Articles | Volume 17, issue 8
https://doi.org/10.5194/gmd-17-3175-2024
https://doi.org/10.5194/gmd-17-3175-2024
Model experiment description paper
 | 
23 Apr 2024
Model experiment description paper |  | 23 Apr 2024

NorSand4AI: a comprehensive triaxial test simulation database for NorSand constitutive model materials

Luan Carlos de Sena Monteiro Ozelim, Michéle Dal Toé Casagrande, and André Luís Brasil Cavalcante

Related subject area

Numerical methods
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary
Assessing the benefits of approximately exact step sizes for Picard and Newton solver in simulating ice flow (FEniCS-full-Stokes v.1.3.2)
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024,https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary

Cited articles

Basheer, I. A.: Selection of Methodology for Neural Network Modeling of Constitutive Hystereses Behavior of Soils, Comput.-Aided Civ. Inf., 15, 445–463, https://doi.org/10.1111/0885-9507.00206, 2000. a
Bentley: NorSand – PLAXIS UDSM – GeoStudio | PLAXIS Wiki – GeoStudio | PLAXIS – Bentley Communities – communities.bentley.com, https://communities.bentley.com/products/geotech-analysis/w/wiki/52850/norsand---plaxis-udsm (last access: 15 November 2023), 2022. a
Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., and Cox, D. D.: Hyperopt: a Python library for model selection and hyperparameter optimization, Computational Science & Discovery, 8, 014008, https://doi.org/10.1088/1749-4699/8/1/014008, 2015. a
Feinberg, J. and Langtangen, H. P.: Chaospy: An open source tool for designing methods of uncertainty quantification, J. Comput. Sci., 11, 46–57, https://doi.org/10.1016/j.jocs.2015.08.008, 2015. a, b
Fu, Q., Hashash, Y. M., Jung, S., and Ghaboussi, J.: Integration of laboratory testing and constitutive modeling of soils, Comput. Geotech., 34, 330–345, https://doi.org/10.1016/j.compgeo.2007.05.008, 2007. a
Download
Short summary
The paper addresses synthetic dataset challenges in nonlinear constitutive modeling of soils, providing two datasets: one with 2000 soil types, 40 test conditions each (160 000 triaxial tests), and a second with 2048 soil types, 42 test conditions each (172 032 triaxial tests). Each dataset is a 4000×10 matrix applicable for multivariate forecasting and geotechnical simulations. In addition, a new Python code is introduced, empowering researchers to leverage Python packages for NorSand analyses.