Articles | Volume 7, issue 6
https://doi.org/10.5194/gmd-7-2717-2014
https://doi.org/10.5194/gmd-7-2717-2014
Development and technical paper
 | 
19 Nov 2014
Development and technical paper |  | 19 Nov 2014

Verification of a non-hydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-D aspects

S.-J. Choi, F. X. Giraldo, J. Kim, and S. Shin

Related authors

Development and evaluation of a hydrostatic dynamical core using the spectral element/discontinuous Galerkin methods
S.-J. Choi and F. X. Giraldo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-7-4119-2014,https://doi.org/10.5194/gmdd-7-4119-2014, 2014
Preprint withdrawn

Related subject area

Numerical methods
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary
Assessing the benefits of approximately exact step sizes for Picard and Newton solver in simulating ice flow (FEniCS-full-Stokes v.1.3.2)
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024,https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary

Cited articles

Ahmad, N. and Lindeman, J.: Euler solutions using flux-based wave decomposition, Int. J. Numer. Meth. Fl., 54, 47–72, 2007.
Denis, J., Edwards, J., Evans, K. J., Guba, O. N., Lauritzen, P. H., Mirin, A. A., St-Cyr, A., Taylor, M. A., and Worly, P. H.: CAM-SE: a scalable spectral element dynamical core for the community atmosphere model, Int. J. High Perform. C., 26, 74–89, https://doi.org/10.1177/1094342011428142, 2012.
Durran, D. R. and Klemp, J. B.: A compressible model for the simulation of moist mountain waves, Mon. Weather Rev., 111, 2341–2360, 1983.
Giraldo, F. X.: A spectral element shallow water model on spherical geodesic grids, Int. J. Numer. Meth. Fl., 35, 869–901, 2001.
Giraldo, F. X.: Semi-implicit time-integrators for a scalable spectral element atmospheric model, Q. J. Roy. Meteor. Soc., 131, 2431–2454, 2005.
Download
Short summary
The non-hydrostatic compressible Euler equations were solved in a two-dimensional slice framework employing a spectral element method for the horizontal discretization and a finite difference method for the vertical. The results from the tests demonstrate that the horizontally spectral element vertically finite difference model is accurate and robust provided sufficient diffusion is applied. The combined spatial discretization method offers a viable method for development of a NH dynamical core.