Articles | Volume 7, issue 6
https://doi.org/10.5194/gmd-7-2717-2014
https://doi.org/10.5194/gmd-7-2717-2014
Development and technical paper
 | 
19 Nov 2014
Development and technical paper |  | 19 Nov 2014

Verification of a non-hydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-D aspects

S.-J. Choi, F. X. Giraldo, J. Kim, and S. Shin

Related authors

Development and evaluation of a hydrostatic dynamical core using the spectral element/discontinuous Galerkin methods
S.-J. Choi and F. X. Giraldo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-7-4119-2014,https://doi.org/10.5194/gmdd-7-4119-2014, 2014
Preprint withdrawn

Related subject area

Numerical methods
Strategies for conservative and non-conservative monotone remapping on the sphere
David H. Marsico and Paul A. Ullrich
Geosci. Model Dev., 16, 1537–1551, https://doi.org/10.5194/gmd-16-1537-2023,https://doi.org/10.5194/gmd-16-1537-2023, 2023
Short summary
Modeling large‐scale landform evolution with a stream power law for glacial erosion (OpenLEM v37): benchmarking experiments against a more process-based description of ice flow (iSOSIA v3.4.3)
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023,https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
A mixed finite-element discretisation of the shallow-water equations
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev., 16, 1265–1276, https://doi.org/10.5194/gmd-16-1265-2023,https://doi.org/10.5194/gmd-16-1265-2023, 2023
Short summary
Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling
Anthony Gruber, Max Gunzburger, Lili Ju, Rihui Lan, and Zhu Wang
Geosci. Model Dev., 16, 1213–1229, https://doi.org/10.5194/gmd-16-1213-2023,https://doi.org/10.5194/gmd-16-1213-2023, 2023
Short summary
Massively parallel modeling and inversion of electrical resistivity tomography data using PFLOTRAN
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev., 16, 961–976, https://doi.org/10.5194/gmd-16-961-2023,https://doi.org/10.5194/gmd-16-961-2023, 2023
Short summary

Cited articles

Ahmad, N. and Lindeman, J.: Euler solutions using flux-based wave decomposition, Int. J. Numer. Meth. Fl., 54, 47–72, 2007.
Denis, J., Edwards, J., Evans, K. J., Guba, O. N., Lauritzen, P. H., Mirin, A. A., St-Cyr, A., Taylor, M. A., and Worly, P. H.: CAM-SE: a scalable spectral element dynamical core for the community atmosphere model, Int. J. High Perform. C., 26, 74–89, https://doi.org/10.1177/1094342011428142, 2012.
Durran, D. R. and Klemp, J. B.: A compressible model for the simulation of moist mountain waves, Mon. Weather Rev., 111, 2341–2360, 1983.
Giraldo, F. X.: A spectral element shallow water model on spherical geodesic grids, Int. J. Numer. Meth. Fl., 35, 869–901, 2001.
Giraldo, F. X.: Semi-implicit time-integrators for a scalable spectral element atmospheric model, Q. J. Roy. Meteor. Soc., 131, 2431–2454, 2005.
Download
Short summary
The non-hydrostatic compressible Euler equations were solved in a two-dimensional slice framework employing a spectral element method for the horizontal discretization and a finite difference method for the vertical. The results from the tests demonstrate that the horizontally spectral element vertically finite difference model is accurate and robust provided sufficient diffusion is applied. The combined spatial discretization method offers a viable method for development of a NH dynamical core.