roeckner, E., Mauritsen, T., Bader, B. S. J., Crueger, T., Esch, M., Rast, S., Schmidt, L. K. H., Kinne, S., Möbis, B., and Krismer, T.: The Atmospheric General Circulation Model ECHAM6: Model Description, Tech. rep., Max Planck Institute for Meteorology, Hamburg, Germany, 2012.