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Abstract. The non-hydrostatic (NH) compressible Euler

equations for dry atmosphere were solved in a simplified

two-dimensional (2-D) slice framework employing a spec-

tral element method (SEM) for the horizontal discretiza-

tion and a finite difference method (FDM) for the ver-

tical discretization. By using horizontal SEM, which de-

composes the physical domain into smaller pieces with a

small communication stencil, a high level of scalability

can be achieved. By using vertical FDM, an easy method

for coupling the dynamics and existing physics packages

can be provided. The SEM uses high-order nodal ba-

sis functions associated with Lagrange polynomials based

on Gauss–Lobatto–Legendre (GLL) quadrature points. The

FDM employs a third-order upwind-biased scheme for the

vertical flux terms and a centered finite difference scheme

for the vertical derivative and integral terms. For temporal in-

tegration, a time-split, third-order Runge–Kutta (RK3) inte-

gration technique was applied. The Euler equations that were

used here are in flux form based on the hydrostatic pressure

vertical coordinate. The equations are the same as those used

in the Weather Research and Forecasting (WRF) model, but a

hybrid sigma–pressure vertical coordinate was implemented

in this model.

We validated the model by conducting the widely used

standard tests: linear hydrostatic mountain wave, tracer ad-

vection, and gravity wave over the Schär-type mountain, as

well as density current, inertia–gravity wave, and rising ther-

mal bubble. The results from these tests demonstrated that

the model using the horizontal SEM and the vertical FDM is

accurate and robust provided sufficient diffusion is applied.

The results with various horizontal resolutions also showed

convergence of second-order accuracy due to the accuracy of

the time integration scheme and that of the vertical direction,

although high-order basis functions were used in the hori-

zontal. By using the 2-D slice model, we effectively showed

that the combined spatial discretization method of the spec-

tral element and finite difference methods in the horizontal

and vertical directions, respectively, offers a viable method

for development of an NH dynamical core.

1 Introduction

There is growing interest in developing highly scalable dy-

namical cores using numerical algorithms under petascale

computers with many cores (with the goal of exascale com-

puting just around the corner), and the spectral element

method (SEM), with high efficiency and accuracy, is known

to be one of the most promising methods (Taylor et al., 1997;

Giraldo, 2001; Thomas and Loft, 2002). SEM is local in

nature because it has a large on-processor operation count

(Kelly and Giraldo, 2012). SEM achieves this high level of

scalability by decomposing the physical domain into smaller

pieces with a small communication stencil. Additionally,

SEM has been shown to be very attractive for achieving high-

order accuracy and geometrical flexibility on the sphere (Tay-

lor et al., 1997; Giraldo, 2001; Giraldo and Rosmond, 2004).

To date, SEM has been implemented successfully in at-

mospheric modeling, such as in the community atmosphere

model–spectral element (CAM-SE) dynamical core (Thomas

Published by Copernicus Publications on behalf of the European Geosciences Union.



2718 S.-J. Choi et al.: Verification of a non-hydrostatic dynamical core

and Loft, 2005) and the scalable spectral element Eulerian at-

mospheric model (SEE-AM) (Giraldo and Rosmond, 2004).

These models consider the primitive hydrostatic equations on

global grids, such as a cubed sphere tiled with quadrilateral

elements using SEM in the horizontal discretization and the

finite difference method (FDM) in the vertical. The robust-

ness of SEM has been illustrated through three-dimensional

dry dynamical test cases (Giraldo and Rosmond, 2004; Gi-

raldo, 2005; Thomas and Loft, 2005; Taylor et al., 2007; Lau-

ritzen et al., 2010).

The ultimate objective of our study is to build a 3-

D non-hydrostatic (NH) model based on the compressible

Navier–Stokes equations using SEM in the horizontal dis-

cretization and FDM in the vertical. Because testing a 3-D

NH model requires a large amount of computing resources,

studying the feasibility of our approach in 2-D is an attrac-

tive alternative to the development of a fully 3-D model. This

is the case because a 2-D slice model can effectively test the

practical issues resulting from the vertical discretization and

time integration prior to construction of a full 3-D model. Al-

though we could discretize the vertical direction using SEM

(as proposed in Kelly and Giraldo, 2012, and Giraldo et al.,

2013), we chose to use a finite difference method for dis-

cretization in the vertical direction because it provides an

easy way to couple the dynamics and existing physics pack-

ages.

For this objective, we developed a dry 2-D NH compress-

ible Euler model based on SEM along the x direction and

FDM along the z direction, which we hereafter refer to as the

2-D NH model. We adopted the governing equation formula-

tion proposed by Skamarock and Klemp (2008) (SK08 here-

after), which is used in the Weather Research and Forecast-

ing (WRF) model. The Euler equations are in flux form based

on the hydrostatic pressure vertical coordinate. In SK08, the

terrain-following sigma–pressure coordinate is used, but we

here employed a hybrid sigma–pressure vertical coordinate.

Park et al. (2013) (PK13 hereafter) provided a clue for the

equation set in the hybrid sigma–pressure in their Appendix,

in which the hybrid sigma–pressure coordinate is applied to

the hydrostatic primitive equations and can be modified ex-

actly to the sigma–pressure coordinate at the level of the ac-

tual coding implementation. We also built the 2-D NH model

using a time-split, third-order Runge–Kutta (RK3) for the

time discretization, which has been shown to be effective in

the WRF model. We kept the temporal discretization of the

model as similar as possible to the WRF model in order to

more directly discern the differences related to the discrete

spatial operators between the two models. This provides ro-

bust tools for development and verification of the 2-D NH

model.

In this paper, we demonstrate the feasibility of the 2-D NH

model by conducting conventional benchmark test cases and

by focusing on the description of the numerical scheme for

the spatial discretization. We verify the 2-D NH by analyz-

ing six test cases: inertia–gravity wave, rising thermal bub-

ble, density current wave, linear hydrostatic mountain wave,

and tracer advection and gravity wave over the Schär-type

mountain.

The organization of this paper is as follows. In the next

section, we describe the governing equations with definitions

of the prognostic and diagnostic variables used in our model.

In Sect. 3, we explain the temporal and spatial discretiza-

tion including the spectral element formulation. In Sect. 4,

we present the results of the 2-D NH model using all four

test cases, and finally, in Sect. 5, we summarize the paper

and propose future directions.

2 Governing equations

We adopted the formulation of the governing-equation set

of SK08. Here, we implemented the hybrid sigma–pressure

coordinate introduced in PK13, which only considers the hy-

drostatic primitive equation. The hybrid sigma pressure co-

ordinate is defined with η ∈ [0,1] as

pd = B(η)(ps−pt)+ [η−B(η)](p0−pt)+pt, (1)

where pd is the hydrostatic pressure of dry air; B(η) is the

relative weighting of the terrain-following coordinate versus

the normalized pressure coordinate; and ps, pt, and p0 are

the hydrostatic surface pressure of dry air, the top-level pres-

sure, and a reference sea level pressure, respectively. A more

detailed description of the hybrid sigma–pressure coordinate

can be found in the Appendix of PK13. The definition of the

flux variables are

(V H,W,�,2)= µd× (vH,w, η̇,θ) , (2)

where vH = (u,v) and w are the velocities in the horizon-

tal and vertical directions, respectively; η̇ ≡
dη
dt

is the η-

coordinate (contravariant) vertical velocity; θ is the potential

temperature; and µd is the mass of the dry air in the layers,

defined as

µd(x,y,η, t)=
∂pd

∂η
=
∂B(η)

∂η
(ps−pt)+

[
1−

∂B(η)

∂η

]
(p0−pt) . (3)

The flux-form Euler equations for dry atmosphere to be

recast using perturbation variables are expressed as

∂V H

∂t
=−µd

(
∇ηφ

′
+αd∇ηp

′
+α′d∇ηp̄

)
−

(
∂p′

∂η
−µ′d

)
∇ηφ−∇η · (V H⊗ vH)−

∂ (�vH)

∂η
+FV H , (4)

∂W

∂t
= g

[
∂p′

∂η
−µ′d

]
−∇η · (V Hw)−

∂ (�w)

∂η
+FW, (5)

∂µ′d

∂t
=
∂

∂t

(
∂p′d

∂η

)
=
∂B(η)

∂η

∂p′s

∂t
=−∇η ·V H−

∂�

∂η
, (6)

∂φ′

∂t
=−

1

µd

[
V H · ∇ηφ+�

∂φ

∂η
− gW

]
, (7)
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∂2

∂t
=−∇η · (V Hθ)−

∂ (�θ)

∂η
, (8)

where φ is the geopotential; αd is the inverse density for dry

air; and FV H and FW represent forcing terms of Coriolis and

curvature, which we ignore for simplicity. In Eqs. (4)–(8),

the governing equations are described with perturbation vari-

ables, such as p = p̄(z̄)+p′, φ = φ̄(z̄)+φ′, αd = ᾱd(z̄)+α
′

d,

and ps = p̄s(x,y)+p
′
s, where the variables denoted by an

overbar are the reference state variables that satisfy hydro-

static balance.

For completeness, the diagnostic relation for� is given by

integrating Eq. (6) vertically from the surface (η = 1) to the

material surface:

�=−

η∫
1

(
∂B(η)

∂η

∂p′s

∂t
+∇η ·V H

)
dη, (9)

where
∂p′s
∂t

is obtained by integrating Eq. (6) vertically from

the surface (η = 1) to the top (η = 0) using a no-flux bound-

ary condition, such as �|η=0 or 1= 0.
∂p′s
∂t

is defined as

∂p′s

∂t
=−

η=1∫
η=0

(∇ ·V H)dη. (10)

The above equation allows for p′s to be evolved forward in

time, where we then compute µ′d directly from Eq. (5). The

diagnostic relation for the dry inverse density is given as

∂φ′

∂η
=−µ̄dα

′

d−αdµ
′

d, (11)

and the full pressure for dry atmosphere is

p = p0

(
Rdθ

p0αd

)cp/cv

. (12)

This concludes the description of the governing equations

used in our model; in the next section, we describe the dis-

cretization of the continuous form of the governing equations

that are used in our model.

3 Discretization

3.1 Spatial discretization

3.1.1 Horizontal direction

For a given η level, we discretized the horizontal operators

using SEM. Therefore, in the 2-D (x− z) slice framework,

we focus on the SEM discrete gradient operator for 1-D (x).

In SEM, we approximate the solution in non-overlapping el-

ements �e as

q(x, t)=

N+1∑
i=1

ψi(x)qN (xi, t), (13)

where xi represents the N + 1 grid points that correspond to

the Gauss–Lobatto–Legendre (GLL) points andψi(x) are the

N th-order Lagrange polynomials based on the GLL points.

It is worth noting that the ψi have the cardinal property, i.e.,

they can be represented as Kronecker delta functions where

ψi are zero at all nodal points except xi .

The GLL points ξi in a reference coordinate system ξ ∈

[−1,+1] and the associated quadrature weights ω(ξi),

ω(ξi)=
2

N (N + 1)

[
1

PN (ξi)

]2

, (14)

are introduced for the Gaussian quadrature:∫
�e

qd�e
=

+1∫
−1

q(ξ) |J (ξ)|dξ ≈

N∑
i=0

ω(ξi)q(ξi) |J (ξi)| , (15)

where PN (ξ) are the N th-order Legendre polynomials,

J = ∂x
∂ξ

is the transformation Jacobian, and �e represents the

non-overlapping elements.

We now introduce the polynomial expansions into our

governing equations in the form of

∂q

∂t
=−F(q), (16)

multiply by the basis function ψi as a test function, and in-

tegrate to yield a system of ordinary differential equations,

such as

Me
ji

dqi

dt
=−

∫
�e

ψjF

(
N+1∑
i=1

ψi(ξ)qi

)
dξ, (17)

where i = 1,2, · · ·,N+1,Me
ji is the element-based mass ma-

trix given as

Me
ji =

∫
�e

ψjψidξ = ωj
∣∣Jj ∣∣δji . (18)

The right-hand sides of Eqs. (17) and (18) are evaluated

using the Gaussian quadrature of Eq. (15). It is noted that

using GLL points for both interpolation and integration re-

sults in a diagonal mass matrix Me
ji , which means that the

inversion of the mass matrix is trivial.

The horizontal derivatives included in the right-hand side

of Eq. (17) are evaluated using the analytic derivatives of the

basis functions as follows:

∂q

∂x
=
∂q

∂ξ

∂ξ

∂x
=

∂

∂ξ

[
N+1∑
i=1

ψi(ξ)qi

]
∂ξ

∂x
=

[
N+1∑
i=1

∂ψi

∂ξ
qi

]
1

|J |
. (19)

Note that the non-differential operations, such as cross

products, are computed directly at grid points since we use

nodal basis functions associated with Lagrange polynomials

based on the GLL points. In order to satisfy the equations

globally, we use the direct stiffness summation (DSS) opera-

tion. For a more detailed description of the SEM, see Giraldo

and Rosmond (2004), Giraldo and Restelli (2008), and Kelly

and Giraldo (2012).
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3.1.2 Vertical direction

Using a Lorenz staggering, the variables V H, 2, µ, α, and p

are at layer midpoints denoted by k = 1,2, . . .,K , whereK is

the total number of layers, and the variablesW , �, and φ are

at layer interfaces defined by k+ 1
2

, k = 0,1, . . .,K , so that

ηK+1/2 = ηtop and η1/2 = ηBottom = 1. Figure 1 describes the

grid points and the allocation of the variables. Here, we eval-

uate the vertical advection terms
(
∂(�vH)
∂η

,
∂(�w)
∂η

, and
∂(�θ)
∂η

)
and vertical derivative terms

(
∂p′

∂η
and

∂φ
∂η

)
. The former is

discretized using the third-order upwind-biased discretiza-

tion in Hundsdorfer et al. (1995), which is given as

∂f

∂η

∣∣∣∣
k

=
fk−2− 8fk−1+ 8fk+1− fk+2

121η

+ sign(�)
fk−2− 4fk−1+ 6fk − 4fk+1+ fk+2

121η
, (20)

where f corresponds to the flux, such as �vH, and

1η = ηk+1/2−ηk−1/2 is the thickness of the layer. The latter

is discretized by the centered finite difference, which is given

as

∂g

η

∣∣∣∣
k

=
gk+1/2− gk−1/2

1η
, (21)

where g corresponds to the variables p′ and ϕ. Likewise, the

vertical discretization integration rules for the calculations of

Eqs. (9) and (10) follow the finite difference naturally as∫
qdη =

∑
k

qk+1/2 (ηk+1− ηk) . (22)

3.1.3 Explicit diffusion

In addition to the governing equations, a viscous term might

be needed to conduct some tests. The viscosity used here

is an explicit Laplacian (∇2) diffusion operator on coordi-

nate surfaces. In order to implement the Laplacian operator

f = νh
∂2

∂x2 (µda) for a model flux variable µda, we multiply

by the basis function ψ as a test function and integrate using

the divergence theorem to yield the weak form equation

∫
�e

ψf d�e
=Kh

∫
0e

ψ
∂

∂x
(µda)d0

e
−

∫
�e

∂

∂x
ψ ·

∂

∂x
(µda) d�e

 , (23)

where νh denotes the eddy viscosity coefficient and the term

with 0e is a boundary integral that accounts for internal faces

(neighboring elements share faces). Because we used the pe-

riodic boundary condition in this study, the boundary integral

term of the right-hand side can be ignored in all elements,

which allows us to rewrite the equations as∫
�e

ψf d�e
=−νh

∫
�e

∂ψ

∂x

∂

∂x
(µda)d�

e. (24)

cv

cv

cv

cv

cv

1/2 0η + =K

1/2 1η =

1/2η +k

ηk

1/2η −k

,  ,  ,  ,  θ µ αH d pv

,  ,  φΩw

sp

tp

Figure 1. Grid points of columns within an element having four

GLL points. The hybrid sigma–pressure coordinates are illustrated,

and the closed (open) circles on the solid (dashed) line indicate the

location of the variables at layer midpoints (interfaces).

After introducing the polynomial expansions, such as

a(x, t)=
N+1∑
i=1

ψi(x)aN (xi, t), the integrals of the above

equation can be approximated using SEM. A description of

the Laplacian operator using SEM can also be found in Denis

et al. (2011). The vertical Laplacian operator for a model flux

variable µda is added to a governing equation as follows:

∂

∂t
(µda)= . . .+ νvg

2(µdα)
−1 ∂

∂η

(
(µdα)

−1 ∂ (µda)

∂η

)
, (25)

where νv denotes the vertical eddy viscosity coefficient and

α is the inverse density. It is noted that the above term is

not more than νv
∂2(µda)

∂z2 . The vertical derivative term ∂
∂η

is

discretized by the centered finite difference.

3.2 Temporal discretization

To integrate the equations, we used the time-split RK3 in-

tegration technique following the strategy of SK08. In the

time-split RK3 integration, low-frequency modes due to ad-

vective forcings are explicitly advanced using a large time

step in the RK3 scheme, but high-frequency modes are in-

tegrated over smaller time steps. Among the high-frequency

modes, horizontally propagating acoustic/gravity waves are

advanced using an explicit forward–backward time integra-

tion scheme and vertically propagating acoustic waves and

buoyancy oscillations are advanced using a fully implicit

scheme (Klemp et al., 2007). For numeric stability, acoustic-

Geosci. Model Dev., 7, 2717–2731, 2014 www.geosci-model-dev.net/7/2717/2014/



S.-J. Choi et al.: Verification of a non-hydrostatic dynamical core 2721

mode filterings of the forward centering of the vertically im-

plicit portion and divergence damping of the horizontal mo-

mentum equation are used, which is the same as in the WRF

model (Skamarock et al., 2008). It is notable that the time-

split RK3 integration scheme is third-order accurate for lin-

ear equations and second-order accurate for nonlinear equa-

tions (SK08).

This technique has been shown to work effectively

within numerous non-hydrostatic models, including the

WRF model (Skamarock et al., 2008), the Model for Predic-

tion Across Scales (MPAS) (Skamarock et al., 2012), and the

Non-hydrostatic Icosahedral Atmospheric Model (NICAM)

(Satoh et al., 2008). It is also noted that, in the procedure

of the time-split RK3 integration, the difference between the

approach used in this paper and that in SK08 comes from the

vertical coordinate. Since we use the hybrid sigma–pressure

coordinate, the equation for p′s (Eq. 6) should be first stepped

forward in time using forward–backward differencing on the

small time steps, then µ′d can be computed directly from the

specification of the vertical coordinate in Eq. (9) and � can

be obtained from the vertical integration.

4 Test cases

We validated the 2-D NH model with six test cases: linear hy-

drostatic mountain-wave, tracer-advection, and gravity-wave

tests over Schär Mountain, as well as density current, iner-

tia–gravity wave, and rising thermal bubble experiments. The

last three cases do not have analytic solutions. Therefore, for

the mountain experiments, the numerical results of the 2-D

NH model were compared with analytic solutions (Durran

and Klemp, 1983; Schär et al., 2002); for the other experi-

ments, we compared our results with the results of other pub-

lished papers.

It should be mentioned that the horizontal SEM formula-

tion is able to utilize arbitrary-order polynomials per element

to represent the discrete spatial operators, but in this paper all

the results presented use either fifth- or eighth-order polyno-

mials. The averaged horizontal grid spacing is defined as

1x̄ =

N∑
n=1

1xn

N
, (26)

where 1xn is the internal grid spacing within the element,

which is regularly spaced in the domain, andN is the number

of intervals associated with irregularly spaced GLL quadra-

ture points, which is equivalent to the order of the basis poly-

nomials. The average vertical grid spacing is defined as in

Eq. (26). Below, we use this convention to define the grid

resolution. The resolutions and time-step sizes used for all

the cases are summarized in Table 1.

4.1 Linear hydrostatic mountain-wave test

We simulated the linear hydrostatic mountain-wave test in-

troduced by Durran and Klemp (1983) (DK83 hereafter) in

which the analytic steady-state solution is provided by using

a single-peak mountain with uniform zonal wind. To com-

pare our results with the analytic and numerical solutions

shown in DK83, the 2-D NH was initialized using the same

initial conditions and mountain profile as in DK83, and we

analyzed our results using the same metrics as DK83.

The mountain profile is given by

h(x)=
hm

1+
(
x−xc

am

)2
, (27)

where the half-length of the mountain am is 10 km, the

height hm is 1 m, and the prescribed center xc of the pro-

file is 0 km. The initial temperature is T0 = 250 K for an

isothermal atmosphere with the uniform zonal wind ū=

20 m s−1. In the isothermal case, the Brunt–Väisälä fre-

quency N2
= g

d(ln θ̄ )
dz
≈

g2

cpT0
yields the potential temperature

as

θ̄ = θ0e
g

cpT0
z
, (28)

which is one of the prognostic variables in our model.

The domain is defined as (x,z) ∈ [−300,300]× [0,30] km2.

The bottom boundary uses a no-flux boundary condition,

whereas the lateral and top boundaries use sponge layers. The

sponged zone is 10 km deep from the top and 50 km wide

from the lateral boundaries. Over the sponge-layer zone, the

prognostic variables are relaxed to the basic initial hydro-

static state. The model is integrated with a grid resolution

of 1x̄ = 2 km using fifth-order basis polynomials per ele-

ment and1z̄= 375 m for a nondimensional time of ūt
a
= 60,

which corresponds to 8.33 h. Additionally, the model is run

without diffusion or viscosity.

Figure 2 shows the numerical and analytic solutions at

steady state for the horizontal and vertical velocities, which

agree reasonably well. The vertical velocity fields match

very closely, although the extrema in the horizontal veloc-

ity field are underestimated by the numerical model. The

underestimated extrema in the horizontal velocity were also

shown in both models of DK83, which used 1x = 2 km and

1z= 200 m, and in Giraldo and Restelli (2008) (GR08 here-

after), which used 1x̄ = 1.2 km and 1z̄= 240 m with 10th-

order basis polynomials. Our result in the horizontal velocity

is in good agreement with DK83 and GR08.

To check the vertical transport of horizontal momentum,

Fig. 3 shows the normalized momentum flux values at var-

ious times. It is observed that the flux has developed well

and that the simulations reach steady state after ūt
a
= 60. It is

also noted that the mean momentum flux at this time is 97 %

of its analytic value. The result agrees well with DK83 as

well as GR08; however, it is important to point out that the

www.geosci-model-dev.net/7/2717/2014/ Geosci. Model Dev., 7, 2717–2731, 2014
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Table 1. Summary of the resolutions and time-step sizes used for the tests.

Experiment Resolution

(m)

Time-step

size (s)

Linear hydrostatic mountain

wave

(fifth-order basis function)

1x̄ = 2000 and 1z̄= 375

1t = 20

Simulations over the Schär-

type

mountain

(fifth-order basis function)

1x̄ = 300 and 1z̄= 250

1t = 3

2-D density current (fifth- and eighth-order basis

function)

1x̄ = 400 and 1z̄= 64

1x̄ = 200 and 1z̄= 64

1x̄ = 100 and 1z̄= 64

1x̄ = 50 and 1z̄= 64

1t = 0.3

Inertia–gravity wave (eighth-order basis function)

1x̄ = 1250 and 1z̄= 250

1x̄ = 500 and 1z̄= 250

1x̄ = 250 and 1z̄= 250

1x̄ = 125 and 1z̄= 250

1t = 1

Rising thermal bubble (fifth-order basis function)

1x̄ = 20 and 1z̄= 20

1x̄ = 10 and 1z̄= 10

1x̄ = 5 and 1z̄= 5

1t = 0.2

1t = 0.1

1t = 0.05

Durran–Klemp model is based on the FD method in both di-

rections, while the Giraldo–Restelli model is based on SEM

in both directions. The mountain test shows that the terrain-

following vertical coordinate is well suited for the combi-

nation of horizontal SEM and vertical FDM for spatial dis-

cretization, even though we considered a small mountain.

4.2 Tracer-advection and gravity-wave tests over the

Schär-type mountain

In order to verify the feasibility of 2-D NH to treat steep sur-

face elevations associated with the vertical terrain-following

coordinate, we performed the tracer-advection and gravity-

wave experiments introduced by Schär et al. (2002) (SC02

hereafter), in which the mountain is defined by a five-peak

mountain chain, over the Schär-type mountain. To compare

our results with the numerical solution shown in SC02, the

initial conditions and mountain profiles are the same as those

of SC02.

For the tracer-advection test, the mountain profile is given

by

h(x)=

{
h0cos2

(πx
λ

)
cos2

(πx
2a

)
for |x| ≤ a

0 for |x| ≥ a
, (29)

where h0 = 3 km, a = 25 km, and λ= 8 km. The prescribed

wind profile is given by

u(z)= u0


1 for z2 ≤ z

sin2

(
π

2

z− z1

z2− z1

)
for z1 ≤ z ≤ z2

0 for z ≤ z1,

(30)

where u0 = 10 m s−1, z1 = 4 km, and z2 = 5 km, and the ini-

tial tracer is assigned as

q(x,z)= q0

{
cos2

(
πr
2

)
for r ≤ 1

0 else
(31)

with r =

[(
x− x0

Ax

)2

+

(
z− z0

Az

)2
]1/2

,

where amplitude q0 = 1, location (x0,z0)= (−50,9) km,

and the half-width (Ax,Az)= (25,3) km. Since the domain

is defined as (x,z) ∈ [−150,150]× [0,25] km2, the tracer

is centered directly over the mountain at time 2500 s. The

model is integrated with a grid resolution of 1x̄ = 300 m

using fifth-order basis polynomials per element and 1z̄=

250 m using 100 levels for 5000 s. The model is run with-

out any diffusion, filter, or limiter. It should be noted that the

advection equation used in this study is the advective form

defined as

∂q

∂t
=−

(
u
∂q

∂x
+ η̇

∂q

∂η

)
. (32)
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 1 

FIG. 2. Steady-state flow of (top) horizontal velocity (m/s) and (bottom) vertical velocity 2 

(m/s) over 1-m high mountain at nondimensional time 60
ut

a
=  with a grid resolution of 3 

2x∆ =  km using 5th-order basis polynomials per element and 375z∆ =  m. The numerical 4 

solution is represented by solid lines and the analytic solution is represented by dashed lines. 5 

6 

Figure 2. Steady-state flow of (top) horizontal velocity (m s−1) and

(bottom) vertical velocity (m s−1) over 1 m high mountain at nondi-

mensional time ūt
a = 60 with a grid resolution of 1x̄ = 2 km using

fifth-order basis polynomials per element and1z̄= 375 m. The nu-

merical solution is represented by solid lines and the analytic solu-

tion is represented by dashed lines.

The numerical solutions and the error field are shown in

Fig. 4. The figure uses the same contouring interval as in

SC02. Even at t = 2500 s, when the center of the tracer is lo-

cated over the center of the mountain, the distribution of the

initial tracer is generally maintained (Fig. 4a), which means

that 2-D NH using the horizontal spectral element method

and vertical finite difference method can produce numeri-

cal solutions of good quality in response to the strong ver-

tical gradient in the coordinate deformation. It is worth not-

ing that the error in Fig. 4b at t = 5000 s gives ranges of[
−2.71× 10−2,2.35× 10−2

]
, which are substantially small,

and that the error is distributed mainly over the mountain

where distortion of the computational grid is significant.
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FIG. 3. Vertical flux of horizontal momentum, normalized by its analytic value at several 2 

nondimensional times ut

a
. M and MH are the momentum flux of the numerical and analytic 3 

solutions.  4 

5 

Figure 3. Vertical flux of horizontal momentum, normalized by its

analytic value at several nondimensional times ūt
a . M and MH are

the momentum flux of the numerical and analytic solutions.

The Schär-type mountain gravity-wave test was initialized

in a stratified atmosphere with the Brunt–Väisälä frequency

of N = 0.01 s−1, the constant mean flow of ū= 10 m s−1,

and the initial temperature of T0 = 288 K. In the Schär-type

mountain gravity wave, the highest mountain peak was h0 =

250 m, which is relatively lower than that in the advection

test. The mountain profile is given by

h(x)= h0 exp

[
−

(x
a

)2
]

cos2
(πx
λ

)
, (33)

where a = 5 km and λ= 4 km, and the domain is defined as

(x,z) ∈ [−30,30]× [0,21] km2. The model was integrated

with a grid resolution of 1x̄ = 300 m using fifth-order basis

polynomials per element and1z̄= 250 m using 80 levels for

10 h without any diffusion or viscosity. The bottom boundary

had a no-flux boundary condition, while the lateral and top

boundaries had sponge layers. The sponged zone was 10 km

deep from the top and 5 km wide from the lateral boundaries.

Over the sponge layer zone, the prognostic variables were

relaxed to the initial state.

Figure 5 shows the simulated results of the perturbed hor-

izontal and vertical wind speeds after 10 h. In comparison

with the analytic solution, the numerical solutions match

quite well. The results of the present model are also very

similar to the results of other numerical models (Giraldo and

Restelli, 2008; Li et al., 2013). For a quantitative compari-

son, we present the root-mean-square errors for u′, w′, and

θ ′ in Table 2. These values are very comparable with those

of other numerical models (Giraldo and Restelli, 2008; Li et

al., 2013).
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 1 

FIG. 4. Tracer advection test over the topography (red line). (a) Advective tracer at time 2 

0 (black line), 2500 s (orange), and 5000 s (blue). The contour values are from −1.0 to 1.0 3 

with an interval of 0.1. (b) Error at time 5000 s. The contour values are from −0.24 to 0.2 with 4 

an interval of 0.01. The numerical solutions were obtained with a grid resolution of 5 

300x∆ =  m using 5th-order basis polynomials per element and 250z∆ =  m. The sky-blue 6 

dashed lines indicate surfaces of constant eta. The zero contour level is omitted. 7 

(a) 

(b) 

Figure 4. Tracer advection test over the topography (red line).

(a) Advective tracer at time 0 (black line), 2500 s (orange), and

5000 s (blue). The contour values are from −1.0 to 1.0 with an in-

terval of 0.1. (b) Error at time 5000 s. The contour values are from

−0.24 to 0.2 with an interval of 0.01. The numerical solutions were

obtained with a grid resolution of 1x̄ = 300 m using fifth-order ba-

sis polynomials per element and 1z̄= 250 m. The sky-blue dashed

lines indicate surfaces of constant eta. The zero contour level is

omitted.

Table 2. Root-mean-square errors (RMSEs) of the Schär-type

mountain wave after 10 h for 1x̄ = 300 m using fifth-order poly-

nomials per element and 1z̄= 250 m using 80 levels.

Variable RMSE

u (m s−1) 1.43× 10−1

w (m s−1) 3.97× 10−2

θ (K) 3.77× 10−2

4.3 2-D density current test

In order to verify the feasibility of 2-D NH to control os-

cillations with numerical viscosity and evaluate numerical

schemes in 2-D NH, we conducted the density current test

suggested by Straka et al. (1993). The density current test

is initialized using a cold bubble in a neutrally stratified at-

mosphere. When the bubble touches the ground, the density

current wave starts to spread symmetrically in the horizon-
 34 
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FIG. 5. Steady-state flow of (a) perturbed horizontal velocity ( 1m s− ) and (b) vertical 2 

velocity ( 1m s− ) over Schär Mountain after 10 h with a grid resolution of 300x∆ =  m using 3 

5th-order basis polynomials per element and 250z∆ =  m. The numerical solution is 4 

represented by black lines and the analytic solution is represented by red lines. Dashed lines 5 

denote negative values. The contour values are from −2.0 to 2.0 with an interval of 0.2 (0.05) 6 

for the horizontal velocity (the vertical velocity). 7 

8 

(a) 

(b) 

Figure 5. Steady-state flow of (a) perturbed horizontal velocity

(m s−1) and (b) vertical velocity (m s−1) over the Schär-type moun-

tain after 10 h with a grid resolution of 1x̄ = 300 m using fifth-

order basis polynomials per element and 1z̄= 250 m. The numeri-

cal solution is represented by black lines and the analytic solution is

represented by red lines. Dashed lines denote negative values. The

contour values are from −2.0 to 2.0 with an interval of 0.2 (0.05)

for the horizontal velocity (the vertical velocity).

tal direction, forming Kelvin–Helmholtz rotors. Following

Straka et al. (1993), we employed a dynamic viscosity of

ν = 75 m2 s−1 to obtain converged numerical solutions. The

viscosity used here is an explicit Laplacian (∇2) diffusion

operator on coordinate surfaces.
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FIG. 6. Potential temperature perturbation after 900 s using grid spacing of (a) 2 

400x∆ = m, (b) 200x∆ = m, (c) 100x∆ = m, and (d) 50x∆ = m, with 5th-order basis 3 

polynomials per element for the density current. All simulations use 64z∆ = m grid spacing. 4 

The contour values are from −14.5 to −0.5 with an interval of 1.0. 5 

6 

(a) 

(b) 

(c) 

(d) 

Figure 6. Potential temperature perturbation after 900 s using grid

spacing of (a) 1x̄ = 400 m, (b) 1x̄ = 200 m, (c) 1x̄ = 100 m, and

(d) 1x̄ = 50 m, with fifth-order basis polynomials per element for

the density current. All simulations use 1z̄= 64 m grid spacing.

The contour values are from −14.5 to −0.5 with an interval of 1.0.

For an initial cold bubble, the potential temperature per-

turbation is given as

θ ′ =
θc

2
[1+ cos(πr)] , (34)

where θc =−15 K and r =

√(
x−xc

xr

)2

+

(
z−zc

zr

)2

, with the

center of the bubble at (xc,zc)= (0,3000)m and the size

parameter (xr ,zr)= (4000,2000)m. No-flux boundary con-

ditions were used for all boundaries, and the model was

integrated for 900 s on the domain [−25 600,25 600]×

[0,6400] m2. In this study, the potential temperature per-

turbation of θc =−15 K was adopted for comparison with

GR08 and Li et al. (2013). Straka et al. (1993) originally used

a−15 K temperature perturbation. The−15 K potential tem-

perature corresponds to −13.53 K temperature.

Figure 6 shows the potential temperature perturbation af-

ter 900 s for 400, 200, 100, and 50 m grid spacings (1x̄)

using fifth-order basis polynomials per element. All simu-

lations used 1z̄= 64 m grid spacing vertically. As expected,

the higher-resolution experiments produced better solutions

than the lower-resolution experiments. At the very lowest

resolution of 400 m, only two of the three Kelvin–Helmholtz

rotors were generated with somewhat coarsened frontal sur-

faces. In the experiment with a resolution of 200 m, the three

rotors appeared, but the numerical solution still suffered from

the coarsening of frontal surfaces. The solutions on grids

finer than 100 m converged with the three rotor structures ad-

equately simulated. The converged solution was almost iden-

tical to other published solutions (e.g., Straka et al., 1993;

Skamarock and Klemp, 2008; GR08).

In order to examine the effect of higher order of the ba-

sis polynomials than fifth-order, we show profiles of the po-

tential temperature perturbation at the height of 1200 m in

the simulations using fifth-order polynomials together with

the simulations using eighth-order polynomials (Fig. 7). Note

that the simulations using eighth-order polynomials have the

same number of GLL grid points as the simulations using

fifth-order basis polynomials. This was achieved by using

a lower number of elements in the eighth-order experiment

than in the fifth-order experiment as the number of grid

points at a given level becomes ne× np, in which ne refers

to the number of elements and np denotes the polynomial or-

der of the elements. It is also noted that we arbitrarily choose

eighth-order as the higher order. The results from the high-

est grid resolution of the simulations using fifth- and eighth-

order polynomials are indistinguishable and well converged,

with three minima corresponding to the three rotors, which

agree well with other published solutions (Fig. 7a). In addi-

tion to the profiles, the front location (−1 K of potential tem-

perature perturbation at the surface) and the extrema of the

pressure perturbation and potential temperature perturbation

agreed well with each other (Table 3). The numbers in Ta-

ble 3 are comparable to those of GR08. Although the poten-

tial temperature profiles of the simulations using fifth-order

polynomials tend to have more fluctuations than those using

eighth-order basis polynomials, the simulations do not show

a large difference between using eighth-order and fifth-order

basis polynomials (Fig. 7b and c).

In order to investigate the characteristics of the con-

vergence more clearly, a self-convergence test was carried

out. For this test, a reference solution is obtained by us-

ing spatial resolution 1x̄ = 25 m and 1z̄= 64 m and time-

step size 1t = 0.1 s. It is noted that the model solutions

for the four spatial resolutions of 400, 200, 100, and 50 m,

which are shown above, were obtained with the fixed time

step 1t = 0.3 s. Because our model used GLL points and

a pressure-based vertical coordinate, the all-model solutions
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Table 3. Comparison between fifth- and eighth-order polynomials per element for the density current. The simulation was conducted with a

resolution of 1x̄ = 50 m and 1z̄= 50 m.

Order of polynomials Front location (km) p′max (Pa) p′
min

(Pa) θ ′max θ ′
min

5th 14.77 630.62 −452.79 0.08 −8.87

8th 14.74 626.91 −456.84 0.08 −8.94
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   1 

FIG. 7. Profiles of (a) potential temperature perturbation after 900 s along 1200 m height 2 

using grid spacing of 50x∆ = m with 5th-order (thin solid line) and 8th-order (thick solid 3 

line) basis function, (b) difference between various resolution and 50x∆ = m with 5th-order 4 

basis function, (c) difference between various resolution and 50x∆ = m with 8th-order basis 5 

function. 6 

7 

(a) 

(b) 

(c) 

Figure 7. Profiles of (a) potential temperature perturbation after

900 s along 1200 m height using grid spacing of 1x̄ = 50 m with

fifth-order (thin solid line) and eighth-order (thick solid line) basis

function, (b) difference between various resolution and 1x̄ = 50 m

with fifth-order basis function, and (c) difference between various

resolution and 1x̄ = 50 m with eighth-order basis function.
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FIG. 8. Self-convergence test for the density current test; Relative L2 error norms of the 2 

potential temperature perturbation θ ′  as functions of the space resolution x∆  are shown. The 3 

reference solutions for these computations were made with 25x∆ =  m, 64z∆ =  m, and 4 

0.1t∆ =  s. The dotted line represents second-order convergence. 5 

6 

Figure 8. Self-convergence test for the density current test; relative

L2 error norms of the potential temperature perturbation θ ′ as func-

tions of the space resolution1x̄ are shown. The reference solutions

for these computations were made with 1x̄ = 25 m, 1z̄= 64 m,

and 1t = 0.1 s. The dotted line represents second-order conver-

gence.

were interpolated to the equidistant grid of 1x = 400 and

1z= 50 and then used to evaluate errors. Here, we evalu-

ated the error by using the relative L2 error defined by

‖qsimulation‖L2
=

√√√√∫
�(qref− qsimulation)

2d�∫
�
q2

refd�
, (35)

where qsimulation and qref represent the model solution and

reference solution, respectively. The resulting L2 norm of the

error in the potential temperature perturbation θ ′ is plotted in

Fig. 8. At the highest resolution of1x̄ = 50 m, it is noted that

the experimental convergence rate reaches the convergence

rate 2, which depends on the accuracy of the time-split RK3

integration scheme in relatively uniform spacing in the verti-

cal direction. Note that it could be theoretically first-order ac-

curacy with resolution if fully non-uniform vertical spacing

were used, since the centered difference scheme in the ver-

tical direction is implemented. Additionally, it is shown that

the error of the solutions of the eighth-order basis function is

slightly smaller than that of the fifth-order basis function.
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4.4 Inertia–gravity-wave test

This test examines the evolution of a potential temperature

perturbation θ ′ in a constant mean flow with a stratified atmo-

sphere. This initial potential temperature perturbation θ ′ radi-

ates symmetrically to the left and right in a channel with pe-

riodic lateral boundary conditions. The inertia–gravity-wave

test introduced by Skamarock and Klemp (1994) (SK94 here-

after) serves as a tool to investigate the accuracy for NH dy-

namics. We also used this experiment to check the consis-

tency of the results at various resolutions. The parameters for

the test were the same as those of SK94. The initial state was

a constant Brunt–Väisälä frequency of N = 0.01 s−1 with a

surface potential temperature of θ0 = 300 K and a uniform

zonal wind of ū= 20 m s−1. In order to trigger the wave, the

initial potential temperature perturbation θ ′ was overlaid the

above initial state and is given as

θ ′ (x,z)= θc

sin
(
πz
zc

)
1+

(
x−xc

ac

)2
, (36)

where θc = 0.01 K, zc = 10 km, xc = 100 km, and ac = 5 km.

The domain was defined as (x,z) ∈ [0,300]× [0,10] km2.

We used periodic lateral boundary conditions and no-flux

boundary conditions for both the bottom and top boundaries.

The simulation was performed for 3000 s with no viscosity.

Figure 9 shows the solution θ ′ at the initial time and at

time 3000 s with horizontal resolution 1x̄ = 250 m and ver-

tical resolution 1z̄= 250 m. For comparison, the figure uses

the same contouring interval as in SK94 and Giraldo and

Restelli (2008). The results were produced with eighth-order

polynomials per element. We conducted the 2-D NH model

with various basis polynomial orders at the same resolution,

and the simulated results were found to be very comparable.

SK94 provides an analytic solution for the case of the Boussi-

nesq equations; however, it is only valid for the Boussinesq

equations and we used the fully compressible equations in

our model. Using the analytic solution for only qualitative

comparisons, we found that the extrema of our results are

comparable to the analytic values. Compared with the results

of Giraldo and Restelli (2008), for which the fully compress-

ible equations were also used, our results appear very similar.

Figure 10 shows profiles along 5000 m for various hor-

izontal resolutions. All models show consistently identical

solutions with symmetric distribution about the midpoint

(x = 160 km), which is the location to which the initial per-

turbation moved by the horizontal flow of 20 m s−1 after

3000 s. Even in coarser-resolution experiments, it does not

exhibit phase errors, although the maxima and minima near

the midpoint (x = 160 km) are slightly damped. Table 4

shows the extrema of vertical velocities and potential tem-

perature perturbations for the results of various horizontal

resolutions after 3000 s. All the experiments give almost the

same values for potential temperature perturbation, which is
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FIG. 9. Potential temperature perturbation at the initial time (top) and time 3000 s 2 

(bottom) for 250x∆ = m using 8th-order basis polynomials per element and 250z∆ = m 3 

for the inertia-gravity wave. The contour values are from 0 (−0.0015) to 0.009 (0.0025) with 4 

an interval of 0.001 (0.0005) for the initial time (time 3000 s). 5 

6 

Figure 9. Potential temperature perturbation at the initial time (top)

and time 3000 s (bottom) for 1x̄ = 250 m using eighth-order ba-

sis polynomials per element and1z̄= 250 m for the inertia–gravity

wave. The contour values are from 0 (−0.0015) to 0.009 (0.0025)

with an interval of 0.001 (0.0005) for the initial time (time 3000 s).
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FIG. 10. Profiles of potential temperature perturbation along the 5000-m height for 2 

125x∆ =  m (thick solid line), 500x∆ =  m (thin dashed line), and 1250x∆ =  m (thin 3 

solid line) using 8th-order basis polynomials per element for the inertia–gravity wave. All 4 

models use 250z∆ = m. 5 

6 

 

 

Figure 10. Profiles of potential temperature perturbation along the

5000 m height for 1x̄ = 125 m (thick solid line), 1x̄ = 500 m (thin

dashed line), and 1x̄ = 1250 m (thin solid line) using eighth-order

basis polynomials per element for the inertia–gravity wave. All

models use 1z̄= 250 m.
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in the range θ ′ ∈
[
−1.52× 10−3,2.83× 10−3

]
. These val-

ues are comparable to those of other studies. For example,

GR08 gave the ranges of θ ′ ∈
[
−1.51× 10−3,2.78× 10−3

]
from the model based on the spectral element and discon-

tinuous Galerkin methods. Additionally, Li et al. (2013), us-

ing the high-order conservative finite volume model, showed

θ ′ ∈
[
−1.53× 10−3,2.80× 10−3

]
.

4.5 Rising thermal bubble test

We also conducted the rising thermal bubble test to verify

the consistency of the scheme in the model to simulate ther-

modynamic motion (Wicker and Skamarock, 1998). This test

considers the time evolution of warm air in a constant poten-

tial temperature environment for an atmosphere at rest. The

air that is warmer than ambient air rises due to buoyant forc-

ing, which then deforms due to the shearing motion caused

by gradients of the velocity field and eventually shapes the

thermal bubble into a mushroom cloud. Because the test case

has no analytic solution, the simulation results were evalu-

ated qualitatively.

The initial conditions we used follow those of GR08,

in which the domain for the case is defined as (x,z) ∈

[0,1]2 km2. We used no-flux boundary conditions for all four

boundaries. The domain was initialized for a neutral atmo-

sphere at rest with θ0 = 300 K in hydrostatic balance. The po-

tential temperature perturbation to drive the motion is given

as

θ ′ =


0 for r > rc
θc

2

[
1+ cos

(
πr

rc

)]
for r ≤ rc,

(37)

where θc = 0.5 K, r =
√
(x− xc)

2
+ (z− zc)

2 with

(xc,zc)= (500,350)m, and rc = 250 m. The model

was run for a time of 700 s. It should be noted that an

explicit Laplacian (∇2) diffusion on coordinate surfaces

was used with a viscosity coefficient of ν = 1 m2 s−1 for

all simulations of this test. The numerical diffusion was

applied for momentum and potential temperature along the

horizontal and vertical directions to eliminate erroneous

oscillations at the small scale. Although this amount of

diffusion might seem excessive, it was chosen because it

allows the model to remain stable even after the bubble

reaches the top boundary.

Figure 11 shows the potential temperature perturbation,

horizontal wind field, and vertical wind field for the simu-

lations of the two resolutions of 20 and 5 m horizontal and

vertical grid spacings (1x̄ and 1z̄), respectively, employing

fifth-order basis polynomials. In both simulations, the fine

structures in the numerical solutions are well depicted, with

a symmetric distribution at the midpoint and sharp disconti-

nuities of the fields along the boundary lines of the bubble.

At lower resolution, however, degradations in the solution

are visible in the potential temperature perturbation and ver-

tical wind, as illustrated by fluctuations in the values as well
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FIG. 11. Plots of (a, b) potential temperature perturbation (K), (c, d) horizontal wind 2 

(m/s), and (e, f) vertical wind (m/s) for the rising thermal bubble test after 700 s with (left) 3 

, 20x z∆ ∆ = m and (right) , 5x z∆ ∆ = m resolution for the rising thermal bubble test. All 4 

simulations use 5th-order basis polynomials per element. Negative values are denoted by 5 

dashed lines and positive values are denoted by solid lines.  6 
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Figure 11. Plots of (a, b) potential temperature perturbation (K),

(c, d) horizontal wind (m s−1), and (e, f) vertical wind (m s−1) for

the rising thermal bubble test after 700 s with (left) 1x̄,1z̄= 20 m

and (right) 1x̄,1z̄= 5 m resolution for the rising thermal bubble

test. All simulations use fifth-order basis polynomials per element.

Negative values are denoted by dashed lines and positive values are

denoted by solid lines.

as the concave lines at the top of the bubble. It is noted that

although the numerical solution of the model using the spa-

tially centered FDM of Wicker and Skamarock (1998) shows

spurious oscillations in the potential temperature field, the

present simulations of 2-D NH using SEM horizontally and

FDM vertically is devoid of these oscillations.

We also show the vertical profiles of potential perturbation

at x = 500 m after 700 s for various resolutions in Fig. 12.

Simulations were run with the resolutions of 5, 10, and 20 m,

where the resolutions given are defined for both the horizon-

tal and vertical directions. The results of the 10 and 5 m res-

olutions are almost identical. The result of the lowest 20 m

resolution, however, shows a somewhat unresolved solution,

in which the maximum value is underestimated and the phase

shift is depicted. Time series for maximum potential temper-

ature perturbation and maximum vertical velocity are shown
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Table 4. Comparison of the numerical results for various horizontal resolutions for the inertia–gravity wave. All simulations use eighth-order

polynomials per element and a vertical resolution of 1z̄= 250 m.

Resolution (m) wmax (m s−1) wmin (m s−1) θ ′max θ ′
min

1x̄ = 125 2.85× 10−3
−2.89× 10−3 2.83× 10−3

−1.52× 10−3

1x̄ = 250 2.80× 10−3
−2.82× 10−3 2.83× 10−3

−1.52× 10−3

1x̄ = 500 2.73× 10−3
−2.73× 10−3 2.83× 10−3

−1.52× 10−3

1x̄ = 750 2.72× 10−3
−2.70× 10−3 2.83× 10−3

−1.52× 10−3

1x̄ = 1250 2.68× 10−3
−2.62× 10−3 2.82× 10−3

−1.52× 10−3
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FIG. 12. Vertical profiles of the potential temperature perturbation for the rising thermal 2 

bubble test at x = 500 m after 700 s for various resolutions: , 20x z∆ ∆ = m (thin solid line), 3 

, 10x z∆ ∆ = m (thin dashed line), and , 5x z∆ ∆ = m (thick solid line). 4 

5 

Figure 12. Vertical profiles of the potential temperature perturba-

tion for the rising thermal bubble test at x = 500 m after 700 s

for various resolutions: 1x̄,1z̄= 20 m (thin solid line), 1x̄,1z̄=

10 m (thin dashed line), and 1x̄,1z̄= 5 m (thick solid line).

in Fig. 13. In all simulations, the maximum vertical velocity

increases as the maximum theta perturbation decreases. This

shows that the thermal energy of the theta perturbation leads

to the acceleration of the vertical velocity. This result agrees

well with the study of Ahmad and Lindeman (2007).

5 Summary and conclusions

The non-hydrostatic compressible Euler equations for a dry

atmosphere were solved in a simplified 2-D slice (X–Z)

framework by using spectral element method (SEM) for the

horizontal discretization and finite difference method (FDM)

for the vertical discretization. The form of the Euler equa-

tions used here is the same as those used in the Weather Re-

search and Forecasting (WRF) model. We employed a hybrid

sigma–pressure vertical coordinate, which can be converted

exactly into a sigma–pressure coordinate at the level of the

actual coding implementation.

For the spatial discretization, the spatial operators were

separated into their horizontal and vertical components. In
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FIG. 13. Domain maximum potential temperature perturbation (top) and vertical wind 2 

(bottom) for the rising thermal bubble test. All simulations use 5th-order basis polynomials 3 

per element, and the vertical resolutions are the same as the horizontal resolutions. 4 

 5 

Figure 13. Domain maximum potential temperature perturbation

(top) and vertical wind (bottom) for the rising thermal bubble test.

All simulations use fifth-order basis polynomials per element, and

the vertical resolutions are the same as the horizontal resolutions.

the horizontal components, the operators were discretized

using SEM, in which high-order representations are con-

structed through the GLL grid points by Lagrange interpo-

lations in elements. Using GLL points for both interpola-

tion and integration results in a diagonal mass matrix, which

means that the inversion of the mass matrix is trivial. In

the vertical components, the operators were discretized us-

ing the third-order upwind-biased finite difference scheme

for the vertical fluxes and centered differences for the ver-

www.geosci-model-dev.net/7/2717/2014/ Geosci. Model Dev., 7, 2717–2731, 2014
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tical derivatives. The time discretization relied on the time-

split, third-order Runge–Kutta technique.

We presented results from idealized standard benchmark

tests for large-scale flows (e.g., mountain-wave tests) and for

non-hydrostatic-scale flows (e.g., inertia–gravity wave, rising

thermal bubble, and density current). By varying the viscos-

ity between test cases, the numerical results showed that the

present dynamical core is able to produce high-quality so-

lutions comparable to other published solutions. These tests

effectively revealed that the combined spatial discretization

method of the spectral element and finite difference methods

in the horizontal and vertical directions, respectively, offers a

viable method for the development of a NH dynamical core.

Further work will be needed to achieve accurate solutions

for a resting atmosphere over steep orography with minimal

diffusion and to implement a horizontal diffusion operator

in physical space, although horizontal diffusion on the coor-

dinate surface was used in this study. Further research will

also be conducted to couple the present core with the exist-

ing physics packages and extend the 2-D slice framework to

develop a 3-D dynamical core for the global atmosphere in

which the cubed-sphere grid is used for the spherical geom-

etry.
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