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Abstract. In soil sciences, parametric models known as con-
stitutive models (e.g., the Modified Cam Clay and the Nor-
Sand) are used to represent the behavior of natural and ar-
tificial materials. In contexts where liquefaction may occur,
the NorSand constitutive model has been extensively applied
by both industry and academia due to its relatively simple
critical state formulation and low number of input parame-
ters. Despite its suitability as a good modeling framework to
assess static liquefaction, the NorSand model still is based
on premises which may not perfectly represent the behavior
of all soil types. In this context, the creation of data-driven
and physically informed metamodels emerges. The literature
suggests that data-driven models should initially be devel-
oped using synthetic datasets to establish a general frame-
work, which can later be applied to experimental datasets to
enhance the model’s robustness and aid in discovering poten-
tial mechanisms of soil behavior. Therefore, creating large
and reliable synthetic datasets is a crucial step in construct-
ing data-driven constitutive models. In this context, the Nor-
Sand model comes in handy: by using NorSand simulations
as the training dataset, data-driven constitutive metamodels
can then be fine-tuned using real test results. The models
created that way will combine the power of NorSand with the
flexibility provided by data-driven approaches, enhancing the
modeling capabilities for liquefaction. Therefore, for a mate-
rial following the NorSand model, the present paper presents
a first-of-its-kind database that addresses the size and com-
plexity issues of creating synthetic datasets for nonlinear
constitutive modeling of soils by simulating both drained and
undrained triaxial tests. Two datasets are provided: the first
one considers a nested Latin hypercube sampling of input pa-
rameters encompassing 2000 soil types, each subjected to 40

initial test configurations, resulting in a total of 160 000 triax-
ial test results. The second one considers nested quasi-Monte
Carlo sampling techniques (Sobol and Halton) of input pa-
rameters encompassing 2048 soil types, each subjected to 42
initial test configurations, resulting in a total of 172 032 tri-
axial test results. By using the quasi-Monte Carlo dataset and
49 of its subsamples, it is shown that the dataset of 2000 soil
types and 40 initial test configurations is sufficient to rep-
resent the general behavior of the NorSand model. In this
process, four machine learning algorithms (Ridge Regressor,
KNeighbors Regressor and two variants of the Ridge Regres-
sor which incorporate nonlinear Nystroem kernel mappings
of the input and output values) were trained to predict the
constitutive and test parameters based solely on the triaxial
test results. These algorithms achieved 13.91 % and 16.18 %
mean absolute percentage errors among all 14 predicted pa-
rameters for undrained and drained triaxial test inputs, re-
spectively. As a secondary outcome, this work introduces a
Python script that links the established Visual Basic imple-
mentation of NorSand to the Python environment. This en-
ables researchers to leverage the comprehensive capabilities
of Python packages in their analyses related to this constitu-
tive model.

1 Introduction

In situations where liquefaction is a potential concern,
geotechnical engineers and soil scientists seek suitable mod-
eling frameworks to accurately evaluate and mitigate asso-
ciated risks. One specific scenario highlighting this need is
the case of filtered tailing piles. These piles pose significant
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geotechnical risks related to liquefaction, requiring thorough
assessment through appropriate constitutive modeling. Fac-
tors such as the height and speed of stacking play crucial
roles in creating vulnerable regions within the pile suscep-
tible to liquefaction. The existence of a liquefaction trigger,
particularly in undrained loading conditions, has the poten-
tial to result in the structural collapse of the pile.

In this scenario, the NorSand constitutive model emerges
as a suitable alternative to liquefaction modeling due to its
relatively simple critical state formulation and low number
of input parameters. This model is a generalized critical state
model based on the state parameter ψ , as defined by Jefferies
(1993):

ψ = e− ec, (1)

where e is the current void ratio and ec is the void ratio at
the critical state. The NorSand model emulates natural soil
behavior by incorporating associated plasticity and limited
hardening, which enables dilation similar to that observed in
real soils. This limited hardening causes yielding during un-
loading conditions and provides second-order detail in repli-
cating observed soil behavior (Silva et al., 2022; Jefferies and
Been, 2015).

Despite its suitability as a good modeling framework to
assess static liquefaction (Sternik, 2015), the NorSand model
still is based on premises which may not perfectly represent
the behavior of all soil types. Also, only recently the Nor-
Sand method has been implemented in commercial finite el-
ement software (Rocscience, 2022; Itasca Consulting Group,
2023; Bentley, 2022). Besides, regarding open-source distri-
butions, only the Visual Basic (VBA) implementation pre-
sented by Jefferies and Been (2015) is available. It is pre-
cisely in this context that the creation of data-driven and
physically informed metamodels emerges. These metamod-
els, when based on artificial intelligence techniques, espe-
cially machine learning (ML) and deep learning (DL), may
be able to provide accurate and computationally cheap mod-
els, allowing them to be a perfect link between complex com-
putational models and real-time data collection and monitor-
ing. Such methods need to be trained on large-scale datasets
and this is where the NorSand model comes in handy: by us-
ing NorSand simulations as the training dataset, data-driven
constitutive metamodels can then be fine-tuned using real test
results. These models will combine the power of NorSand
with the flexibility provided by data-driven approaches, en-
hancing the modeling capabilities for liquefaction.

Thus, the current paper aims to address three main is-
sues: the quantity and complexity of synthetic datasets for
nonlinear constitutive modeling of soils and the availability
of open-source implementations of the NorSand constitutive
model. The first two aspects are addressed by simulating both
drained and undrained triaxial tests. Two datasets are pro-
vided: the first one will be used to study how large a given
dataset must be in order to accurately capture the behavior

of a NorSand material, while the second one, completely dif-
ferent from the first dataset, will be a perfect out-of-sample
testing dataset used to perform the sample size validations
mentioned. A byproduct of such sample size validation will
be the training of different machine learning algorithms to
perform the following learning task: obtain the input param-
eters of the NorSand model solely from the results of triaxial
tests. Different sampling techniques will be used to produce
the datasets mentioned, such as nested Latin hypercube and
quasi-Monte Carlo sampling of input parameters. Then, the
third aspect is considered by presenting an implementation
which connects the well-known VBA implementation to the
Python environment. We will use the VBA code as the “pro-
cessing kernel” of our Python implementation, taking advan-
tage of the years of tests and validation of the algorithm pro-
vided by Jefferies and Been (2015). This new Python code
allows other researchers to use the full power of Python pack-
ages during their analyses involving NorSand.

The paper is structured as follows: Sect. 2 presents the gen-
eral concepts of data-driven metamodels, with special em-
phasis given to soil constitutive modeling. Then, Sect. 3 in-
troduces the Norsand model. Section 4 presents the methods
considered in this study. Section 5 describes the associated
data records, while Sect. 6 presents technical validation of
the results. Section 7 presents some usage notes and codes
considered in the paper. Finally, Sect. 8 presents the conclu-
sions.

2 Data-driven metamodels

Montáns et al. (2019) emphasize that human learning in-
volves observing and experiencing the world, collecting data
and identifying patterns through repeated experiments. Sci-
entific discovery involves formalizing these patterns and re-
lationships into laws and equations, transforming data into
properties and variables, and converting observations into
events. Although laws and equations aid learning, the clas-
sical learning process in science is often slow and expen-
sive, requiring extensive observation and experimentation to
understand the main variables and their impact on the phe-
nomenon. Data-driven procedures, on the other hand, seek,
if possible, an implicitly unbiased approach to our learning
experience based on raw data from actual or synthetic ob-
servations. These procedures have the added advantage of
testing correlations between different variables and observa-
tions, learning unanticipated patterns in nature and allowing
us to discover new scientific laws or even make predictions
without the availability of such laws.

The recent rapid increase in the availability of measure-
ment data from physical systems as well as from massive nu-
merical simulations has stimulated the development of many
data-driven methods for modeling and predicting dynam-
ics. At the forefront of data-driven methods are deep neural
networks (DNNs). DNNs not only achieve superior perfor-
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mance for tasks such as image classification, but have also
proven effective for future-state prediction of dynamical sys-
tems (Haghighat et al., 2021). A key limitation of DNNs
and similar data-based methods is the lack of interpretabil-
ity of the resulting model: they are focused on prediction and
do not provide governing equations or clearly interpretable
models in terms of the original set of variables. An alter-
native data-based approach uses symbolic regression to di-
rectly identify the structure of a nonlinear dynamical system
from data (Schmidt and Lipson, 2009). This works remark-
ably well for discovering interpretable physical models, but
symbolic regression is computationally expensive and can be
difficult to scale to large problems (Montáns et al., 2019).

2.1 Data-driven constitutive modeling

In order to create metamodels from neural networks (NN),
this type of approach generally requires a priori calibration
of the algorithms from data considered to be representative
of material behavior (He et al., 2021). For example, NNs
have been applied to model a variety of materials, includ-
ing concrete materials (Ghaboussi et al., 1991), hyperelas-
tic materials (Shen et al., 2005), viscoplastic steel material
(Furukawa and Yagawa, 1998) and homogenized properties
of mixed structures (Lefik and Schrefler, 2003). Once cali-
brated, NN-based constitutive models have been integrated
into finite element codes to predict path- or rate-dependent
material behaviors (Lefik and Schrefler, 2003; Hashash et al.,
2004; Jung and Ghaboussi, 2006; Stoffel et al., 2019).

Recently, DNNs with special mechanistic architectures,
such as recurrent neural networks (RNNs), have been applied
to path-dependent materials (Wang and Sun, 2018; Mozaffar
et al., 2019; Heider et al., 2020). It is clear that this type of
approach has found significant application in a wide range
of engineering fields, as reinforced by He et al. (2021) when
they argue that data-driven computation with physical con-
straints is an emerging computational paradigm that allows
the simulation of complex materials directly based on the
materials database and disregards the classical constitutive
model construction.

To develop a data-driven constitutive model, a substantial
and reliable dataset is necessary. However, obtaining a suffi-
ciently large dataset for soil science can be challenging since
experimental data are often limited and inadequate for train-
ing ML and DL algorithms. Generating synthetic data using
a theoretical function can be a useful alternative, as it allows
for the creation of an unlimited supply of data (Zhang et al.,
2021a).

The literature suggests that data-driven models should ini-
tially be developed using synthetic datasets to establish a
general framework, which can later be applied to experi-
mental datasets to enhance the model’s robustness and aid
in discovering potential mechanisms of soil behavior (Zhang
et al., 2021a). By calibrating constitutive models on synthetic
datasets, the impact of experimental and measurement errors

on the mapping ability of machine learning algorithms can
be eliminated (Zhang et al., 2020). Therefore, creating large
and reliable synthetic datasets is a crucial step in constructing
data-driven constitutive models.

2.2 Data-driven soil constitutive models

Currently, there is a lack of robust and high-volume datasets
in the literature for soil modeling tasks. One effective method
to generate synthetic datasets is through numerical simula-
tions performed on digital soil models. Typically, these sim-
ulations involve selecting a parametric constitutive model,
sampling some parameters and running simulations that
mimic real-world test setups. In soil modeling, triaxial tests
are commonly simulated using conventional physics-driven
constitutive models, such as simple monotonic Konder’s ex-
pression (Basheer, 2000), or more advanced models like the
Modified Cam Clay (MCC) (Fu et al., 2007; Zhang et al.,
2023).

In particular, a simple sand shear constitutive model was
used to generate synthetic datasets in the work of Zhang
et al. (2021b). A total of 14 curves were generated to de-
velop the ML-based constitutive model (9 curves for training
and 5 curves for testing).

On the other hand, the MCC constitutive model was uti-
lized to produce a benchmark stress–strain dataset of a virtual
soil in the work of Zhang et al. (2023). In that study, a total
of 250 soil types were considered, with 125 being part of the
training dataset and the remaining 125 in the testing dataset.
Considering all the initial states in the paper by Zhang et al.
(2023), 1125 sets of stress–strain samples were employed as
the training dataset, while 1250 sets of stress–strain samples
constituted the testing dataset.

The MCC model has been a fundamental element in nu-
merous complex models developed in recent times (Yao
et al., 2008). However, this model and its variations are not
well suited for depicting the behavior of actual sands due to
their insufficient representation of key features such as yield-
ing and dilation. This is because these models assume that
soils denser than the critical state line are overconsolidated,
resulting in unrealistically high stiffness and excessively ex-
aggerated strength (Woudstra, 2021). As indicated in the In-
troduction section, the NorSand constitutive model presents
clear advantages over the MCC model and, therefore, shall
be described in detail in the next section.

3 NorSand

The NorSand constitutive model is a comprehensive critical
state model that effectively accounts for the impact of void
ratio on soil behavior, providing a robust framework for mod-
eling static liquefaction in engineering applications. A dis-
tinctive characteristic of soils is that their void ratios or rela-
tive densities influence their mechanical properties. In this

https://doi.org/10.5194/gmd-17-3175-2024 Geosci. Model Dev., 17, 3175–3197, 2024



3178 L. C. d. S. M. Ozelim et al.: NorSand4AI

Table 1. Input values for NorSand model also used as inputs for the NorSandTXL VBA routine (Jefferies and Been, 2015).

Soil properties

Parameter class Parameter Sampling range Unit Description

CSL parameters
0|p′=1 kPa [0.9,1.4] – CSL mean effective stress at p′ = 1kPa
λ [0.01,0.07] (lnkPa)−1 Slope of CSL defined on base e

Plasticity

Mtc [1.2,1.5] – Critical friction ratio, with triaxial com-
pression as a reference condition

N [0.2,0.5] – Volumetric coupling parameter
χtc [2,5] – Relates minimum dilatancy to corre-

sponding ψ , with triaxial as a reference
condition

H0 [75,500] – H is the loading plastic hardening mod-
ulus, such that H =H0+Hψψ .Hψ [200,500] –

Elasticity
Gmax|p′0

[30,100] MPa Shear modulus at p′ = p′0
Gexp [0.1,0.6] – Exponent of nonlinear shear

modulus change with stress,
Gmax = Gmax|p′0

(p′/p′0)
Gexp

ν [0.1,0.3] – Poisson’s ratio

Initial soil state

Parameter class Parameter Sampling range Unit Description

Stress and deformability

ψ0 [−0.2,ψmax/5] – Initial critical state parameter, where
ψmax =Mtc/(χ(1+N))

p′0 [50,1000] kPa Initial mean effective stress
K0 [0.8,1.2] – Geostatic stress ratio
OCR (“R”) [0.5,3] – Overconsolidation ratio

regard, NorSand, as a constitutive model, aptly elucidates
changes in soil behavior resulting from variations in void ra-
tio (Jefferies and Been, 2015).

Within the Critical State Soil Mechanics (CSSM) frame-
work, NorSand aligns with widely used models like the Orig-
inal Cam Clay (OCC; Schofield and Wroth, 1968) and the
MCC (Roscoe and Burland, 1968). In fact, the NorSand and
OCC yield surfaces have the same shapes and the same flow
rules. CSSM is founded on two principles: (1) the presence of
a unique failure locus known as the critical state locus (CSL)
and (2) the assertion that shear strain guides soil toward the
CSL.

The primary limitation of MCC, especially when applied
to sands, lies in its inability to capture the dilation behavior
observed in dense sands. Moreover, it proves inadequate in
predicting the behavior of loose sands and is unsuitable for
addressing liquefaction-related issues. NorSand’s key advan-
tage lies in its incorporation of a state parameter, representing
the difference between the current void ratio of the soil and
its critical state. This approach uniquely relates soil dilation
or compaction to the state parameter (Rocscience, 2022).

NorSand stands out for its ease of use, particularly for
practical geotechnical engineers. It relies on a minimal set of
material properties, conveniently measurable through stan-

dard laboratory tests. The model effectively captures a wide
range of soil behaviors influenced by varying density and
confining stress. The key additional parameter, beyond what
is necessary for defining an MCC model, is the state pa-
rameter. In situations where precision in representing volume
change is crucial, the added effort required for parameter de-
termination is more than justified.

Developed initially for sands based on observations in
large-scale hydraulic fills such as tailing dams, NorSand ap-
plicability extends beyond, encompassing any soil where
particle-to-particle interactions are controlled by contact
forces and slips, rather than cohesive bonds. Present appli-
cations of NorSand span a range from well-graded tills to
sands and clayey silts (Jefferies and Been, 2015).

The input parameters of the NorSand model are presented
in Table 1, where the meaning of each parameter is also pre-
sented in the column “Description”. The sampling ranges
presented will be discussed in the next section, as they are
not intrinsic to the NorSand model.
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4 Methods

4.1 Data generation

The NorSandTXL program is an Excel spreadsheet with all
coding in the VBA environment and can be downloaded at
http://www.crcpress.com/product/isbn/9781482213683 (last
access: 8 February 2024), as indicated in the book by Jef-
feries and Been (2015). This particular spreadsheet simulates
drained and undrained triaxial tests of materials governed by
the NorSand constitutive model. The input features available
in NorSandTXL are presented in Table 1, as well as their
sampling ranges. The sampling ranges adopted come from
literature results on the behavior of real granular materials.
An initial version of such ranges was first presented by Jef-
feries and Shuttle (2002) and has been updated ever since.
The ranges presented in Table 1 reflect the latest compilation
available and reported by Jefferies and Been (2015). This
way, practitioners will especially benefit from the datasets
generated, since the parameters involved have been chosen
so as to represent real granular materials.

In order to massively simulate triaxial test conditions
for materials following the NorSand constitutive model, a
Python routine has been developed. This routine performs
two main steps: sampling and simulation. For the sampling
process, all 14 input parameters are sampled in a nested man-
ner, as there are two levels of hierarchy in the parameters: the
higher level deals with the soil properties, which are unique
for a given material, while the lower level considers the initial
soil state during the triaxial tests. As a result, the sampling
process needs to (a) account for different types of materi-
als and (b) for each type of material, consider several testing
conditions. Two datasets will be produced, as the next sub-
section will describe.

Thus, the following sampling procedure is considered to
account for nsoils types of soils under nconditions initial testing
conditions:

– Sample the soil properties (the first 10 parameters
in Table 1), obtaining a vector of properties spi ,
i = 1, . . .,nsoils, such that spi ∈ R10. The sampling is
performed using the centered Latin hypercube sam-
pling (LHS) algorithm implemented in the Chaospy
package (Feinberg and Langtangen, 2015) with a max-
imin criterion (first dataset) or using a Sobol (Sobol,
1967) quasi-Monte Carlo sampling technique imple-
mented in SciPy (Virtanen et al., 2020) (second dataset).

– For each spi , the initial testing conditions (the last four
parameters in Table 1) are sampled using the standard
Latin hypercube sampling algorithm implemented in
the Chaospy package (Feinberg and Langtangen, 2015)
with a ratio criterion (first dataset) or a Halton (Hal-
ton, 1960) quasi-Monte Carlo sampling scheme (second
dataset) implemented in SciPy (Virtanen et al., 2020).
This way, the vectors ici,j ∈ R4, j = 1, . . .,nconditions

are obtained for each spi . The maximum value of ψ0
is set to ψmax/5 (as indicated in Table 1) for numeri-
cal stability. Additionally, to make the ici,j different for
each spi , the random seed of the sampling algorithm is
changed for each i.

From the procedure above, the matrix In of input parame-
ters is obtained, whose rows are NorSandTXL input vectors
obtained by concatenating each spi with all the ici,j , i.e.,
[concat(sp1, ic1,1),concat(sp1, ic1,2), . . .,concat(spnsoils

,

icnsoils,nconditions)], where “concat” denotes a concatenation
operation between vectors. This implies that In is a
(nsoilsnconditions) by 14 matrix. The filling capabilities of the
sampling schemes considered can be seen in Fig. 1.

Figure 1 reveals that the Latin hypercube sampling
presents an apparent randomness on how the points are
spread in the space. Quasi-Monte Carlo techniques, on the
other hand, have a high predictability (as they are determinis-
tic) but also fill in the input space adequately. The difference
between the lower plots in Fig. 1 is that the lower-left plot
presents the sampled pairs of values for a total of 2048 ma-
terials, while the lower-right plot presents the sampled pairs
for a single material. The nested quasi-Monte Carlo sampling
suffers from its deterministic nature, but shuffling the values
helps to provide a better spread, as shall be discussed.

One may notice that besides ψ0, which is restricted by a
fraction of ψmax, an independent sampling of input parame-
ters was conducted. This was considered to explore the be-
havior of the NorSand model across all conceivable regions
of the input parameter space. The objective was to enhance
understanding of the analytical characteristics of the trans-
fer function, which accepts these parameters as inputs and
produces triaxial test results as outputs. This strategy ensures
that the learning process remains unbiased, thereby prevent-
ing the algorithm from solely learning the transfer function
within a specific area of interest. Broadening the scope of
learning task beyond such confines can positively influence
the overall learning process. For specific applications where
the correlation among input parameters holds greater signif-
icance, adjusting loss weights for points within and outside
the region of interest could be beneficial. This adjustment
represents a choice that can be made. In future work, espe-
cially in the development of constitutive models tailored for
specific purposes, it is advisable to consider this correlation
structure.

The simulation step involves opening the Excel spread-
sheet provided in the book by Jefferies and Been (2015),
inputting the sampled parameters, running both drained and
undrained simulations for the input parameters and collecting
their respective results. By design, the NorSandTXL Excel
spreadsheet considers 4000 strain steps to go from zero to ap-
proximately 20 % nominal axial strain at the end of the sim-
ulated test. The authors of the spreadsheet indicate that this
amount is both convenient and sufficient (Jefferies and Been,
2015). For a triaxial effective stress state with vertical stress
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Figure 1. Scatter plot illustrating how each space-filling technique works for particular pairs of constitutive and test-related parameters.

σ ′a (kPa) and confining stress σ ′r (kPa), a total of 10 entities
are reported from the tests, which are ε1 (axial strain), εv
(volumetric strain), p′ = (σ ′a +2σ ′r)/3 (mean effective stress
in kPa), q = σ ′a − σ

′
r (deviatoric stress in kPa), e (void ra-

tio), pi/p′ (stress ratio), (pi/p′)max (maximum stress ratio),
ψ (state parameter), Dp (dilation) and η = q/p′. Thus, the
dataset is a 4000× 10 array, as presented in Table 2.

After the simulation is run, the results are saved in .h5 for-
mat files for postprocessing. The file extension .h5 is associ-
ated with the Hierarchical Data Format (HDF5) (The HDF
Group, 1997-2023), which is a type of high-performance
distributed file system. It is specifically designed to man-
age large and complex datasets efficiently and flexibly. Ad-
ditionally, it enables a self-describing file format that is
portable and supports parallel I/O for data compression (Lee
et al., 2022), and has shown superior performance with high-
dimensional and highly structured data (Nti-Addae et al.,
2019). The literature indicates that the HDF5 has been popu-
lar in scientific communities since the late 1990s (Lee et al.,
2022), which is evident by the large number of open-source
and commercial software packages for data visualization and
analysis that can read and write HDF5 (The HDF Group,

2023). As a result, this is the data format chosen for the
present paper.

4.2 Sample size validation

The samples generated using the methods in the previous
subsection need to be sufficiently large in order to represent
the general behavior of the NorSand model. The best way to
show that the sample size is sufficient is to study how a model
calibrated (or trained) on a given dataset performs. So, we
chose the most direct (and actually most important) learning
task one could face while working with the datasets gener-
ated: back-calculation of the constitutive parameters of the
model based solely on the triaxial test results. In short, from
the triaxial tests we will learn the values of the parameters
which govern the behavior of the material.

This way, it is possible to recall that a total of 14 parame-
ters (10 constitutive and 4 related to test conditions) are used
to generate the triaxial test results (4000× 10 array where
4000 denotes the number of time steps of the loading pro-
cess and 10 is the number of quantities monitored during the
test), as presented in Table 2. From last subsection’s notation,
Let Ini (shape 1× 14) be the ith row of the In matrix, which
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Table 2. Example of the dataset collected from the NorSandTXL spreadsheet.

ε1 εv p′ q e pi/p
′ (pi/p

′)max ψ Dp η

0 0 200 0 0.9021 0.42306 1 0 0.92603 0
0.06097 0.04314 209.561 28.2795 0.90128 0.40376 1 0 0.92603 0.13495
0.07544 0.05481 210.703 31.7059 0.90106 0.40811 0.99319 0.001981083 1.31505 0.15048
0.0897 0.06628 211.821 35.0611 0.90084 0.41236 0.99284 0.002085266 1.29952 0.16552

. . .
19.3293 2.10004 387.564 562.29 0.86216 1.00101 1.00087 −0.000251146 −0.00146 1.45083
19.3334 2.10003 387.564 562.29 0.86216 1.00101 1.00087 −0.000251018 −0.00146 1.45083
19.3374 2.10002 387.564 562.29 0.86216 1.00101 1.00087 −0.000250889 −0.00146 1.45083

contains the constitutive parameters, and let ttui and ttdi be
the results of the triaxial test under undrained and drained
conditions, respectively (4000×10 arrays, each) obtained by
using these parameters on the NorSandTXL routine.

We will consider the following learning problem: from
a sample of input parameters In= Inn,m, which considers
n different types of soil and m different test configurations
(therefore with nm rows), we will use the ttui (or ttdi),
for i = 1, . . .,nm, to learn the vectors of parameters Ini , for
i = 1, . . .,nm. We wish to investigate what the values of n
and m are that suffice to produce an accurate representation
of the model. In order to do so, following standard learning
tasks in a machine learning context, we need training, valida-
tion and testing data. It is worth noting that our methodology
needs to be robust, so we indeed need the validation dataset
because hyperparameter tuning will be performed.

The first dataset obtained by following the methods
in Sect. 4.1 was generated by a Latin hypercube sam-
pling (LHS) algorithm, which is known to provide low-
discrepancy sequences of values (i.e., the samples are spread
in the domain of the sampled variables). Despite being a re-
ally powerful technique, LHS lacks one relevant property: se-
quences obtained by LHS are not extensible. To put it simply,
being extensible means that a sample of size j contains the
values of the sample of size k, j > k. This way, it would not
be possible to subsample from our original sample In in or-
der to build smaller datasets without losing the space-filling
capability of the dataset. This way, we needed to consider
another sampling scheme to perform our investigation.

We chose to combine two quasi-Monte Carlo low dis-
crepancy sequence generation techniques, i.e., Sobol (Sobol,
1967) and Halton (Halton, 1960), which are also extensible,
to perform our tests. In that case, we generated a dataset with
n= 2048 and m= 42 using Sobol sampling for the consti-
tutive parameters (10 parameters) and Halton sampling for
the experimental test condition variables (four variables) us-
ing the SciPy Python package (Virtanen et al., 2020). Both
sequences have been scrambled (Owen and Rudolf, 2021) to
improve their robustness for space filling. By using these pa-
rameters, we ran the NorSandTXL routine in the same man-
ner as described in Sect. 4.1 and obtained the corresponding

triaxial test results for both drained and undrained cases. Let
us call this new dataset and qIn2048,42.

By using the extensibility property of the sequences con-
sidered, 49 subsamples were taken: qInn,m for n in [32, 64,
128, 256, 512, 1024, 2048] and m in [6, 12, 18, 24, 30, 36,
42]. One may see that powers of 2 were used as sample sizes
for the Sobol sampling scheme, which is standard and derives
from its implementation in scipy.stats. It is worth noting that,
in general, none of the entries of Inn,m will be in qInn,m,
which indicates that using qInn,m for training and validation,
and Inn,m for testing, does not allow for any data “leakage”.
Besides, there is a clear benefit in using Inn,m as a test set: all
the models will be tested on the same dataset.

For the learning task considered, we used the scikit-learn
Python package (Pedregosa et al., 2011) and chose four al-
gorithms: Ridge Regressor, KNeighbors Regressor and two
variants of the Ridge Regressor which incorporate nonlinear
mappings of the input and output values. The first two algo-
rithms mentioned belong to two different classes: linear and
neighbors-based regressors. They were chosen to illustrate
how different types of algorithms learn our chosen task. The
variants of the Ridge Regressor were chosen to account for
nonlinearities by using the kernel trick. Considering the high
dimensionality of the input datasets, using traditional kernels
is not computationally feasible, so we used Nystroem kernels
(Yang et al., 2012), which approximate a kernel map using a
subset of the training data. By combining Nystroem kernels
and Ridge Regressors, we can map the inputs to a nonlinear
feature space and then consider a linear regression on these
features. This is a similar approach to the one considered to
build support vector machine regressors, but with a slightly
different regularization for the decision boundary.

We also considered mapping the output values (14 pa-
rameters, in our case) to the [0,1] range by combining the
scikit-learn implementations of TransformedTargetRegres-
sor and QuantileTransformer, which transforms the target
values (outputs of the pipeline) to follow a uniform distribu-
tion. Therefore, for a given component, this transformation
tends to spread out the most frequent values. It also reduces
the impact of (marginal) outliers (Pedregosa et al., 2011). For
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Figure 2. Methodology used to assess the sufficiency of the dataset containing 2000 soil types and 40 test conditions to represent the general
behavior of the NorSand model.

all the algorithms considered, we also used a QuantileTrans-
former to preprocess the input values.

This way, Fig. 2 presents the methodology proposed and
applied to assess the quality of the sample size. In the present
paper, the LHS-generated dataset with nsoils = 2000 and
nconditions = 40, whose input parameter matrix is In2000,40,
will have its sufficiency assessed.

It is possible to describe the workflow in Fig. 2,
for n in [32,64,128,256,512,1024,2048] and m in
[6,12,18,24,30,36,42], as follows:

– For each simulated triaxial test corresponding to the pa-
rameter matrix qInn,m, select only the columns corre-
sponding to ε1, p′, q and e (axial strain, mean effec-
tive stress, deviatoric stress and void ratio, respectively),
which are the variables commonly measured and re-
ported. The other seven columns are manipulations of
these three (Dp or η, for example) and could be used as
alternative regression variables, but such selection is not
the focus of the present paper. This reduced simulation
dataset is of shape 4000× 4.

– Each triaxial test simulation may have different
start/end values for ε1, so it is important to “align” all
the tests considered. By alignment we mean that all the
tests will have measurements for the same values of ε1.
This will enable us to use this variable as an index and,
therefore, decrease the dimensionality of each triaxial
test simulation from 4000× 4 to 4000× 3. (Each line
will correspond to a single value of ε1.) We must se-
lect the smallest maximum value of ε1 across all simu-
lations (which was found to be around 15.74 % for the
datasets considered and is represented as the vertical
line in Figs. 3 and 4).

– Down-sample the 4000 time steps to 40 by using evenly
spaced values on a logarithmic scale (function logspace
from Python package NumPy): more values in the be-
ginning of the time steps, where more changes are ob-
served. This process is illustrated in Figs. 3 and 4, where
the downsampling is performed for 40 points logarith-
mically spaced between ε1 = 10−3 % and 15.78 %. This
reduces each simulated triaxial test corresponding to the
parameter matrix qInn,m from 4000×10 to 40×3. The
concatenation of all triaxial test results corresponding
to the parameter matrix qInn,m shall be named qInNn,m
and is of size (nm,40,3).

– Perform a GroupKFold cross-validation scheme to find
the best hyperparameters of an algorithm A using
qInNn,m as inputs and qInn,m as outputs. The loss func-
tion considered during the GroupKFold cross-validation
is the mean absolute percentage error across all folds.

– Retrain the algorithm A using all qInNn,m and qInn,m
after fixing the hyperparameters as the optimal ones ob-
tained during the cross-validation scheme.

– Test the trained algorithm At on Innh,mh , where nh and
mh are the hypothesized sufficient number of materials
and test conditions, respectively.

– Obtain the mean absolute percentage error in the pre-
dictions of all the 14 input parameters corresponding to
Innh,mh .

– Get the overall mean error corresponding to all the input
parameters.
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Figure 3. Downsampling process from 4000 to 40 points in the logarithmic scale for drained tests.

Figure 4. Downsampling process from 4000 to 40 points in the logarithmic scale for undrained tests.

As described, for training and validation, we considered a
GroupKFold cross-validation technique, which is a K-fold it-
erator variant with non-overlapping groups (Pedregosa et al.,
2011). This approach makes sure no material (group) is
present in the training and validation sets, which would lead
to data “leakage”.

A Bayesian optimization was performed to look for the
best hyperparameters using the cross-validation folds gen-
erated. This process was carried out using the HyperOpt
Python package (Bergstra et al., 2015), which considers tree-
structured Parzen estimators. The search space for the Ridge
and KNeighbors Regressors are the ones considered in the
HyperOpt-Sklearn Python package (Komer et al., 2014). For
the Nystroem kernel, a custom search space was defined and
consisted of the following: “gamma” parameter uniformly on

[0,1], “n_components” parameter as a random equi-probable
choice among [600,1200,1800], “kernel” parameter as a ran-
dom equi-probable choice among [“additive_chi2”, “chi2”,
“cosine”, “linear”, “poly”, “polynomial”, “rbf”, “laplacian”,
“sigmoid”], “degree” parameter as the integer value trunca-
tion of an uniform random variable on [1, 10] and “coef0”
parameter uniformly on [0,1].

Finally, after the best hyperparameters are found, they are
fixed and the algorithm A is retrained with the full dataset
qInNn,m. This calibrated version is then used to test the qual-
ity of the model on the triaxial test results corresponding to
the dataset Innh,mh . Then, the errors obtained for each model
are plotted and analyzed. The reader can find the complete
codes used to implement the steps above in Ozelim et al.
(2023b).
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Table 3. Attributes of the NorSandTXL dataset present in each
Par_X_Y.h5 file.

Attribute Parameter/value

“Gamma” 0|p′=1 kPa
“lambda” λ

“Mtc” Mtc
“N” N

“Xtc” χtc
“H0” H0
“Hy” Hψ
“Gmax_p0” Gmax|p′0
“G_exp” Gexp
“n” ν

“Psi_0” ψ0
“p0” p′0
“K0” K0
“OCR” OCR (”R”)
“Type” Drained or Undrained

5 Data records

In the present paper, it is shown that the LHS-generated
dataset with nsoils = 2000 and nconditions = 40 is a sufficient
dataset. Thus, the folder containing such a dataset can be
found in Ozelim et al. (2023a) and has the following struc-
ture:

NorSandTXL_H5 \ Simus\ TT\ Par_X_Y.h5

where TT stands for the test type (Drained or Undrained), X
is the material index (from 0 to 1999) and Y is the sequential
index for the input parameters (from 0 to 79999).

Each Par_X_Y.h5 file contains a dataset named Nor-
SandTXL which includes the simulation results as presented
in Table 2. It is worth noting that the values stored are of
the type float32, which is sufficient for the applications en-
visioned for the dataset. In addition to the simulation results,
the dataset also contains the attributes shown in Table 3. The
correspondence between the attributes, whose data type is
either float32 or <U7 (fixed-length character string of seven
Unicode characters), and NorSandTXL input parameters is
also presented in Table 3. It is easy to see that the dataset at-
tributes in each file allow for a complete reproduction of the
results, if desired. The units of the parameters are consistent
with NorSandTXL, as presented in Table 1.

In order to prove the sufficiency of In2000,40, we gen-
erated the dataset qIn2048,42 following the methods previ-
ously presented. This latter dataset is also available in Oze-
lim et al. (2023a) with a similar folder structure. In that
case, the upper-level folder is named NorSand_2048_42.
It is worth noting that, due to upload difficulties, Nor-
Sand_2048_42 was split as NorSand_2048_42_Drained and
NorSand_2048_42_Undrained, where each file contains the

simulations for drained and undrained scenarios, respec-
tively.

6 Technical validation

Considering that the engine running the triaxial test simula-
tions is the Excel spreadsheet presented in the book by Jef-
feries and Been (2015) and that such a spreadsheet has been
extensively validated by both academia and industry, there is
no need to discuss the technical quality of the dataset. On the
other hand, it is necessary to show that In2000,40 suffices to
cover the general behavior of the NorSand models.

By following the methods previously described and plot-
ting the mean absolute percentage error (MAPE) result of
the 49 models (each trained and validated with samples of
different sizes subsampled from qIn2048,42), Figs. 5 and 6
were obtained for drained and undrained conditions, respec-
tively. The four algorithms considered were Ridge, KNeigh-
bors, Ridge-K (with nonlinear kernel on inputs) and Ridge-
KT (with nonlinear kernel on inputs and also QuantileTrans-
former on the outputs). It is clear in the figures that, for con-
tours of 0.5 % gains in MAPE, the sample size of 2000×40 is
actually more than enough for the learning task considered.
This can be stated by noticing that the contours with lower
error encompass samples with an exponential range of sizes.
(The x axis is in log scale.) This indicates a really small gra-
dient on the error in the n×m space, implying a good sam-
ple size. This happens for all four algorithms, indicating that
not only linear and neighbors-based regressors have reached
their maximum ability to learn, but also the nonlinear vari-
ants considered. It can be seen that the two nonlinear trans-
formations applied (to inputs and to both inputs and outputs)
present similar behavior, although with considerably smaller
MAPEs.

Analysis of Figs. 5 and 6 indicates that for the learning task
hereby considered, undrained tests generally presented a bet-
ter performance when compared with drained tests. A possi-
ble cause for such behavior is that during undrained tests the
void ratio is kept constant. Thus, for the learning task consid-
ered, the algorithm does not need to perform any nonlinear
operations on one-third of the input dataset (which consists
of e, p and q for 40 values of ε1). So, with the same number
of training samples and analytical structure of the learning
algorithm, it is expected that fewer nonlinearities in the in-
puts would result in a better performance (smaller errors) of
the predicted outputs.

Due to the space-filling qualities of both In2000,40 and
qIn2048,42, qIn2048,42 can also be considered a sufficient
dataset to represent the NorSand model.
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Figure 5. Mean absolute percentage error for all 14 parameters after being back-calculated solely from drained triaxial test results.

Figure 6. Mean absolute percentage error for all 14 parameters after being back-calculated solely from undrained triaxial test results.
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Figure 7. Drained and undrained mean absolute percentage er-
rors for each parameter obtained by the best performing algorithm
(Ridge-KT) with the 2048× 42 training dataset. Vertical lines rep-
resent the mean MAPE for all parameters according to the colors in
the plot (drained or undrained models).

6.1 Understanding the learning task

6.1.1 Drained versus undrained test performance

Figure 7 presents the MAPE for each of the predicted param-
eters by the best performing algorithm (Ridge-KT trained
and validated on the 2048× 42 dataset and tested on the
2000× 40 dataset).

At first glance, Fig. 7 suggests that using single tests to
back-calculate parameters is not the best alternative, as the
combination of both drained and undrained tests can poten-
tially lead to better results. This will be the topic of future
studies, especially on how many drained and undrained tests
lead to optimal results. Jefferies and Been (2015) have dis-
cussed this situation, suggesting that the minimal combina-
tion would be of two undrained tests and one drained test.

Also from Fig. 7, it can be seen that, in general, the models
trained on either drained or undrained datasets achieved a
similar prediction performance for parameters K0, p′0, e0, ν,
Hψ , χtc, N , Mtc and 0. For the parameters linked to the test
setup, namely K0, p′0 and e0, this is somewhat expected as
there are no nonlinearities involved in finding such values
from triaxial test results. (It is a matter of simply checking
the initial values of stresses and void ratios.)

For ν, what can be observed from Fig. 8 is that the ML
algorithm did not fully succeed in its learning task, as there
is a great spreading of the points along the identity line. In
Fig. 8, most of the points are located in the central vertical
region, indicating that most of the time, the predicted values
were the closest to the midpoint of the interval (0.2), which
is a naïve approximator known as a dummy regressor (which
outputs the mean of the training dataset). This result may also
be caused by the apparently low impact that ν has on the final
result of the triaxial test.

The same dummy regressor behavior was observed for
Hψ , χtc, N and Mtc, as illustrated in Fig. 9. In this figure,
it can be seen that the spreading of the points is still con-
siderable around the identity line. Also, the most extreme
mean-outputting behavior was observed for Hψ , as Fig. 10
illustrates.

For 0, Fig. 11 reveals that the mean-outputting behavior is
not prominent anymore, revealing a good learning capability
of the ML algorithm. Even though the MAPE is about the
same for algorithms trained on either drained or undrained
tests, for the undrained cases there is a more symmetric dis-
tribution of points around the identity line, which indicates
less bias in the predictions. In this context, less bias and
an equivalent MAPE would suggest that the ML algorithm
trained on undrained tests is a better choice for estimating 0.

On the other hand, OCR,Gexp,Gmax,p′0
and λ had smaller

MAPEs when predicted by algorithms trained on undrained
tests. For the first three parameters, this is consistent with
calibration procedures indicated in the literature (validation
of elastic properties using undrained tests as suggested by
Jefferies and Been, 2015). The performance of the Ridge-KT
algorithm for these parameters can be seen in Figs. 12–14.

For the OCR values, it is clear from Fig. 12 that when
drained tests are used to calibrate the ML algorithm, there is
no clear trend in the plot. It is closer to a Z pattern, indicating
a slight midpoint prediction behavior, which pulls the values
closer to the mean training value. When undrained tests are
used in the training and validation processes, there is a much
clearer prediction pattern.

For the elastic properties Gexp and Gmax,p′0
, Figs. 13 and

14 indicate clearly superior performances for algorithms
trained and validated using undrained results. For Gexp, the
relatively low impact of this parameter on the general out-
puts of the triaxial tests (within the range considered) could
impair the learning tasks. A better performance is seen when
undrained tests are used, but there is still room for improve-
ment. This is not the case with Gmax,p′0

, which has a clear
sharp trend as seen in Fig. 14.

For λ, a similar behavior to 0 is observed regarding pre-
diction biases, as seen in Fig. 15. The ML algorithm trained
and validated using undrained tests provides a more balanced
and symmetric prediction scenario, illustrating why it outper-
forms the algorithm calibrated using drained tests.

The opposite situation arises for H0, which is better pre-
dicted when drained tests are considered instead. This is also
expected as these types of tests provide a better assessment
of whether the stress and state–dilatancy properties inferred
from the trends in the tests are self-consistent (Jefferies and
Been, 2015). Figure 16 presents the results of both ML al-
gorithms, indicating that a clearer trend is observed when
drained tests are used as training and validation datasets.
Even though there is also a trend when undrained tests are
used, the spread around the identity line is considerable, in-
creasing the MAPE value.
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Figure 8. Scatter plots of true and predicted values for ν obtained by the best performing algorithm (Ridge-KT) with the 2048× 42 training
dataset for both drained and undrained tests.

Figure 9. Scatter plots of true and predicted values for χtc obtained by the best performing algorithm (Ridge-KT) with the 2048×42 training
dataset for both drained and undrained tests.

Figure 10. Scatter plots of true and predicted values forHψ obtained by the best performing algorithm (Ridge-KT) with the 2048×42 training
dataset for both drained and undrained tests.
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Figure 11. Scatter plots of true and predicted values for 0 obtained by the best performing algorithm (Ridge-KT) with the 2048×42 training
dataset for both drained and undrained tests.

Figure 12. Scatter plots of true and predicted values for OCR obtained by the best performing algorithm (Ridge-KT) with the 2048×
42 training dataset for both drained and undrained tests.

Figure 13. Scatter plots of true and predicted values for Gexp obtained by the best performing algorithm (Ridge-KT) with the 2048×
42 training dataset for both drained and undrained tests.
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Figure 14. Scatter plots of true and predicted values for Gmax,p′0
obtained by the best performing algorithm (Ridge-KT) with the 2048×

42 training dataset for both drained and undrained tests.

Figure 15. Scatter plots of true and predicted values for λ obtained by the best performing algorithm (Ridge-KT) with the 2048×42 training
dataset for both drained and undrained tests.

Figure 16. Scatter plots of true and predicted values forH0 obtained by the best performing algorithm (Ridge-KT) with the 2048×42 training
dataset for both drained and undrained tests.
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Figure 17. Drained mean absolute percentage errors obtained for
each parameter by the best performing algorithm (Ridge-KT) with
training datasets of different size.

6.1.2 Effect of training sample sizes on the learning
task

In analyzing Figs. 5 and 6, apparently the overall MAPE
slightly increases in the bottom-right corner (large constitu-
tive parameter samples with lower test parameter samples).
This is a visual artifice caused by the application of the log
scale to the horizontal axis, which ends up compressing the
values on that corner. If the natural scale were considered,
one would see that the opposite occurs: large constitutive pa-
rameter samples with lower test parameter samples give bet-
ter results when compared with small constitutive parame-
ter samples with large test parameter samples. Such behavior
can be explained by the fact that of the 14 parameters, 10 cor-
respond to constitutive parameters, so fewer training samples
impair their learning task.

A MAPE comparison is presented in Figs. 17 and 18
for both drained and undrained tests with different train-
ing samples’ diversities. (We compare the best performing
models obtained by the Ridge-KT algorithm, which uses the
2048× 42 dataset, to two other cases: 32× 42 and 2048× 6
training samples.) It is possible to see that the errors of the
10 constitutive parameters exhibit greater sensitivity to fewer
training samples than the opposite situation with test param-
eters. Except for OCR, all the other heavily impaired param-
eters are constitutive.

7 Usage notes and codes

In Python, the h5py package provides all the necessary tools
to interact with the .h5 files produced and made available in
the NorSand4AI dataset. Depending on the intended appli-
cation, it might be beneficial to down-sample the 4000× 10
matrix to increase the axial strain increments. This can be

Figure 18. Undrained mean absolute percentage errors obtained for
each parameter by the best performing algorithm (Ridge-KT) with
training datasets of different size.

Listing 1. Python packages needed.

accomplished using standard Python packages such as pan-
das and NumPy. In this section, the codes used to generate
the datasets are presented. At first, the Python packages indi-
cated in Listing 1 need to be imported.

The packages NumPy, math and pandas are required for
data manipulation and numeric calculations. The xlwings
package is needed to bridge Python and Excel. Furthermore,
the string package is necessary to convert the (row–column)
positional encoding to the (row–letter) alphanumeric encod-
ing used in Excel. For the Latin hypercube sampling proce-
dure, skopt is required, while qmc from scipy.stats is needed
for the quasi-Monte Carlo sampling. Lastly, for creating fold-
ers and files, both os and h5py should be imported.

Let dictpos be a dictionary that points to the locations
in the spreadsheet of the cells corresponding to each in-
put parameter. Additionally, let dict_ranges_material and
dict_ranges_test be dictionaries specifying the sampling
ranges of the input parameters. For this paper, these dictio-
naries are presented in Listing 2.
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Listing 2. Definition of auxiliary dictionaries.

Listing 3. The run_NorSand function.

7.1 Simply run NorSand in Python

If one seeks to simply run NorSand in Python, the function
run_NorSand presented in Listing 3 can be used. Its inputs
are

– final_comp: input parameters as a NumPy array
of shape (1,14). The parameters need to be in-
serted in the same order as dictpos.keys(), i.e.,
[“Gamma”, “lambda”, “Mtc”, “N”, “Xtc”, “H0”, “Hy”,
“Gmax_p0”, “G_exp”, “nu”, “Psi_0”, “p0”, “K0”,
“OCR”];

– dictpos: dictionary to locate the parameters inside the
spreadsheet;

– path_root: path of the spreadsheet “NorTxl.xlsm”,
obtained at http://www.crcpress.com/product/isbn/
9781482213683 (last access: 8 February 2024);

– type_v: type of the simulation (either “Drained” or
“Undrained”).

This function outputs two entities: a dictionary contain-
ing the parameters inserted to run the simulation and a
4000× 10 pandas dataframe with simulation results (which
are located within the “Txl SimResults” tab of the xlsm file).
The columns are the ones presented in Table 3.

7.2 Generate and save files

To generate the LHS inputs for the NorSandTXL spread-
sheet, considering n_samples soil types and n_samples_2 ini-
tial test conditions, the function gen_NorSand_par_2, pre-
sented in Listing 4, was considered.

The quasi-Monte Carlo sampling schemes (Sobol and Hal-
ton) can be used to generate the input samples by means of
the gen_NorSand_par_LD function, presented in Listing 5.
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Listing 4. The gen_NorSand_par_2 function.

Furthermore, to run the NorSandTXL Excel
spreadsheet located in path_xlsm for all the in-
put parameters previously obtained as final_comp
= gen_NorSand_par_2 (dict_ranges_material,
dict_ranges_test,n_samples,n_samples_2) (or fi-
nal_comp = gen_NorSand_par_LD(dict_ranges_material,
dict_ranges_test,n_samples,n_samples_2) for the
quasi-Monte Carlo sampling of inputs), the function
run_NorSand_simus_P can be run. This function is pre-
sented in Listing 6.

The function run_NorSand_simus_P runs the simulation
and also saves the results as .h5 files in the same folder as the
Excel spreadsheet. In this case, the new files are saved fol-
lowing the naming convention and folder structure discussed
in the paper.

It is worth noting that for the LHS sampling with 2000
soil types and 40 test conditions, two values of sampled ψ0

needed to be reduced due to instabilities in the VBA code
calculations. These values were

– final_comp[19572][10]=0.085 and

– final_comp[10929][10]=0.082.

Furthermore, for the quasi-Monte Carlo sampling with 2048
soil types and 42 test conditions, five values of sampled ψ0
needed to be reduced due to the same reasons. These values
were

– final_comp[56382][10]=0.0849,

– final_comp[57476][10]=0.0766,

– final_comp[85371][10]=0.0955,

– final_comp[34971][10]=0.08 and

– final_comp[41245][10]=0.072.
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Listing 5. The gen_NorSand_par_LD function.

All the codes previously presented are available as the
Jupyter notebook Sample_and_Run.ipynb in Ozelim et al.
(2023b).

7.3 Analyzing errors during learning tasks

As described in the Methods section, we perform a sample
size validation. Considering that the codes for such valida-
tion are lengthy, they are presented in Ozelim et al. (2023b).
The Jupyter notebook Sample_size_validation.ipynb is fully
commented to illustrate its usage.

8 Conclusions

Obtaining massive datasets for modeling the behavior of soils
is of great interest, not only because new artificial intelli-
gence algorithms can be built, but also to assess the adequacy
of newly proposed physically informed models. In the con-
text of critical state approaches, the NorSand model has been

shown to provide a good balance between complexity and
accuracy. Also, this model is used to assess the liquefaction
potential of soils, which is a major cause of high scale disas-
ters lately, such as tailing dams’ failures.

In this study, major issues were addressed. Firstly, the pa-
per tackled the challenges associated with the quantity and
complexity of synthetic datasets required for nonlinear con-
stitutive modeling of soils. This was achieved by simulat-
ing both drained and undrained triaxial tests, resulting in
two datasets. The first dataset involved a nested Latin hyper-
cube sampling of input parameters, covering 2000 soil types
with 40 initial test configurations for each, yielding a total of
160 000 triaxial test results. The second dataset employed a
nested quasi-Monte Carlo sampling (Sobol and Halton) of in-
put parameters, encompassing 2048 soil types with 42 initial
test configurations for each, resulting in a total of 172 032 tri-
axial test results. Each simulation dataset was represented as
a matrix of dimensions 4000× 10. The study demonstrated
that the dataset of 2000 soil types and 40 initial test con-
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Listing 6. The run_NorSand_simus_P function.

figurations adequately captured the general behavior of the
NorSand model.

Secondly, the paper addressed the issue of the availability
of open-source implementations of the NorSand constitutive
model. This was achieved by presenting an implementation
that connects the well-established VBA implementation to
the Python environment. The VBA code served as the “pro-
cessing kernel” for the new Python implementation, lever-
aging the extensive testing and validation conducted by Jef-
feries and Been (2015). This integration allows researchers
to harness the full capabilities of Python packages in their
analyses involving the NorSand model.

A comprehensive database like the one provided is cru-
cial for developing ML and artificial intelligence models of

geotechnical materials. In particular, all geotechnical crit-
ical state models involve specific simplifications, with the
most apparent being their reliance on “remolded” or dis-
turbed soil properties. Understanding the consequences of
such structural alterations, especially in terms of their impact
on the apparent OCR, poses notable challenges. The effect
on the stress ratio (ψ) remains unclear. Through the utiliza-
tion of physics-informed machine learning and artificial in-
telligence algorithms, these uncertainties can be thoroughly
investigated, uncovering patterns and hidden features within
experimental data. We are confident that the results of the
present paper are useful assets in this quest, being useful for
both academic and industrial communities. Furthermore, re-
searchers interested in modeling sequential data, such as time

Geosci. Model Dev., 17, 3175–3197, 2024 https://doi.org/10.5194/gmd-17-3175-2024
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series, could use this dataset for benchmarking purposes, as
the highly nonlinear nature of the constitutive model poses a
significant challenge to ML and DL techniques.

Code and data availability. All data associated with the current
submission are available at https://doi.org/10.5281/zenodo.8170536
(Ozelim et al., 2023a). Any updates will also be published
on Zenodo. The Python code used to generate the NorSandAI
dataset is described in the present paper and available at
https://doi.org/10.5281/zenodo.10157831 (Ozelim et al., 2023b).
The codes used for the learning task considered are also available at
https://doi.org/10.5281/zenodo.10157831 (Ozelim et al., 2023b).
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