Articles | Volume 15, issue 17
https://doi.org/10.5194/gmd-15-6863-2022
https://doi.org/10.5194/gmd-15-6863-2022
Model description paper
 | 
09 Sep 2022
Model description paper |  | 09 Sep 2022

FORCCHN V2.0: an individual-based model for predicting multiscale forest carbon dynamics

Jing Fang, Herman H. Shugart, Feng Liu, Xiaodong Yan, Yunkun Song, and Fucheng Lv

Related authors

Vegetation photosynthetic phenology metrics in northern terrestrial ecosystems: a dataset derived from a gross primary productivity product based on solar-induced chlorophyll fluorescence
Jing Fang, Xing Li, Jingfeng Xiao, Xiaodong Yan, Bolun Li, and Feng Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-452,https://doi.org/10.5194/essd-2021-452, 2022
Revised manuscript not accepted
Short summary

Related subject area

Biogeosciences
Global agricultural ammonia emissions simulated with the ORCHIDEE land surface model
Maureen Beaudor, Nicolas Vuichard, Juliette Lathière, Nikolaos Evangeliou, Martin Van Damme, Lieven Clarisse, and Didier Hauglustaine
Geosci. Model Dev., 16, 1053–1081, https://doi.org/10.5194/gmd-16-1053-2023,https://doi.org/10.5194/gmd-16-1053-2023, 2023
Short summary
ForamEcoGEnIE 2.0: incorporating symbiosis and spine traits into a trait-based global planktic foraminiferal model
Rui Ying, Fanny M. Monteiro, Jamie D. Wilson, and Daniela N. Schmidt
Geosci. Model Dev., 16, 813–832, https://doi.org/10.5194/gmd-16-813-2023,https://doi.org/10.5194/gmd-16-813-2023, 2023
Short summary
FABM-NflexPD 2.0: testing an instantaneous acclimation approach for modeling the implications of phytoplankton eco-physiology for the carbon and nutrient cycles
Onur Kerimoglu, Markus Pahlow, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 16, 95–108, https://doi.org/10.5194/gmd-16-95-2023,https://doi.org/10.5194/gmd-16-95-2023, 2023
Short summary
Evaluating the vegetation–atmosphere coupling strength of ORCHIDEE land surface model (v7266)
Yuan Zhang, Devaraju Narayanappa, Philippe Ciais, Wei Li, Daniel Goll, Nicolas Vuichard, Martin G. De Kauwe, Laurent Li, and Fabienne Maignan
Geosci. Model Dev., 15, 9111–9125, https://doi.org/10.5194/gmd-15-9111-2022,https://doi.org/10.5194/gmd-15-9111-2022, 2022
Short summary
Non-Redfieldian carbon model for the Baltic Sea (ERGOM version 1.2) – implementation and budget estimates
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022,https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary

Cited articles

Balzarolo, M., Boussetta, S., Balsamo, G., Beljaars, A., Maignan, F., Calvet, J.-C., Lafont, S., Barbu, A., Poulter, B., Chevallier, F., Szczypta, C., and Papale, D.: Evaluating the potential of large-scale simulations to predict carbon fluxes of terrestrial ecosystems over a European Eddy Covariance network, Biogeosciences, 11, 2661–2678, https://doi.org/10.5194/bg-11-2661-2014, 2014. 
Fang, J.: Daily and annual carbon flux predicted by FORCCHN2 model, Figshare [data set], https://doi.org/10.6084/m9.figshare.18318722.v1, 2022. 
Fang, J., Lutz, J. A., Shugart, H. H., and Yan, X.: A physiological model for predicting dynamics of tree stem-wood non-structural carbohydrates, J. Ecol., 108, 702–718, https://doi.org/10.1111/1365-2745.13274, 2020a. 
Download
Short summary
Our study provided a detailed description and a package of an individual tree-based carbon model, FORCCHN2. This model used non-structural carbohydrate (NSC) pools to couple tree growth and phenology. The model could reproduce daily carbon fluxes across Northern Hemisphere forests. Given the potential importance of the application of this model, there is substantial scope for using FORCCHN2 in fields as diverse as forest ecology, climate change, and carbon estimation.