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Abstract. The semi-Lagrangian absolute vorticity (SL-AV)
atmospheric model is the global semi-Lagrangian hydro-
static model used for operational medium-range and seasonal
forecasts at the Hydrometeorological Centre of Russia. The
distinct feature of the SL-AV dynamical core is the semi-
implicit, semi-Lagrangian vorticity-divergence formulation
on the unstaggered grid. A semi-implicit, semi-Lagrangian
approach allows for long time steps but violates the global
and local mass conservation. In particular, the total mass in
simulations with semi-Lagrangian models can drift signif-
icantly if no a posteriori mass-fixing algorithm is applied.
However, the global mass-fixing algorithms degrade the lo-
cal mass conservation.

The new inherently mass-conservative version of the SL-
AV model dynamical core presented here ensures global and
local mass conservation without mass-fixing algorithms. The
mass conservation is achieved with the introduction of the
finite-volume, semi-Lagrangian discretization for a continu-
ity equation based on the 3-D extension of the conservative
cascade semi-Lagrangian transport scheme (CCS). Numer-
ical experiments show that the new version of the SL-AV
dynamical core presented combines the accuracy and sta-
bility of the standard SL-AV dynamical core with the mass-
conservation properties. The results of the mountain-induced
Rossby-wave test and baroclinic instability test for the mass-
conservative dynamical core are found to be in agreement
with the results available in the literature.

1 Introduction

1.1 Motivation for the research

The modern atmospheric models used for long-range fore-
casting or climate change modeling should treat concentra-
tions of the greenhouse gases and certain other atmospheric
constituents as prognostic variables. The mass field of such
constituents is characterized by the local and global mass
conservation in the absence of sources and sinks and chem-
ical transformations. The conservation properties should be
maintained by the numerical method employed, since the
global mass drift can introduce biases into the model feed-
back to the radiative forcing and the lack of the local conser-
vation may contaminate the physical sources and sinks of the
constituents masses due to the chemical transformations.

Treatment of the atmospheric constituent concentrations
as the prognostic variables is a difficulty for the semi-
Lagrangian (SL) models that is well known to violate both lo-
cal and global mass conservation. In particular, the total mass
of the atmosphere and the mass of its constituents was found
to drift significantly during the long-range integration of the
SL models (see, for example,Bates et al., 1993). The global
mass correction approach (e.g.,Priestley, 1993) used in some
SL models obviously degrades the local mass-conservation
properties.

Despite the abovementioned mass conservation issues, the
semi-implicit, semi-Lagrangian (SISL) treatment of the at-
mospheric equations is very suitable for use in general cir-
culation models because of its computational efficiency. At-
tempts were made to develop advection schemes and the
atmospheric equations discretizations that combine mass-
conservation properties with the efficiency and robustness
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of the SL approach.Zerroukat and Allen(2012) present the
3-D inherently mass-conservative transport scheme on the
sphere. CSLAM (Lauritzen et al., 2010), the locally mass-
conservative 2-D SL scheme on the cubed sphere provides
the transport computations with great multi-tracer efficiency.
The approach for consistent coupling between the discrete
tracer transport and continuity equations in the SISL shallow-
water model is implemented byWong et al.(2013). Lauritzen
et al. (2008) developed the inherently mass-conservative,
limited-area SL dynamical core for HIRLAM model using
floating Lagrangian vertical levels.

This article presents the cell-integrated, mass-conservative
discretization of the continuity equation in the SISL frame-
work for the semi-Lagrangian absolute vorticity (SL-AV)
global atmospheric dynamical core. UnlikeLauritzen et al.
(2008), fixed vertical levels are used. We consider this re-
search as a first step towards the hydrostatic SL dynamical
core with mass-conservative and consistent tracer transport
(as discussed inWong et al., 2013), although the tracer trans-
port problems are beyond the scope of the article.

1.2 Brief model overview

The SL-AV is a global semi-Lagrangian hydrostatic atmo-
spheric model (Tolstykh, 2010). The model includes the dy-
namical core developed at the Institute of Numerical Math-
ematics, Russian Academy of Sciences, in cooperation with
the Hydrometeorological Centre of Russia and the subgrid-
scale physics package from ALADIN/LACE NWP model.
The main feature of the SL-AV dynamical core is the finite-
difference, semi-implicit semi-Lagrangian formulation on
the unstaggered grid with the horizontal divergence and the
vertical component of the absolute vorticity as the prognos-
tic variables. The horizontal grid is regular latitude–longitude
with the options for variable latitude resolution and the use of
the reduced lat.–long. grid. In the vertical, sigmaσ = p/ps
(p is the pressure andps is the surface pressure) coordinates
are used.

Medium-range and seasonal forecast versions of the SL-
AV are operational at the Hydrometeorological Centre of
Russia. New versions of the model are being developed now.
In particular, the nonhydrostatic version for the medium-
range forecast and the hydrostatic mass-conservative version
for long-range forecast and climate simulations are consid-
ered.

1.3 Article structure

Section2 presents the formulation of the inherently mass-
conservative SISL dynamical core, beginning with the set
of atmospheric governing equations (dry, adiabatic) used
(Sect.2.1). The inherently mass-conservative dynamical core
makes use of absolute vorticity, divergence, and thermo-
dynamical equations approximations along with the semi-
implicit system formulation and many other discretizations

from the standard nonconservative SL-AV model dynami-
cal core. The nonconservative dynamical core is reviewed in
Sect.2.2. Section2.3describes mass-conservative discretiza-
tion of the continuity equation introduced to obtain mass-
conservative dynamical core. Section3 presents the results
of numerical experiments.

2 Inherently mass-conservative SL dynamical core
formulation

2.1 Governing equations

The governing equations for the SL-AV model dynamical
core in the absence of humidity are the adiabatic primitive
equations written in theσ vertical coordinate as follows:

– The momentum equation in the vector form (Bates et
al., 1993) with the advected Coriolis term (Rochas,
1990):(

dV

dt
+ 2� ×

dr

dt

)
H

= −∇8−RT∇ lnps. (1)

Since the prognostic variables are the horizontal di-
vergence and the vertical component of the absolute
vorticity, the momentum equations are used only to
derive the absolute vorticity and divergence equations
(see below).

– The first equation of thermodynamics and the con-
tinuity equation with the orographic terms (Ritchie
and Tanguay, 1996) to make spurious orographic res-
onance less severe:

dT

dt
−
RT

cp

(
σ̇

σ
+

d
(
lnps+

8s
RT̄

)
dt

)
= −

1

cp
V · ∇8s, (2)

d
(
lnps+

8s
RT̄

)
dt

+D+
∂σ̇

∂σ
=

1

RT̄
V · ∇8s. (3)

– Lastly, the hydrostatic balance equation

∂8

∂ lnσ
= −RT . (4)

In the above,V = (u,v) is the horizontal velocity vector,� is
Earth’s angular velocity vector,� is Earth’s angular velocity,
r is the vector joining Earth’s center and the given point at the
surface,(..)H is the horizontal projection of a vector,8 is the
geopotential,ps is the surface pressure,∇ is the horizontal
gradient operator,T is the temperature,R is the ideal gas
constant,cp is the specific heat capacity at constant pressure,
σ̇ is the vertical velocity in theσ coordinate system,8s is the
surface geopotential,̄T is the constant reference temperature,
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D = div2(u,v) is the horizontal divergence at theσ plane,
anda is Earth’s radius.

The absolute vorticity equation is obtained analytically
from the component form of the momentum Eq. (1):

d

dt
(ζ+f )= −(ζ+f )D−J,

J =
R

a2cosϕ

(
∂T

∂λ

∂ lnps

∂ϕ
−
∂T

∂ϕ

∂ lnps

∂λ

)
−

1

a cosϕ

(∂σ̇
∂λ

∂v

∂σ
− cosϕ

∂σ̇

∂ϕ

∂u

∂σ

)
, (5)

whereζ is the relative vorticity;f = 2�sinϕ is the Coriolis
parameter; and(λ,ϕ) are the longitude and the latitude, re-
spectively. The equation for the horizontal divergenceD is
obtained in the discrete form in Sect. 2.2.

The formulation of the mass-conservative dynamical core
also requires the continuity equation to be rewritten in the
integral form:

d

dt

∫
δV (t)

psdV = 0, (6)

whereδV (t) represents an arbitrary 3-D reference volume
moving with the air.

2.2 Basic (nonconservative) SL-AV dynamical core
formulation

The SL-AV model uses the time-stepping scheme based on
SETTLS (Hortal, 2002) time approximation in combina-
tion with the semi-implicit approach and the pseudo-second-
order decentering (Temperton et al., 2001). The discrete time
form of a generic equation,

dψ

dt
+Lψ +N(ψ)= 0,

is as follows:

ψn+1
−ψn∗

1t
+

1

2

(
N(ψ)(n+1)e

∗ +N(ψ)n
)

(7)

+
1+ ε

2
Lψn+1

+
1+ ε

2
Lψn∗ −

ε

2

(
Lψ (n+1)e

∗ +Lψn
)

= 0,

whereψ is an arbitrary variable;L andN are the linear and
nonlinear operators, respectively;ψ (n+1)e = 2ψn−ψn−1, 4t
is the time step;ε is the small decentering parameter; and the
notationψ∗ means the value ofψ calculated at the depar-
ture point of the upstream semi-Lagrangian trajectory. The
ψ variable can be one of prognostic variablesζ , T , or lnps;
the time-discrete forms of the corresponding equations are as
follows:

– The absolute vorticity equation:

(ζ + f )n+1
− (ζ + f )n∗ =

−
4t

2

[
(1+ ε)

(
(fD)n+1

+ (fD)n∗

)
−ε

(
(fD)(n+1)e

∗ + (fD)n
)

+

{
ζD+ J

}(n+1)e

∗

+

{
ζD+ J

}n]
, (8)

where thefD-type terms are treated as a product of
separately calculatedf andD. The Coriolis param-
eter is calculated analytically,f = 2�sinϕ, whereϕ
is either the known arrival point latitudeϕn+1 or de-
parture point latitudeϕn∗ calculated via the trajectory-
searching algorithm.

– The thermodynamic equation linearized around the
reference temperaturēT :

T n+1
− κT̄

(
lnps+

8s

RT̄
+
(1+ ε)4t

2

σ̇

σ

)n+1

=

T n∗ − κT̄

(
lnps+

8s

RT̄
−
(1+ ε)4t

2

σ̇

σ

)n
∗

−
ε4t

2

(( σ̇
σ

)n
+

( σ̇
σ

)(n+1)e

∗

)
+

1

2

(
(NT)

n
+ (NT)

(n+1)e
∗

)
4t, (9)

– The continuity equation (the notation(.)∗2 implies that
horizontal 2-D interpolation is used to calculate depar-
ture point values):(

lnps+
8s
RT̄

)n+1
−

(
lnps+

8s
RT̄

)n
∗2

4t
=

−
1+ ε

2

(
Dn+1

3 +Dn3∗

)
+
ε

2

(
Dn3 +D

(n+1)e
3∗

)
+

1

2RT̄

(
V n

∇8s+ V (n+1)e
∗ ∇8s∗

)
, (10)

whereD3 =D+ ∂σ̇/∂σ is the 3-D divergence,κ =
R
cp

=
2
7,

andNT stands for the nonlinear terms of the thermodynamic
equation.

The vertical part ofDn+1
3 , i.e., ∂σ̇ n+1/∂σ , is contained

in the time-discreteps Eq. (10). It can be excluded from
Eq. (10) by integrating it from the model topσ = σtop to the
model bottomσ = 1 using the boundary conditionṡσ(1)=

σ̇
(
σtop

)
= 0 and treating lnps as pseudo-3-D variable con-

stant in the vertical:
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(
1− σtop

)
lnpn+1

s =

1∫
σtop

{
−
8s

RT̄
+

(
lnps+

8s

RT̄

)n
∗2

−
1+ ε

2
4t

(
Dn+1

+Dn3∗

)
+
ε

2
1t

(
Dn3 +D

(n+1)e
3∗

)
+
1t

2RT̄

(
V n

∇8s+ V (n+1)e
∗ ∇8s∗

)}
dσ. (11)

A similar technique is applied to derive the expression
for σ̇ n+1 used in the energy conversion term of the thermo-
dynamic equation (9). The continuity equation (10) is inte-
grated from the model top to eachσ level and Eq. (11) is
then used to eliminateps:

σ̇ n+1(σ )=
2

(1+ ε)4t

( σ∫
σtop

{.}dσ −
σ − σtop

1− σtop

1∫
σtop

{.}dσ
)
. (12)

The terms in the braces{.} are equal to the sub-integral term
in the braces from Eq. (11).

The time-discrete equation for the horizontal divergence
is obtained with the application of the horizontal divergence

operator div2(a1,a2)=
1

a cosϕ

(
∂a1
∂λ

+
∂a2 cosϕ
∂ϕ

)
to the compo-

nent form of the momentum Eq. (1) linearized around̄T and
written in the time-discrete form, similar to (7):

Dn+1
= −

1+ ε

2
4t∇2(

8+RT̄ lnps
)n+1

+ div2(A
n
u,A

n
v), (13)

where the vector(Anu,A
n
v) is the combination of known time-

stepn quantities from the right-hand side of the time-discrete
momentum equation.

Equations (8), (9), (11), (12), and (13) compose the
system for the variables

(
ζ n+1,T n+1, lnpn+1

s , σ̇ n+1,Dn+1
)
.

The system is closed with the hydrostatic equation (4) rewrit-
ten for8n+1

8n+1(σ )=8s+R

σ∫
1

T n+1(σ )dlnσ. (14)

GivenDn+1, all other variables can be easily computed
using Eqs. (8), (9), (11), and (12). Thus it is reasonable to
isolateDn+1 in the single equation. As inBates et al.(1993),
we derive theDn+1 equation in the vertical discrete form on
the nonuniform vertical grid of NLEV levels. The vertical
grid is defined by the NLEV+ 1 half-levelsσk+1/2 andk =

0. . .NLEV such thatσ1/2 = σtop andσNLEV+1/2 = 1; the ver-
tical levels areσk =

1
2(σk+1/2+σk−1/2) andk = 1. . .NLEV,

and the vertical grid spacing4σk =
(
σk+1/2 − σk−1/2

)
. The

vertical part of 3-D divergence is discretized as

∂σ̇

∂σ
=
σ̇k+1/2 − σ̇k−1/2

4σk
. (15)

The vertical integration terms ofps (11) and hydrostatic
(14) equations are substituted for their discrete analogs using
the midpoint and trapezoidal rules, respectively.

The elimination of (T n+1, lnpn+1
s , 8n+1) in the diver-

gence equation (13) using Eqs. (9), (11), (12), and (14) leads
to the equation forDn+1:

Dn+1
−

(1+ ε

2
4t

)2
∇

2MDn+1
= H n, (16)

whereDn+1 is the vector of dimension NLEV with compo-
nentsDn+1

k , k = 1. . .NLEV representing the horizontal di-
vergence at levelσk as a function of(λ,ϕ). (Note that our
considerations are still analytical in horizontal.) The vec-
tor H n is a combination of known time-leveln values. The
matrix M of size NLEV× NLEV results from approxima-
tion of the integrals in Eqs. (11) and (14), and the notation
∇

2MDn+1 means that the horizontal∇
2 operator is applied

to each component of vectorMDn+1.
To obtain theDn+1, the problem Eq. (16) is reduced to

NLEV horizontal Helmholtz equations using the eigenvalue
transformationM = P3PT (seeBates et al., 1993, for de-
tails). The 2-D Helmholtz equations are solved on the regu-
lar latitude–longitude grid using the algorithm fromTolstykh
(2002).

Given the divergence, then+ 1 time step updates of other
prognostic variables (ζ n+1, T n+1, lnpn+1

s ) can be calculated
using Eqs. (8), (9), and (11). The horizontal wind compo-
nentsu andv at time stepn+1 are restored from knownζ n+1

andDn+1 using the algorithm fromTolstykh and Shashkin
(2012). The algorithm solves the direct problem,

ζ n+1
=

1

a cosϕ

(∂v
∂λ

−
∂ucosϕ

∂ϕ

)
, (17)

Dn+1
=

1

a cosϕ

(∂u
∂λ

+
∂v cosϕ

∂ϕ

)
, (18)

using fourth-order finite differences in latitude and Fourier
representation in longitude.

To summarize the description above, the structure of com-
putations at then+ 1th time step in the dynamical core is as
follows:

1. The coordinates of the upstream trajectories departure
points are computed using(un,vn), (un−1,vn−1) via
the algorithm fromRochas(1990).

2. All departure point quantities – i.e., the terms(. . .)n∗
of Eqs. (8), (10), (9), and (13) – are calculated using
interpolation.

3. The Helmholtz problem Eq. (16) is solved, and diver-
genceDn+1 is obtained.
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4. The updatesζ n+1, T n+1, and lnpn+1
s are obtained

from Eqs. (8), (9), and (11) using the departure point
quantities andDn+1.

5. The horizontal wind atn+ 1th time step(un+1,vn+1)

is reconstructed fromζ n+1 andDn+1 using the solver
described inTolstykh and Shashkin(2012).

2.3 Mass-conservative SL discretization of the
continuity equation

The mass of the air contained in the elementary volume
dV = a2cosϕdλdϕdσ in the hydrostatic atmosphere ism=

ps(λ,ϕ)dV/g. The total mass of the atmosphere isM =∫
psdV/g =

(
1− σtop

)∫
psdS/g, where the first integral is

assumed over the all atmosphere, the second integral is over
the sphere, andg is gravitational acceleration.

To get the semi-implicit mass-conservative discrete equa-
tion forps, the integral form of the continuity equation (6) is
linearized aroundpref(λ,ϕ):

d

dt

∫
δV (t)

p′
sdV = −

∫
δV (t)

[
∇ (prefV )+pref

∂σ̇

∂σ

]
dV ; (19)

p′
s = ps−pref. On the right-hand side of this equation, we

have used the Eulerian treatment of thed
dt

∫
and the fact

that ∂pref
∂t

= 0 and∂pref
∂σ

= 0. Following the strategy of the SL
methods, the arrival cellδV

(
tn+1

)
supposed to coincide with

some grid cell4V and the departure cellδV (tn)= 4V∗ is
then determined with the SL trajectory-searching algorithm.
Given the arrival and departure cells, Eq. (19) is discretized
in time using the same approach (7) as for the nonconserva-
tive continuity equation:

p′n+1
s 4V −

∫
4V∗

p′n
s dV

4t
=

−
1+ ε

2

([
∇

(
prefV

n+1
)

+pref
∂σ̇ n+1

∂σ

]
4V

+

∫
4V∗

[
∇

(
prefV

n
)
+pref

∂σ̇ n

∂σ

]
dV

)

+
ε

2

([
∇

(
prefV

n
)
+pref

∂σ̇ n

∂σ

]
4V

+

∫
4V∗

[
∇

(
prefV

(n+1)e
)

+pref
∂σ̇ (n+1)e

∂σ

]
dV

)
. (20)

The arrival cell integral of a function is treated here as the
cell-averaged value of the function multiplied by the arrival
cell volume.

The mass-conservation properties of the continuity equa-
tion approximation (20) depend on the scheme used for the
computation of the departure volume integrals and the ap-
proximation of∇(prefV ) terms. As for the departure volume

computations, we use 3-D extension of the conservative cas-
cade scheme (CCS) byNair et al.(2002). The CCS 3-D im-
plies the approximation of the departure volume geometry
by the polyhedron with the sides parallel to the coordinate
planesOλϕ,Oλσ , andOϕσ . Following the ideology of the
cascade approach, the form of the polyhedron in CCS 3-D
is chosen in a way to allow for the splitting of the 3-D in-
tegration into the three consecutive 1-D integrations. Piece-
wise parabolic subgrid reconstruction (Colella and Wood-
ward, 1984) without limiters and filters is used for the 1-D
integral approximation.

The ∇ (prefV )= div2 (prefu,prefv)-type terms are cal-
culated with the 2-D divergence calculation algorithm
from the mass-conservative shallow-water modelTolstykh
and Shashkin(2012). The algorithm used guarantees∫

∇ (prefV )dS = 0 (the integral is over the sphere) and thus
in combination with CCS 3-D ensures the mass conservation
of the continuity equation approximation (20) (seeTolstykh
and Shashkin, 2012, for a detailed discussion).

Much like to the nonconservativeps equation (10), the
mass-conservative one (20) contains the(∂σ̇/∂σ )n+1 term.
As in the nonconservative case, Eq. (20) is integrated from
the model top to the model bottom using the boundary con-
ditions σ̇ (1)= σ̇

(
σtop

)
= 0 to eliminate the vertical velocity

σ̇ . The vertical integration in the case of Eq. (20) is equal
to the sum over the vertical column of the arrival cellsVk,
k = 1. . .NLEV spreading from the model top to the model
bottom. The resulting mass conservativeps equation can be
written as(
1− σtop

)
p′n+1

s 4S =

N∑
k=1


∫

4Vk∗

p′n
s dV −

1+ ε

2
4t

∇

(
prefV

n+1
)
k
4Vk

+

∫
4Vk∗

[
∇

(
prefV

n
)
+pref

∂σ̇

∂σ

n]
dV



+
ε

2
4t

[
∇

(
prefV

n
)
k
+pref

∂σ̇

∂σ

n]
4Vk

+

∫
4Vk∗

[
∇

(
prefV

(n+1)e
)

+pref
∂σ̇

∂σ

(n+1)e
]

dV


 , (21)

where4S is the square of the base of the vertical column,
4Vk∗ is the departure cell corresponding to the arrival cell
4Vk, and∇ (prefV )k refers to the value of∇ (prefV ) aver-
aged over4Vk.

Equations (20) and (21) are used to derive the expression
for σ̇ n+1 to be used in the energy conversion term of the ther-
modynamic Eq. (9) consistent with the mass-conservative
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Table 1.Grid parameters and∇4 diffusion coefficients used.

Grid 1λ 1ϕ KD,KT Kζ
(1015m4s−1) (1015m4s−1)

400× 250 0.9◦ 0.72◦ 1.91 1.27
640× 400 0.5625◦ 0.45◦ 0.77 0.51
800× 500 0.45◦ 0.36◦ 0.48 0.32
1200× 750 0.3◦ 0.24◦ 0.21 0.14

continuity equation approximation. Equation (20) is summed
over the vertical column of cellsVk, k = 1. . .K, andK =

1. . .NLEV − 1, and Eq. (21) is used to eliminatepn+1
s . The

resulting equation foṙσK+1/2 is

σ̇ n+1
K+1/2 = (22)

2

(1+ ε)pref4t4S

[
k=K∑
k=1

{. . .} −
σK+1/2 − σtop

1− σtop

k=N∑
k=1

{. . .}

]
;

the terms in braces{. . .} are equal to the term in the braces in
Eq. (21).

The computational procedure of then+1th time step of the
presented mass-conservative dynamical core is as follows:

1. The coordinates of the departure points of the upstream
trajectories are computed.

2. All departure point quantities – i.e., the terms(. . .)n∗
of Eqs. (8), (9), (10), and (13), and also the departure
volume integrals from Eq. (21) – are calculated.

3. The Helmholtz problem (16) is solved and diver-
genceDn+1 is obtained. Note that nonconservative
continuity equation (10) is still implicitly used in the
Helmholtz equation system (16).

4. Theζ n+1 is calculated using Eq. (8).

5. The horizontal windV n+1 is reconstructed from
knownDn+1 and ζ n+1 using the solver described in
Tolstykh and Shashkin(2012).

6. Given the horizontal wind, the term∇
(
prefV

n+1
)

is
calculated and used to computepn+1

s andσ̇ n+1 vertical
velocity via Eqs. (21) and (22)

7. Given σ̇ n+1, Eq. (9) is used to calculateT n+1.

3 Numerical experiments

We test the presented mass-conservative version of the
SL-AV model dynamical core (further denoted as SLAV-
MC) with the mountain-induced Rossby-wave and the
Jablonowski and Williamson(2006a) baroclinic instabil-
ity test cases. The tests are carried out using four regular
grids with 400×250, 640×400, 800×500, and 1200×750

grid points in longitude and latitude, and the corresponding
horizontal grid spacings are 0.9◦

× 0.72◦, 0.5625◦ × 0.45◦,
0.45◦

×0.36◦, and 0.3◦
×0.24◦ in longitude and latitude, re-

spectively. In the vertical, we use the set of 28 equally spaced
levels withσtop = 10−3.

The implicit ∇4 horizontal diffusion (seeTolstykh, 1997,
for details) is applied forζ , D, and T in all tests. The
resolution-dependent diffusion coefficientsKζ ,KD, andKT
are presented in Table1.

3.1 Mountain-induced Rossby wave

This 3-D analog of the shallow-water test case no. 5 from
Williamson et al.(1992) is carried out to check the perfor-
mance of the mass-conservative dynamical core in the pres-
ence of orography. The test setup presented inJablonowski
et al.(2008) is used. The initial conditions present the hydro-
statically balanced smooth zonal flow, which is the stationary
analytic solution to the primitive equations in the absence of
the orography. Given the nonzero orography, the zonal flow
breaks up and a Rossby-wave train begins its evolution.

The SLAV-MC setup for the test uses the reference sur-
face pressurepref = p0exp(−8S/RT0) with p0 = 930 hPa
andT0 = 288 K (equal to the initial isothermal state of the at-
mosphere). This choice ofpref produces the orographic cor-
rection terms similar toRitchie and Tanguay(1996) in the
mass-conservative continuity equation (19) that improved the
SLAV-MC accuracy near the mountain and reduced spurious
orographic resonance. The reference temperatureT̄ is set to
320 K. The time step for the 400× 250 grid simulations is
3600 s, which gives the initial zonal CFL numberC ≈ 0.72.
In higher-resolution simulations, the time step is chosen to
keep the initial CFL number the same. The developed cir-
culation longitudinal and meridional CFL numbers with the
time steps chosen are about 3.0 and 1.8, respectively, in all
simulations.

The SLAV-MC dynamical core conserves the global mass
up to machine precision, whereas the standard SLAV dynam-
ical core with the mass fixer turned off produces the mono-
tonic global mass decrease that amounts to 0.02 % of the to-
tal atmosphere mass during the month integration of the test
case initial conditions on the 640× 400 grid. Such a mass
trend cannot be considered as negligible for integration peri-
ods longer than a year. However, it does not affect the solu-
tion in a 1-month experiment. Indeed, standard and mass-
conservative SL-AV test solutions are practically identical
(the comparison is not presented); thus only the SLAV-MC
solution is discussed here.

Figure1 presents the day 25 geopotential height, temper-
ature, and relative vorticity fields at 700 hPa from SLAV-MC
simulations at the lowermost resolution (400×250 grid) and
the finest resolution (1200×750 grid) used in the study. Ob-
viously, the high-resolution solution better resolves the finer
features in the vicinity of the mountain (90◦ E, 30◦ N), espe-
cially in the vorticity field. The large-scale structure of the
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Fig. 1.The day 25 geopotential height (upper row),T (middle row), and vorticity (lower row) fields at 700 hPa from the SLAV-MC solutions
to the mountain-induced Rossby-wave test case. Simulations at the 400× 250 grid (left column) and 1200× 750 grid (right column).

solution remains the same in both high- and low-resolution
runs (see the geopotential height field snapshots). The 400×

250 grid solution is found to be in reasonable agreement with
the reference solution presented inJablonowski et al.(2008)
(solution from finite-volume dynamical core of the CAM at-
mospheric model on a 360× 181 regular latitude–longitude
grid).

3.2 Baroclinic instability test

The test case as described inJablonowski and Williamson
(2006a) consists of two parts. The first part tests the abil-
ity of the dynamical core to maintain the steady-state initial
conditions with two midlatitude jets. The second part of the
test consists of the same steady-state initial conditions with

overlaid zonal wind speed perturbation starting the evolution
of the baroclinic wave.

The time step for 400× 250 grid simulations is 2700 s,
yielding the initial maximum zonal CFL numberC ≈ 1.3. In
higher-resolution simulations, the time step is chosen to keep
the CFL number the same. The CFL number used is at least
twice higher than that used byJablonowski and Williamson
(2006a) in simulations with the SL dynamical core of the
CAM3 model. The reference state used in the experiment is
the constant reference surface pressurepref = 900 hPa and
the reference temperaturēT = 320 K.

In the first part (stationary case) of the test, the model de-
viation from the initial state (which is the analytic solution)
is dominated by the numerical vertical integration error in
the hydrostatic balance Eq. (14). This gives the root-mean-
squarel2 error (as defined inJablonowski and Williamson,
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Fig. 2. The day 9ps (left column) andT at 850 hPa surface (right column) in theJablonowski and Williamson(2006a) test case simulated
by the SLAV-MC dynamical core at the various resolution grids.

2006a) in ps field of about 0.2 hPa after 30 days of integra-
tion. The error is reduced twice when increasing the number
of vertical levels up to 50. The initial state is also affected
by the Helmholtz solver boundary conditions near the poles,
which are only second-order accurate in the latitudinal direc-
tion. This produces theps decrease of about of 3 hPa around
the poles in the simulations with the 400× 250 regular grid.
Theps field remains symmetric under all test conditions.

In the second part of the test case, zonal wind speed per-
turbation added to the geostrophically balanced initial condi-
tions triggers the evolution of the baroclinic wave. The maxi-
mum developed circulation longitudinal and meridional CFL
numbers with the time steps used are about 3.5 and 1.8, re-
spectively. Both the mass-conservative and standard versions
of the SL-AV model remain stable for at least 30 days of sim-
ulation with the chosen time steps and diffusion coefficients.

As in the mountain-induced Rossby-wave test, the stan-
dard non-mass-conservative SL-AV solution is characterized
by the monotonic loss of the total atmosphere mass of about
0.02 % per 30 days (the 640× 400 grid simulation), whereas
the mass-conservative version of the model preserves the to-
tal mass integral up to machine precision. Although the men-
tioned mass loss can be a problem in a longer period of inte-
gration, it does not influence the solution in a 30 day simula-
tion. In fact, the numerical test solutions by two versions of

the model are practically identical; therefore only the SLAV-
MC solution is discussed here.

Figure 2 shows the comparison of the surface pressure
and 850 hPa temperature fields from the SLAV-MC simula-
tion at day 9 using grids with various resolution. We find
the basic structures of the solution well resolved even in
the coarsest 400× 250 grid run. The field patterns gradu-
ally become more developed once the resolution increases
(with the most remarkable development in the temperature
field). No apparent phase shift can be noticed between lower-
and higher-resolution runs. One can find a good agreement
between the snapshots presented in Fig.2 and the snap-
shots of the reference solutions given in theJablonowski and
Williamson(2006b) and ICON dynamical core solutionWan
et al.(2013).

As compared to the reference solutions presented in
Jablonowski and Williamson(2006b) – namely solutions
from Eulerian, semi-Lagrangian, and finite-volume dynam-
ical cores of the CAM atmospheric model (Collins et al.,
2004) and the dynamical core of GME atmospheric model
(Majewski et al., 2002) – the 850 hPa relative vorticity field at
day 9 from the SLAV-MC solution presented at Fig.3 looks
generally smoother, and no Gibbs phenomenon as in the
CAM-EUL and CAM-SLD can be observed. The shape and
magnitude of the field features agree well with the reference
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Fig. 3. The day 9 850 hPa relative vorticity field in theJablonowski
and Williamson(2006a) test case simulated by the SLAV-MC dy-
namical core at the various resolution grids.

solutions and also ICON-HDC (Wan et al., 2013) solution.
One can note that there are no negative vorticity values in-
side the vortices in the SLAV-MC solution.

The quantitative assessment of the similarity and differ-
ence between the SLAV-MC solution and reference solution
from the T340 spectral SL dynamical core of the CAM3
atmospheric model is available via thel1, l2, and l∞ sur-
face pressure difference norms defined inJablonowski and
Williamson (2006a). The upper row in Fig.4 presents dif-
ference norms plots for the SLAV-MC solutions at various
resolution. The lower row of the figure shows the difference
norms between the lower-resolution SLAV-MC solutions and
the highest resolution (1200× 750 long.–lat. grid) SLAV-
MC solution. The gray shading in Fig.4 denotes the uncer-
tainty of the numerical solution obtained inJablonowski and
Williamson (2006a) by comparing different reference solu-
tions.

The difference norms shown on the upper row of Fig.4
are all below the uncertainty limit; this confirms the conver-
gence of the SLAV-MC simulations to the reference solution.
Moreover, one can see that the lower-resolution SLAV-MC
solutions converge to the highest resolution SLAV-MC solu-
tion (at 1200× 750 grid) since the corresponding difference
norms (lower panel of Fig.4) also fall below the uncertainty.
Finally, the difference norms between standard SLAV and
SLAV-MC solutions of equal resolution are well below the
uncertainty limit (not shown) that proves the similar behav-
ior of the two versions of the dynamical core.

4 Conclusions

A semi-implicit time integration scheme in conjunction with
the semi-Lagrangian treatment of advection allows running
of atmospheric simulations with time steps larger than time
steps limited by CFL stability condition and thus building
of computationally efficient models. Indeed, it was shown
that the semi-Lagrangian advection can be implemented ef-
ficiently on massively parallel computer systems using up to
O(104) processors (White and Dongarra, 2011). Recently, it
was found that the elliptic solver necessary to implement the
semi-implicit scheme can also use such systems efficiently
(seeMüller and Sheichl, 2013). However, the application of
SISL methods in modern atmospheric models used for cli-
mate simulations is limited by the absence of inherent mass
conservation requiring a global mass fixer.

We have presented here a version of SISL dynamical core
for the SL-AV global model that is inherently mass conser-
vative without use of mass correctors. The mass conservation
is achieved by the introduction of the cell-integrated semi-
Lagrangian discretization for the continuity equation. This
discretization is based on the 3-D extension of the conser-
vative cascade SL transport scheme (CCS) byNair et al.
(2002). Except for the new discretization of the continu-
ity equation, approximation of the primitive equations and
the semi-implicit equation system formulation in the mass-
conservative version are the same as in the standard version,
and therefore only minimal changes to the dynamical core
are introduced.

The numerical experiments showed that the inherently
mass-conservative version of the SL-AV dynamical core
(SLAV-MC) is as accurate and stable with long time steps as
the standard nonconservative version of this dynamical core.
The results of SLAV-MC for the baroclinic instability test
(Jablonowski and Williamson, 2006a) and mountain-induced
Rossby-wave test (fromJablonowski et al., 2008) are found
to be in agreement with the results available in the literature.
In the baroclinic instability test case, the difference norms be-
tween SLAV-MC solutions in various resolution and the ref-
erence T340 SL solution are below the solution uncertainty
calculated inJablonowski and Williamson(2006a). The be-
havior of two versions of the dynamical core in the numerical
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Fig. 4.Time evolution of thel1, l2, andl∞ ps difference norms. Upper row: difference between the spectral T340 SL reference solution and
SLAV-MC solutions at 400× 250 (red line), 640× 400 (green line), 800× 500 (blue line), and 1200× 750 (orange line) regular lat.–long.
grids. Lower row: difference between the 1200× 750 SLAV-MC solution and the lower-resolution SLAV-MC solutions (the line colors are
the same as on the upper row). Gray shading presents the uncertainty of reference solutions.

experiments is very similar, except that the standard version
(with mass corrector turned off) produces the monotonic loss
of global mass, which can be crucial in the longer-period sim-
ulations. SLAV-MC conserves the global mass up to machine
precision.

The presented approach efficiently combines the advan-
tages of the SISL method with the inherent mass conserva-
tion. Thus we believe that our research can be the basis for
building an SISL dynamical core of an atmospheric general
circulation model suitable for long-range forecasting and cli-
mate simulations. In particular, we plan to implement the hy-
brid σ–p vertical coordinate and the reduced lat.–long. grid
(Fadeev, 2013), as we did for the shallow-water model (Tol-
stykh and Shashkin, 2012). Furthermore, consistent transport
formulation similar toWong et al.(2013) is considered.
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