

Supplement of

FORCCHN V2.0: an individual-based model for predicting multiscale forest carbon dynamics

Jing Fang et al.

Correspondence to: Xiaodong Yan (yxd@bnu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

1 Methods S1. Daily processes of FORCCHN2

2 **Photosynthesis** Gross primary productivity of an individual tree is given by:

$$GPP_i = \min(f_c \cdot f_{dry} \cdot f_T \cdot GPPM_i, an \cdot aNS)$$
(S1)

where GPP_i is the daily gross primary productivity of the *i*th individual tree (kgC/d), GPPM_i is the maximal daily gross primary productivity of the *i*th tree (kgC/d) (Oikawa 1985); f_c , f_{dry} , f_T and $an \times aNS$ represent the effects of carbon dioxide (Kaduk and Heimann 1996), water, temperature and soil available nitrogen on GPP, respectively. *aNS* is the soil available nitrogen (kgN/m²); and *an* is the C/N ratio parameter of the assimilation with an=150;

$$GPPM_{i} = \frac{2 \cdot Am_{j} \cdot DL}{Kl_{j}} ln \frac{1 + \sqrt{1 + Kl_{j} \cdot Sl_{j} \cdot \frac{PAR_{i}}{Am_{j}}}}{1 + \sqrt{Kl_{j} \cdot Sl_{j} \cdot PAR_{i} \cdot \frac{\exp(-Kl_{j} \cdot LAI_{i})}{Am_{j}}}}$$
(S2)

9 where *DL* (daylength) is the possible sunshine duration (h); *PAR_i* is the amount of 10 photosynthetic active radiation at the top of the canopy at noon (W/m²); and *LAI_i* is the 11 leaf area index of the *i*th tree. For the *i*th individual in the *j*th plant functional type: *Am_j*, 12 *Kl_j* and *Sl_j* represent the maximal photosynthesis [kgC/(m²·h)], the extinction 13 coefficient and the initial slope of light intension and photosynthesis 14 [(kgC/(m²·h))/(W/m²)], respectively.

$$f_c(C_s) = 1 + \frac{C_s - C_0}{C_s + 2C_0}$$
(S3)

where C_s is the CO₂ concentration of the simulation year; C_0 is CO₂ reference concentration, and $C_0=340$ ppm.

$$f_{dry}(sw, rh) = \left\{ \frac{min \left[1, \frac{sw}{FC} + max(rh - 0.5, 0.1) \right]}{dry} \right\}^{0.5}$$
(S4)

- 17 where *sw* is soil water content (cm); *FC* is field capacity (cm); *rh* is air relative humidity;
- 18 and *dry* is the individual's capability of enduring drought that ranges from 0 to 1.

$$f_T(T) = \left(\frac{T_{max} - T}{T_{max} - T_{opt}}\right)^{\frac{T_{max} - T_{opt}}{T_{max} - T_{min}}} \cdot \left(\frac{T - T_{min}}{T_{opt} - T_{min}}\right)^{\frac{T - T_{min}}{T_{opt} - T_{min}}}$$
(S5)

where *Tmin*, *Topt* and *Tmax* denote the lowest, the optimum and the highest temperature
of photosynthesis (°C), respectively; *T* is daily mean temperature (°C).

21

Autotrophic respiration The autotrophic respiration of each plant includes maintenance respiration and growth respiration. The formula for maintenance respiration is expressed as:

$$RM_{ik} = t_{resp} \times r_k C_{ik} \tag{S6}$$

where RM_{ik} is daily maintenance respiration of *i*th individual tree (kgC/d); *k* represents tree organ, including leaves, branches, stems, main roots, and fine roots; r_k is the relative respiration rate of tree organ at 15°C (1/d); C_{ik} is the carbon amount (kgC), and when *k* denotes leaves or fine root, C_i is leaf content or fine root content; When *k* denotes stem or main root, C_{ik} is sapwood content (kgC);

$$RG_i = t_{resp} \times r_g \times (GPP_i - RM_i) \tag{S7}$$

- 30 where RG_i the daily growth respiration of *i*th individual tree (kgC/d) (Ruimy et al.,
- 31 1996); r_g the growth respiration coefficient, and $r_g=0.25$.
- In Equation S6 and S7, *t_resp* represents the effect of air temperature on plant
 respiration, this value is computed as:

$$t_{resp} = t_{resp1} + t_{resp2} \tag{S8}$$

$$t_{resp1} = \frac{DL}{24} \times e^{\frac{\ln(tg_1)}{10 \times (T_d - 15)}}$$
(S9)

$$tg_1 = 2 \times e^{-0.009 \times (T_d - 15)} \tag{S10}$$

$$t_{resp2} = \frac{24 - DL}{24} \times e^{\frac{\ln(tg_2)}{10 \times (T_n - 15)}}$$
(S11)

$$tg_2 = 2.2 \times e^{-0.009 \times (T_n - 15)} \tag{S12}$$

where t_{resp1} and t_{resp2} represent the effect of daytime air temperature and nighttime air temperature on plant respiration, respectively; T_d is daytime air temperature (°C); T_n is nighttime air temperature (°C); DL is the possible sunshine duration for each day (h).

37

38 **Litter production** The litter fluxes of leaves and fine roots are computed as follows: $L_{ik} = l_k \times C_{ik}$ (S13)

where *k* is leaf or fine roots; L_{ik} is the flux of leaf litter or fine roots of the *i*th individual tree (kgC/d); C_{ik} the corresponding carbon amount (kgC/d); l_k the relative litter fall rate (1/d).

42

Soil organic matter respiration and transfer progress: the model runs on a daily timescale for soil processes, and therefore adopts a modified soil carbon budget model based on CENTURY to characterize forest soils. The CENTURY model was originally developed for simulating and forecasting carbon cycle and productivity of grasslands, but now it is widely used for forest ecosystems.

48 Leaf litter and fine root litter can simultaneously fall into the soil structural litter pool

49 and the soil metabolic litter pool, and the proportions are calculated by:

$$f_m = 0.85 - 0.018 \times \frac{N_r}{L_r} \tag{S14}$$

$$f_s = 1 - f_m \tag{S15}$$

50 where f_m is the proportion into metabolic pool; f_s is the proportion into structural pool; 51 N_r and L_r are the respective nitrogen and lignin content in fresh litter.

- 52 There are ten soil carbon pools in FORCCHN, the decomposition rate and respiration
- 53 release in each carbon pool are calculated as:

$$D_u = s_u \times g_T \times g_W \times e^{-b \times Ls} \times C_u \tag{S16}$$

$$R_u = p_u \times D_u \tag{S17}$$

$$SD_{uv} = p_v \times (D_u - R_u) \tag{S18}$$

$$\sum p_{\nu} = 1 \tag{S19}$$

$$g_T = e^{\frac{3.36 \times (T_s - 40)}{T_s + 31.79}} \tag{S20}$$

$$g_W = 1 - \left(\frac{sW}{ff \times FC} - 1\right)^2 \tag{S21}$$

where D_u is daily carbon decomposition of the *u*th soil carbon pool [kgC/(m²·d)]; s_u the 54 relative decomposition rate of the *u*th pool (1/d); g_t and g_w represent the effect of 55 temperature and water on the decomposition rate, respectively; *b* is an exponential term 56 57 that describes the extent to which decomposition is reduced by lignin with b=5.0. L_s is the lignin content in the soil structural litter pool; C_u is the difference between carbon 58 content and lignin content of the *u*th pool (kgC/m²); R_u is daily carbon respiration 59 release of the *u*th pool [kgC/($m^2 \cdot d$)]; p_u is the respiration proportion of the *u*th pool; 60 SD_{uv} is daily carbon content transported from uth pool to vth pool [kgC/(m²·d)]; p_v is 61 the proportion transported to the vth pool; sw is the soil water content (cm); ff is a 62 constant with *ff*=0.6; *FC* is the field capacity (cm); T_s is the soil temperature (°C). 63

- Soil water dynamics For the dynamics of soil water content, we refer to the calculation
 method of the Bridging Event and Continuous Hydrological (BEACH) model (Sheikh
- 67 et al., 2009). The soil water (W_s) at the daily step is determined by the total precipitation
- 68 (*Pre*), interception (*Incep*), infiltration (*Inf*), and actual transpiration (E_a):

$$\frac{dW_s}{dt} = Pre(t) - Incep(t) - Inf(t) - E_a(t)$$
(S22)

69 The interception by vegetations is estimated by:

$$Incep = 0.25 \times LAI \times (1 - \frac{1}{1 + \frac{f \times Pre}{0.25 \times LAI}})$$
(S23)

$$f = 1 - e^{-\mu \times LAI} \tag{S24}$$

70 where *LAI* is the leaf area index; f is the proportion of soil covered by vegetation; μ is 71 the light use efficiency parameter (i.e. set as 0.6 for trees).

72 The model assumes that infiltration proceeds until the uptake capacity of the surface

13 layer (0–0.20 m) has been reached as a result of precipitation.

$$Inf = min[Pre - Incep, (W_F - W_S) \times depth_1]$$
(S25)

74 where W_F is the saturated soil moisture content (m³ m⁻³); *depth*₁ is the surface layer

75 thickness (m).

76 The actual transpiration (E_a) is determined by potential evapotranspiration (E_b) :

$$E_a = K_r \times K_e \times E_0 \tag{S26}$$

$$K_r = \frac{W_s - \frac{1}{3} \times W_p}{25 - \frac{1}{3} \times W_p}$$
(S27)

$$K_e = -0.5 + \max\{0.55, 1.2 + [0.04 \times (u_2 - 2) - 0.004 \times (RH_{min} - 45)] \times (\frac{h}{3})^{0.3}\}$$
(S28)

77 where K_r is a dimensionless evaporation reduction coefficient dependent on the soil

water content; W_p is the wilting point; K_e is the soil evaporation coefficient; u_2 is the wind speed; RH_{min} is the air relative humidity; h is the tree height.

Light distribution For the light competition of different trees, we used a standard gapmodel formulation to describe the vertical radiation environment. The gap model's light distribution process was described by Xiaodong & Shugart (2005):

$$AL_m = AL_{top} \times e^{(-l_{nee} \cdot LAI_{nee} - l_{bro} \cdot LAI_{bro})}$$
(S29)

where *AL* was the available light; *m* was the *m*th height (unit: m); *top* was the top height
of the forest canopy; *l_{nee}* and *l_{bro}* were the coniferous and broadleaf extinction coefficient; *LAI_{nee}* and *LAI_{bro}* were the sums of the leaf areas in the plot of all higher broadleaf trees
and needle trees.

88

80

Leaf and fine roots growth We adopted a method based on thermal time to simulate
the growth of leaf biomass (*G_P*) and fine roots biomass (*G_F*) (Schiestl-Aalto *et al.*, 2015).
We assumed that leaf biomass increment is related to the maximum daily growth rate
and the NSC storage pool:

$$\frac{dG_P}{dt} = k_N(t) \times g(t) \times f(s(t)) \times MG$$

$$dG_F(t) \qquad 1 \qquad dG_P$$
(S30)
(S31)

$$\frac{dG_F(t)}{dt} = \frac{1}{2} \times k_N(t) \times \frac{dG_P}{dt}$$
(S31)

where k_N is the impact of NSC storage pool on growth; *g* is the response of growth to environmental factors; *f* is the response of growth to the leaf development stage *s*; *MG* is the maximum daily growth rate. The *k* is a limiting factor for growth if the NSC storage below a critical level:

$$k_{N}(t) = \min\{1, \frac{1 - e^{\delta \times NP(t)}}{1 - e^{\delta \times NP_{0}}}\}$$
(S32)

97 where δ is a parameter; *NP* is the NSC storage; *NP*₀ is the critical level, which is set as 98 the initial storage size in the corresponding year. Note that the NP₀ is assumed to be 3% 99 of the aboveground wood biomass in the first year (Fang *et al.*, 2020).

100 The parameters g and f describe phenology variations. The short-term growth response 101 (g) is:

$$g(t) = \begin{cases} 0 , & T(t) < 0\\ (1 + e^{-\alpha \times (T(t) - \beta)})^{-1}, & T(t) \ge 0 \end{cases}$$
(S33)

102 where α and β are parameters, and T(t) is the daily average temperature (°C). For 103 temperate trees, the leaves have vital activities above 0 °C. The leaves of tropical trees 104 can keep active growth throughout the whole year.

105 The development stage function (f(s(t))) of leaf growth is based on the assumption that 106 the leaf development is the highest in the middle of growing period and equally low in 107 the early and late season. And the process is written as:

$$f(t) = \begin{cases} 0 & , \quad s(t) < 0 \text{ or } s(t) > s^{c} \\ \frac{1}{2} \left(\sin\left(\frac{2\pi}{s^{c}} \times \left(s(t) - \frac{s^{c}}{4}\right) \right) + 1 \right), \quad 0 \le s(t) \le s^{c} \end{cases}$$
(S34)

108 where *s* is the development stage of the leaf, *s_c* is the threshold for cessation of growth. 109 Growth begins at *t_b* time when the thermal time requirement for growth onset, (*s*(*t_b*)>0),

110 is exceeded; and the growth ceases at t_c time when the requirement for growth cessation,

111
$$(s(t_c) > s_c)$$
, is exceeded. The development stage (s) is calculated by:

$$\frac{ds(t)}{dt} = g(t), t_0 < t \tag{S35}$$

$$\mathbf{s}(t_0) = s^0 \tag{S36}$$

$$\mathbf{s}(t_c) = \mathbf{s}^c \tag{S37}$$

112 where s^0 is the initialized value of s; t_0 is the tree dormant time, the beginning on the

- 113 first day of the year. We estimated s^0 and s^c fell in a reasonable range taken from Fang
- 114 *et al.* (2020) and Schiestl-Aalto *et al.* (2015).
- 115 The maximum daily growth rate of leaves (MG) has been shown to relate to the
- 116 maximum leaf biomass (B_{max}) in previous years (Schiestl-Aalto *et al.*, 2013).

$$MG_i = B_{max,i-1} \times R_p \tag{S38}$$

- 117 where *i* is the *i*th year; R_p is the growth coefficient.
- 118

119 **Spring phenology** The spring phenology sub-model was based on the effective 120 temperature and thermal time. Following this approach, the daily temperature response 121 was simulated by using a sigmoid function of the average temperature (Cannell & Smith 122 1983; Schiestl-Aalto *et al.* 2015). Leaf growth began at the time (*Ysos*) when heat 123 requirement exceeded the threshold (*S*₄):

$$Y_{SOS} = t, \ if \ s_{heat}(t) \ge S_A \tag{S39}$$

$$s_{heat}(t) = \sum_{j=1}^{L} \frac{1}{1 + e^{-0.185(T(j) - 18.4)}}, \text{ if } T(j) > T_A$$
(S40)

where s_{heat} was the daily sum of heat rates; T_A was the threshold parameter to determine the effective high temperature; T was the air average temperature; t was the time to begin growth; j was the day of the year.

127

Autumn phenology Compared to the modeling of spring phenology, modeling of autumn phenology was more challenging (Piao *et al.* 2019). Here, we used the accumulated cold degree-days and considered the effects by photoperiod (Delpierre *et* 131 *al.* 2009). Similar to the spring phenology, leaves began to color at the time (Y_{EOS}) when 132 the chilling accumulation exceeded the threshold (S_B):

$$Y_{EOS} = t, \ if \ s_{cold}(t) \ge S_B \tag{S41}$$

$$s_{cold}(t) = \sum_{j=1}^{t} (T_B - T(j)) \frac{P(j)}{P_{start}}, \ if \ P(j) < P_{start} \ and \ T(j) < T_B$$
(S42)

where s_{cold} was the daily sum of chilling rates; T_B was the threshold to determine the effective low temperature; P_{start} was the threshold to determine the effective photoperiod.

136

137 Phenology parameterization Using the LAI data of the first observed year, parameters

138 S_{A0} indicating the initial heat parameter that estimated by the spring phenological dates:

$$S_{A0} = -\sum_{t=1}^{t_{y_0,onset}} g_{heat}(t)$$
(S43)

139 where $y_{0,onset}$ is the spring phenological dates in the first year.

We only estimated the T_B in one site ($T_{B,1}$, which was set to 30.0 °C at the Acadia National Park site), other sites were estimated by the average temperature between the first day and the observed dates of autumn phenology in one year (T_{cease}) (Acadia National Park site had the T_{cease} of 8.6 °C)

$$T_{B,i} = \frac{T_{B,1}}{T_{cease,1}} \times T_{cease,i}$$
(S44)

144 where *i* represents the *i*th site (i.e. *i*th cell of 0.5 degree in this study).

145 S_B was the chilling threshold of leaf cessation that estimated by the autumn phenological 146 dates:

$$S_B = \sum_{t=1}^{t_{y_0,cease}} g_{cold}(t)$$
(S45)

147 where $t_{y0,cease}$ is the autumn phenological dates in the first year.

148

149 Light competition For the light competition of different tree, we used a standard gap-

150 model formulation to describe the vertical radiation environment. The gap model's light

151 distribution process was described by Xiaodong & Shugart (2005):

$$AL_m = AL_{ton} \times e^{(-l_{nee} \cdot LAI_{nee} - l_{bro} \cdot LAI_{bro})}$$
(S46)

where AL was the available light; *m* was the *m*th height (unit: m); *top* was the top height of the forest canopy; k_{nee} and k_{bro} were the coniferous and broadleaf extinction coefficient; LAI_{nee} and LAI_{bro} were the sum of the leaf areas in the plot of all higher broadleaf trees and needle trees.

156

157

158 *Methods S2. Annual processes of FORCCHN2*

The primary annual processes consist of increments of tree height, basal diameter, and production of CWD (coarse wood debris). The model assumes that annual litter production falls into one of two cases based on two assumed thresholds. On one hand, if the year-end NSC slow pool is greater than the first threshold, only the flower litter production reaches the maximum possible amount. On the other hand, if the year-end NSC slow pool is greater than the second threshold, both flower and fruit litter production are maximal. The formulas are given as:

$$L_{i,year} \begin{cases} BF_{i,year} & BF_{i,year} \leq lm_1 \\ lm_1 + (BF_{i,year} - lm_1) \times 0.3 & lm_1 < BF_{i,year} \leq lm_2 \\ lm_2 & BF_{i,year} > lm_2 \end{cases}$$
(S47)

$$DC_i = BF_{i,year} - L_{i,year}$$
(S48)

where $L_{i,year}$ is annual litter production of the *i*th individual tree (kgC); $BF_{i,year}$ is the annual NSC slow pool (kgC); l_{m1} and l_{m2} are the first and the second thresholds of litter production, respectively (kgC), and l_{m1} =0.0001; DC_i is NSC storage (kgC), and 95% DC_i is transferred to support the growth of organs:

$$DC_{i} = \frac{[f_{wood}(d + \Delta d, h + \Delta h, b, hr, astem) - f'_{wood}(d, h, b, hr, astem)]}{0.95}$$
(S49)

$$\Delta h = cp \times \Delta d \tag{S50}$$

170 where *fwood* is the wood biomass added in the current year (kgC); *f'wood* is the wood 171 biomass added in the previous year (kgC); *d* is the basal diameter (m); $\triangle d$ the 172 increment of basal diameter (m); *h* is the tree height (m); $\triangle h$ is the increment of tree 173 height (m); *b* is the twig height (m); *hr* is the root depth (m); *astem* is the bulk density 174 of wood (kgC/m³); *cp* is a constant decided by illumination gradients of tree canopy.

175

Tree death Individual trees are assumed to die when daily net photosynthate and NSC pools are not enough to support the growth of leaves (in some cases where previous years photosynthate has been allocated to the growth of canopy height and basal diameter (Eqn S50), the plant autotrophic respiration might be greater than the photosynthesis in some abnormal weather conditions). When tree death occurs in a given year, the C, N from dead trees is assumed to completely transfer to the soil pools at the end of the year (on the 31st December), and continue to participate in new C, N cycle in the coming year. In the current study, since the simulated time period is less
than 50 years, we assume the new individual trees do not contribute materially to forest
processes.

- 186
- 187

188 Methods S3. Model initialization processes

189 **DBH estimation** Although different tree species and individual trees have variable 190 growth rates, the model uses a uniform method to express the initial vegetation 191 conditions. Previous studies showed a linear relationship between the individual tree 192 DBH and leaf area index (Petersen et al. 2007), the model LAI is calculated as follows: $DBH = \frac{LAI}{4\pi} + 0.02$ (S51)

$$DBH = \frac{DH}{45} + 0.02 \tag{S51}$$

193 where DBH(m) is the diameter at breast height, LAI is the leaf area index.

194

195 Tree height estimation The model uses tree diameter-height curves (Ogawa 1969) to
196 simulate each tree's height:

$$\frac{1}{TH} = \frac{1}{a \times DBH^b} + \frac{1}{H^*}$$
(S52)

197 where *TH* (m) is the tree height; *a*, *b*, and H^* are the regression coefficients, *a*=0.82,

198 *b*=1.25, *H*^{*}=37.26 (Wang *et al.* 2006).

199 The height of lowest living branch (*BH*) is calculated by:

$$BH = \frac{1}{3}TH \tag{S53}$$

200 Initialized Biomass estimation The initialized leaf biomass (G_{L0}) is calculated by tree

201 species:

$$G_{L0}(i) = \begin{cases} 0 , & i = \text{deciduous tree} \\ 1.99DBH^{2.13}BH^{-0.39}, & i = \text{evergreen tree} \end{cases}$$
(S54)

202 The initialized fine root biomass (G_{F0}) is proportional to leaf biomass:

$$G_{F0} = \frac{1}{2}G_{L0}$$
(S55)

203 The initialized wood biomass comprises stem biomass (G_{AS0}), twig biomass (G_{AT0}), and

204 root biomass (G_{B0}):

$$G_{W0} = G_{AS0} + G_{AT0} + G_{B0} \tag{S56}$$

$$G_{AS0} = 2.02 \times Astem \times DBH^2 \times TH \tag{S57}$$

$$G_{AT0} = 1.12 \times Astem \times DBH^2 \times TH \times (1 + \frac{2}{TH})^2 \times \left(1 - \frac{2}{TH}\right)$$
(S58)

$$G_{B0} = 2.02 \times Astem \times DBH^2 \times TH \times [(1 + \frac{2}{TH}^3)^2 \times (1 + \frac{2}{TH}) - 1]$$
 (S59)

- where *Astem* is a parameter taken from Table S1.
- 206

207

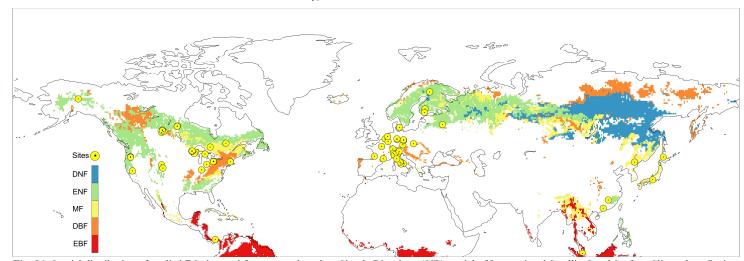
208 Methods S4. Statistical analyses

209 We used Pearson correlation coefficient (r), model efficiency (E), root mean square

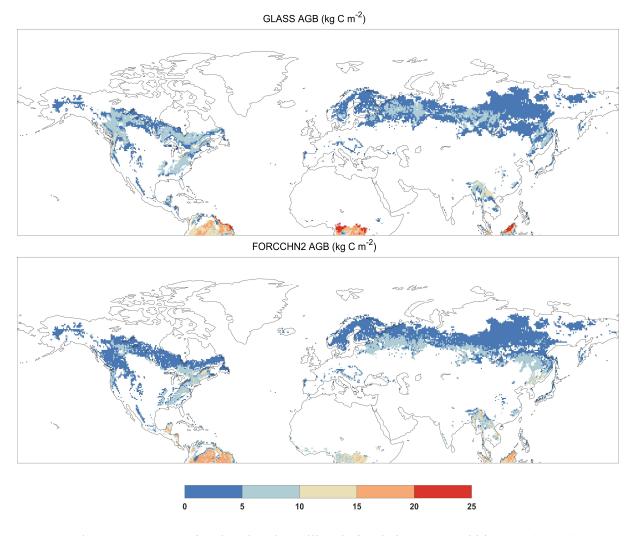
210 error (*RMSE*), mean absolute error (*MAE*), and bias (*bias*):

$$E = 1 - \frac{\sum_{i=1}^{n} (X_i - Y_i)^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}$$
(S60)

$$bias = \frac{1}{n} \sum_{i=1}^{n} (X_i - Y_i)$$
(S61)


211 where the X_i and Y_i are the predicted and measured data, respectively; \overline{X} and \overline{Y}

212 represent their mean values. The range of E was $-\infty$ to 1, and E close to 1 means a


213 perfect match between the predictions and measurement.

214

Forest types and flux tower distribution

Fig. S1. Spatial distribution of studied EC sites and forest types based on Simple Biosphere (SiB) model of International Satellite Land Surface Climatology Project (ISLSCP II). EBF: the evergreen broadleaf forest; ENF: evergreen needleleaf forest; DBF: deciduous broadleaf forest; DNF: deciduous needleleaf forest; MF: mixed forest.

Fig. S2. The FORCCHN2-simulated and satellite-derived aboveground biomass (AGB) across the Northern Hemisphere. The satellite AGB are extracted from the GLASS product.

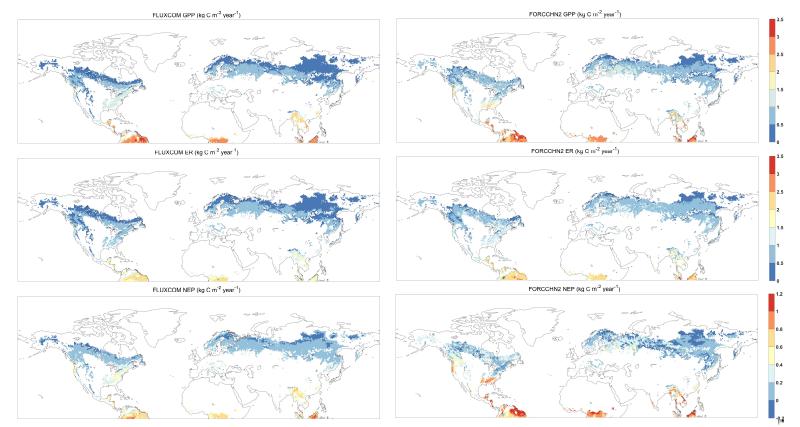


Fig. S3. The mean spatial distribution of FORCCHN2 and FLUXCOM gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem productivity (NEP) across the Northern Hemisphere during 1980–2013. The fluxes of FLUXCOM are extracted from the 'RS+METEO' dataset. The FLUXCOM NEP is equaled to the negative of net ecosystem CO2 exchange (NEE). The spatial resolution is $0.5^{\circ} \times 0.5^{\circ}$.

Sites	Elevation (m)	Latitude (°)	Longitude (°)	Forest types
BE-Bra	16	51.3076	4.5198	MF
BE-Vie	493	50.3049	5.9981	MF
CA-Gro	340	48.2167	-82.1556	MF
CA-Man	259	55.8796	-98.4808	ENF
CA-NS1	260	55.8792	-98.4839	ENF
CA-NS2	260	55.9058	-98.5247	ENF
CA-NS3	260	55.9117	-98.3822	ENF
CA-NS4	260	55.9144	-98.3806	ENF
CA-NS5	260	55.8631	-98.485	ENF
CA-Oas	530	53.6289	-106.198	DBF
CA-Obs	628.94	53.9872	-105.118	ENF
CA-Qfo	382	49.6925	-74.3421	ENF
CA-SF1	536	54.485	-105.818	ENF
CA-SF2	520	54.2539	-105.878	ENF
CA-TP1	265	42.6609	-80.5595	ENF
CA-TP2	212	42.7744	-80.4588	ENF
CA-TP3	184	42.7068	-80.3483	ENF
CA-TP4	184	42.7102	-80.3574	ENF
CA-TPD	260	42.6353	-80.5577	DBF
CH-Dav	1639	46.8153	9.8559	ENF
CH-Lae	689	47.4783	8.3644	MF
CN-Cha	1242	42.4025	128.0958	MF
CN-Din	240	23.1733	112.5361	EBF
CN-Qia	111	26.7414	115.0581	ENF
CZ-BK1	875	49.5021	18.5369	ENF
DE-Hai	430	51.0792	10.4522	DBF
DE-Lkb	1308	49.0996	13.3047	ENF
DE-Lnf	451	51.3282	10.3678	DBF
DE-Obe	734	50.7867	13.7213	ENF
DE-Tha	385	50.9626	13.5651	ENF
DK-Sor	40	55.4859	11.6446	DBF
FI-Hyy	181	61.8474	24.2948	ENF
FI-Let	111	60.6418	23.9595	ENF
FI-Sod	180	67.3624	26.6386	ENF
FR-Fon	103	48.4764	2.7801	DBF
FR-LBr	61	44.7171	-0.7693	ENF
FR-Pue	270	43.7413	3.5957	EBF
IT-CA1	200	42.3804	12.0266	DBF

 Table S1. The studied EC Site information of the observed flux. ENF: evergreen needleleaf forest;

EBF: evergreen broadleaf forest; DBF: deciduous broadleaf forest; MF: mixed forest.

IT-Col 1560 41.8494 13.5881 DBF IT-Cp2 19 41.7043 12.3573 EBF IT-Cp2 68 41.7052 12.3761 EBF IT-La2 1350 45.9542 11.2853 ENF IT-La2 1350 45.9562 11.2813 ENF IT-La2 1353 45.9562 11.2813 ENF IT-Ren 1730 46.5869 11.4337 ENF IT-Ro1 235 42.4081 11.9209 DBF IT-SR 4 43.732 10.2909 ENF IT-SR 6 43.7279 10.2844 ENF P-MBF 676 44.3869 142.3186 DBF IP-SMF 397 35.2617 137.0788 MF MY-PSO 102 2.973 102.3062 EBF NL-Loo					
IT-Cpz 68 41.7052 12.3761 EBF IT-Isp 210 45.8126 8.6336 DBF IT-La2 1350 45.9542 11.2853 ENF IT-Lav 1353 45.9562 11.2813 ENF IT-PT1 60 45.2009 9.061 DBF IT-Ren 1730 46.5869 11.4337 ENF IT-Ro1 235 42.4081 11.93 DBF IT-Ro2 160 42.3903 11.9209 DBF IT-SR 6 43.7279 10.2844 ENF JP-MBF 676 44.3869 142.3186 DBF IT-SR 6 43.7279 10.2844 ENF JP-MBF 676 44.3869 142.3186 DBF IT-SR 25 52.1666 5.7436 ENF PA-SPn 78 9.3181 -79.6346 DBF RU-Fyo 265 56.4615 32.9221 ENF US-ME1 1315 38.8953 -120.633 ENF US-MIA 125	IT-Col	1560	41.8494	13.5881	DBF
IT-is 210 45.8126 8.6336 DBF IT-La2 1350 45.9542 11.2853 ENF IT-Lav 1353 45.9562 11.2813 ENF IT-PT1 60 45.2009 9.061 DBF IT-Ren 1730 46.5869 11.4337 ENF IT-Ro1 235 42.4081 11.93 DBF IT-Ro2 160 43.7279 10.2844 ENF IP-MBF 676 44.3869 142.3186 DBF IT-SR0 6 43.7279 10.2844 ENF IP-MF 676 44.3869 142.3186 DBF IT-SR0 102 2.973 102.3062 EBF NL-Loo 25 52.1666 5.7436 ENF PA-SPn 78 9.3181 -79.6346 DBF US-Blo 1315 38.8953 -120.633 ENF US-MIA 340 42.5378 -72.1715 DBF US-M	IT-Cp2	19	41.7043	12.3573	EBF
IT-La21350 45.9542 11.2853ENFIT-Lav1353 45.9562 11.2813ENFIT-PT160 45.2009 9.061DBFIT-Ren1730 46.5869 11.4337ENFIT-Ro1235 42.4081 11.93DBFIT-Ro2160 42.3903 11.9209DBFIT-SR06 43.7279 10.2844ENFJP-MBF676 44.3869 142.3186DBFJP-SMF39735.2617137.0788MFMY-PSO1022.973102.3062EBFNL-Loo2552.16665.7436ENFPA-SPn789.3181-79.6346DBFRU-Fyo26556.461532.9221ENFUS-Blo131538.8953-120.633ENFUS-Blo131538.8953-120.633ENFUS-Ha134042.5378-72.1715DBFUS-Mc2125344.4523-121.567ENFUS-Mc3100544.3154-121.608ENFUS-Mc492244.4992-121.622ENFUS-Mc5118844.323-121.668ENFUS-Mc699844.3233-121.608ENFUS-Mc699844.323-121.608ENFUS-Mc699844.323-121.608ENFUS-Mc699844.323-121.608ENFUS-Mc699844.323-121.608ENFUS-Mc6 </td <td>IT-Cpz</td> <td>68</td> <td>41.7052</td> <td>12.3761</td> <td>EBF</td>	IT-Cpz	68	41.7052	12.3761	EBF
IT-Lav 1353 45.9562 11.2813 ENF IT-PT1 60 45.2009 9.061 DBF IT-Ren 1730 46.5869 11.4337 ENF IT-Ro1 235 42.4081 11.93 DBF IT-Ro1 235 42.4081 11.93 DBF IT-Ro2 160 42.3903 11.9209 DBF IT-SR2 4 43.732 10.2909 ENF IT-SR0 6 43.7279 10.2844 ENF JP-MBF 676 44.3869 142.3186 DBF JP-SMF 397 35.2617 137.0788 MF MY-PSO 102 2.973 102.3062 EBF NL-Loo 25 52.1666 5.7436 ENF PA-SPn 78 9.3181 -79.6346 DBF RU-Fyo 265 56.4615 32.9221 ENF US-GLE 3197 41.3665 -106.24 ENF US-MMS 275 39.3232 -86.4131 DBF US-Me4 922<	IT-Isp	210	45.8126	8.6336	DBF
IT-PT16045.20099.061DBFIT-Ren173046.586911.4337ENFIT-Ro123542.408111.93DBFIT-Ro216042.390311.9209DBFIT-SR2443.73210.2909ENFIT-SR0643.727910.2844ENFJP-MBF67644.3869142.3186DBFJP-SMF39735.2617137.0788MFMY-PSO1022.973102.3062EBFNL-Loo2552.16665.7436ENFPA-SPn789.3181-79.6346DBFRU-Fyo26556.461532.9221ENFUS-Blo131538.8953-120.633ENFUS-GLE319741.3665-106.24ENFUS-MAS27539.3232-86.4131DBFUS-Mc2125344.4523-121.557ENFUS-Mc492244.4992-121.608ENFUS-Mc5118844.312-121.608ENFUS-Mc699844.3233-121.608ENFUS-Nc1305040.0329-105.546ENFUS-Mc692041.5545-83.8438DBFUS-PFa47045.9459-90.2723MFUS-Pr21065.1237-147.488ENFUS-Wc152045.655-84.6975DBFUS-Wi341146.6347-91.0987DBFUS-Wi341146	IT-La2	1350	45.9542	11.2853	ENF
IT-Ren173046.586911.4337ENFIT-Ro123542.408111.93DBFIT-Ro216042.390311.9209DBFIT-SR2443.73210.2909ENFIT-SRo643.727910.2844ENFJP-MBF67644.3869142.3186DBFJP-SMF39735.2617137.0788MFMY-PSO1022.973102.3062EBFNL-Loo2552.16665.7436ENFPA-SPn789.3181-79.6346DBFRU-Fyo26556.461532.9221ENFUS-Blo131538.8953-120.633ENFUS-GLE319741.3665-106.24ENFUS-MMS27539.3232-86.4131DBFUS-Mc2125344.4523-121.608ENFUS-Me5118844.4372-121.608ENFUS-Me5118844.4372-121.667ENFUS-Me699844.3233-121.668ENFUS-NR1305040.0329-105.546ENFUS-PFa47045.9459-90.2723MFUS-PFa47045.9459-90.2723MFUS-PFa23445.5598-84.6713DBFUS-Wi341146.6347-91.0987DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.723-91.2524DBFUS-Wi4353 <td>IT-Lav</td> <td>1353</td> <td>45.9562</td> <td>11.2813</td> <td>ENF</td>	IT-Lav	1353	45.9562	11.2813	ENF
IT-Ro123542.408111.93DBFIT-Ro216042.390311.9209DBFIT-SR2443.73210.2909ENFIT-SR0643.727910.2844ENFJP-MBF67644.3869142.3186DBFJP-SMF39735.2617137.0788MFMY-PSO1022.973102.3062EBFNL-Loo2552.16665.7436ENFPA-SPn789.3181-79.6346DBFRU-Fyo26556.461532.9221ENFUS-Blo131538.8953-120.633ENFUS-GLE319741.3665-106.24ENFUS-MKS27539.3232-86.4131DBFUS-Mc2125344.4523-121.608ENFUS-Mc492244.4992-121.622ENFUS-Mc5118844.372-121.608ENFUS-Mc699844.3233-121.608ENFUS-Mc699844.3233-121.608ENFUS-Mc692041.5545-83.8438DBFUS-PFa47045.9459-90.2723MFUS-PFa47045.9459-90.2723MFUS-VMB23445.5598-84.6735DBFUS-WMB23445.5598-84.6735DBFUS-WMB23445.5598-84.6735DBFUS-Wi341146.6347-91.0987DBFUS-Wi3411 <t< td=""><td>IT-PT1</td><td>60</td><td>45.2009</td><td>9.061</td><td>DBF</td></t<>	IT-PT1	60	45.2009	9.061	DBF
IT-Ro216042.390311.9209DBFIT-SR2443.73210.2909ENFIT-SR0643.727910.2844ENFJP-MBF67644.3869142.3186DBFJP-SMF39735.2617137.0788MFMY-PSO1022.973102.3062EBFNL-Loo2552.16665.7436ENFPA-SPn789.3181-79.6346DBFRU-Fyo26556.461532.9221ENFUS-Blo131538.8953-120.633ENFUS-GLE319741.3665-106.24ENFUS-Ha134042.5378-72.1715DBFUS-MMS27539.3232-86.4131DBFUS-Me2125344.4523-121.608ENFUS-Me3100544.3154-121.608ENFUS-Me492244.4992-121.622ENFUS-Me5118844.372-121.567ENFUS-Me699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-NFa47045.9459-90.2723MFUS-PFa47045.9459-90.2723MFUS-PFa37045.558-84.6975DBFUS-WMB23445.5598-84.7138DBFUS-WMB23445.5598-84.6975DBFUS-Wi341146.6347-91.0987DBFUS-Wi3411 <td>IT-Ren</td> <td>1730</td> <td>46.5869</td> <td>11.4337</td> <td>ENF</td>	IT-Ren	1730	46.5869	11.4337	ENF
IT-SR2443.73210.2909ENFIT-SR0643.727910.2844ENFJP-MBF67644.3869142.3186DBFJP-SMF39735.2617137.0788MFMY-PSO1022.973102.3062EBFNL-Loo2552.16665.7436ENFPA-SPn789.3181-79.6346DBFRU-Fyo26556.461532.9221ENFUS-Blo131538.8953-120.633ENFUS-GLE319741.3665-106.24ENFUS-Ha134042.5378-72.1715DBFUS-MMS27539.3232-86.4131DBFUS-Me2125344.4523-121.557ENFUS-Me3100544.3154-121.608ENFUS-Me492244.4992-121.622ENFUS-Me5118844.4372-121.567ENFUS-Me699844.3233-121.608ENFUS-Me699844.3233-121.608ENFUS-Nr1305040.0329-105.546ENFUS-Nr221065.1237-147.488ENFUS-Syv54046.242-89.3477MFUS-WhB23445.5598-84.7138DBFUS-Wi341146.6347-91.0987DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.6531-91.663ENFUS-Wi5353<	IT-Ro1	235	42.4081	11.93	DBF
IT-SRo643.727910.2844ENFJP-MBF67644.3869142.3186DBFJP-SMF39735.2617137.0788MFMY-PSO1022.973102.3062EBFNL-Loo2552.16665.7436ENFPA-SPn789.3181-79.6346DBFRU-Fyo26556.461532.9221ENFUS-Blo131538.8953-120.633ENFUS-GLE319741.3665-106.24ENFUS-MAS27539.3232-86.4131DBFUS-Me2125344.4523-121.608ENFUS-Me3100544.3154-121.608ENFUS-Me492244.4992-121.622ENFUS-Me5118844.4372-121.608ENFUS-Me699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-NR1305040.329-105.546ENFUS-NR1305040.329-107.438ENFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-Wi341146.6347-91.0987DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.6531-91.0858ENFUS-Wi535346.6531-91.2524DBF	IT-Ro2	160	42.3903	11.9209	DBF
JP-MBF67644.3869142.3186DBFJP-SMF39735.2617137.0788MFMY-PSO1022.973102.3062EBFNL-Loo2552.16665.7436ENFPA-SPn789.3181-79.6346DBFRU-Fyo26556.461532.9221ENFUS-Blo131538.8953-120.633ENFUS-GLE319741.3665-106.24ENFUS-Ha134042.5378-72.1715DBFUS-MK2125344.4523-121.557ENFUS-Mc2125344.4523-121.608ENFUS-Mc492244.4992-121.622ENFUS-Mc5118844.372-121.608ENFUS-Mc699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-NR1305040.0329-105.546ENFUS-PFa47045.9459-90.2723MFUS-PFa47045.9459-90.2723MFUS-VMB23445.5598-84.7138DBFUS-UMB23445.5598-84.7138DBFUS-Wi341146.6347-91.0987DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.733-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	IT-SR2	4	43.732	10.2909	ENF
JP-SMF39735.2617137.0788MFMY-PSO1022.973102.3062EBFNL-Loo2552.16665.7436ENFPA-SPn789.3181-79.6346DBFRU-Fyo26556.461532.9221ENFUS-Blo131538.8953-120.633ENFUS-GLE319741.3665-106.24ENFUS-Ha134042.5378-72.1715DBFUS-MMS27539.3232-86.4131DBFUS-Me2125344.4523-121.608ENFUS-Me3100544.3154-121.608ENFUS-Me492244.4992-121.622ENFUS-Me5118844.372-121.668ENFUS-Me699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-Oho23041.5545-83.8438DBFUS-PFa47045.9459-90.2723MFUS-PFa21065.1237-147.488ENFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-Wi341146.6347-91.0987DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	IT-SRo	6	43.7279	10.2844	ENF
MY-PSO1022.973102.3062EBFNL-Loo2552.16665.7436ENFPA-SPn789.3181-79.6346DBFRU-Fyo26556.461532.9221ENFUS-Blo131538.8953-120.633ENFUS-GLE319741.3665-106.24ENFUS-MAI34042.5378-72.1715DBFUS-MAS27539.3232-86.4131DBFUS-Me2125344.4523-121.608ENFUS-Me3100544.3154-121.608ENFUS-Me492244.4992-121.622ENFUS-Me5118844.372-121.567ENFUS-Me699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-Oho23041.5545-83.8438DBFUS-PFa47045.9459-90.2723MFUS-PFa21065.1237-147.488ENFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-WMA23945.5625-84.6975DBFUS-Wi341146.6347-91.0987DBFUS-Wi334846.7223-91.0554ENFUS-Wi834846.7223-91.2524DBF	JP-MBF	676	44.3869	142.3186	DBF
NL-Loo2552.16665.7436ENFPA-SPn789.3181-79.6346DBFRU-Fyo26556.461532.9221ENFUS-Blo131538.8953-120.633ENFUS-GLE319741.3665-106.24ENFUS-Ha134042.5378-72.1715DBFUS-MMS27539.3232-86.4131DBFUS-Me2125344.4523-121.557ENFUS-Me3100544.3154-121.608ENFUS-Me492244.4992-121.622ENFUS-Me5118844.372-121.567ENFUS-Me699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-NR1305040.329-105.546ENFUS-Prr21065.1237-147.488ENFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-WGr52045.8059-90.0799DBFUS-Wi341146.6347-91.0987DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.2524DBF	JP-SMF	397	35.2617	137.0788	MF
PA-SPn789.3181-79.6346DBFRU-Fyo26556.461532.9221ENFUS-Blo131538.8953-120.633ENFUS-GLE319741.3665-106.24ENFUS-Ha134042.5378-72.1715DBFUS-MMS27539.3232-86.4131DBFUS-Me2125344.4523-121.557ENFUS-Me3100544.3154-121.608ENFUS-Me492244.4992-121.622ENFUS-Me5118844.372-121.567ENFUS-Me699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-NR1305040.0329-105.546ENFUS-NR1305045.9459-90.2723MFUS-Syv54046.242-89.3477MFUS-Syv54045.5598-84.7138DBFUS-UMB23445.5625-84.6975DBFUS-Wi341146.6347-91.0987DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	MY-PSO	102	2.973	102.3062	EBF
RU-Fyo26556.461532.9221ENFUS-Blo131538.8953-120.633ENFUS-GLE319741.3665-106.24ENFUS-Ha134042.5378-72.1715DBFUS-MMS27539.3232-86.4131DBFUS-Me2125344.4523-121.557ENFUS-Me3100544.3154-121.608ENFUS-Me492244.4992-121.622ENFUS-Me5118844.372-121.608ENFUS-Me699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-Oho23041.5545-83.8438DBFUS-PFa47045.9459-90.2723MFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-WK341146.6347-91.0987DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	NL-Loo	25	52.1666	5.7436	ENF
US-Blo131538.8953-120.633ENFUS-GLE319741.3665-106.24ENFUS-Ha134042.5378-72.1715DBFUS-MMS27539.3232-86.4131DBFUS-Me2125344.4523-121.557ENFUS-Me3100544.3154-121.608ENFUS-Me492244.4992-121.622ENFUS-Me5118844.372-121.567ENFUS-Me699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-Oho23041.5545-83.8438DBFUS-PFa47045.9459-90.2723MFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-Wi341146.6347-91.0987DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	PA-SPn	78	9.3181	-79.6346	DBF
US-GLE319741.3665-106.24ENFUS-Hal34042.5378-72.1715DBFUS-MMS27539.3232-86.4131DBFUS-Me2125344.4523-121.557ENFUS-Me3100544.3154-121.608ENFUS-Me492244.4992-121.622ENFUS-Me5118844.372-121.567ENFUS-Me699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-Oho23041.5545-83.8438DBFUS-PFa47045.9459-90.2723MFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-UMd23945.5625-84.6975DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	RU-Fyo	265	56.4615	32.9221	ENF
US-Hal34042.5378-72.1715DBFUS-MMS27539.3232-86.4131DBFUS-Me2125344.4523-121.557ENFUS-Me3100544.3154-121.608ENFUS-Me492244.4992-121.622ENFUS-Me5118844.4372-121.567ENFUS-Me699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-Oho23041.5545-83.8438DBFUS-Pra47045.9459-90.2723MFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-Wcr52045.8059-90.0799DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-Blo	1315	38.8953	-120.633	ENF
US-MMS27539.3232-86.4131DBFUS-Me2125344.4523-121.557ENFUS-Me3100544.3154-121.608ENFUS-Me492244.4992-121.622ENFUS-Me5118844.372-121.567ENFUS-Me699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-Oho23041.5545-83.8438DBFUS-PFa47045.9459-90.2723MFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-Wid23945.5625-84.6975DBFUS-Wi341146.6347-91.0987DBFUS-Wi341146.6341-91.0858ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-GLE	3197	41.3665	-106.24	ENF
US-Me2125344.4523-121.557ENFUS-Me3100544.3154-121.608ENFUS-Me492244.4992-121.622ENFUS-Me5118844.4372-121.567ENFUS-Me699844.3233-121.608ENFUS-Ne699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-Oho23041.5545-83.8438DBFUS-PFa47045.9459-90.2723MFUS-Prr21065.1237-147.488ENFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.6975DBFUS-WCr52045.8059-90.0799DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-Ha1	340	42.5378	-72.1715	DBF
US-Me3100544.3154-121.608ENFUS-Me492244.4992-121.622ENFUS-Me5118844.372-121.567ENFUS-Me699844.3233-121.608ENFUS-Ne699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-Oho23041.5545-83.8438DBFUS-PFa47045.9459-90.2723MFUS-Prr21065.1237-147.488ENFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-UMd23945.5625-84.6975DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-MMS	275	39.3232	-86.4131	DBF
US-Me492244.4992-121.622ENFUS-Me5118844.4372-121.567ENFUS-Me699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-Oho23041.5545-83.8438DBFUS-PFa47045.9459-90.2723MFUS-Prr21065.1237-147.488ENFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-WCr52045.8059-90.0799DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-Me2	1253	44.4523	-121.557	ENF
US-Me5118844.4372-121.567ENFUS-Me699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-Oho23041.5545-83.8438DBFUS-PFa47045.9459-90.2723MFUS-Prr21065.1237-147.488ENFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-UMd23945.5625-84.6975DBFUS-Wi341146.6347-91.0987DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-Me3	1005	44.3154	-121.608	ENF
US-Me699844.3233-121.608ENFUS-NR1305040.0329-105.546ENFUS-Oho23041.5545-83.8438DBFUS-PFa47045.9459-90.2723MFUS-Prr21065.1237-147.488ENFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-UMd23945.5625-84.6975DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-Me4	922	44.4992	-121.622	ENF
US-NR1305040.0329-105.546ENFUS-Oho23041.5545-83.8438DBFUS-PFa47045.9459-90.2723MFUS-Prr21065.1237-147.488ENFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-UMd23945.5625-84.6975DBFUS-WCr52045.8059-90.0799DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-Me5	1188	44.4372	-121.567	ENF
US-Oho23041.5545-83.8438DBFUS-PFa47045.9459-90.2723MFUS-Prr21065.1237-147.488ENFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-UMd23945.5625-84.6975DBFUS-WCr52045.8059-90.0799DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-Me6	998	44.3233	-121.608	ENF
US-PFa47045.9459-90.2723MFUS-Prr21065.1237-147.488ENFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-UMd23945.5625-84.6975DBFUS-WCr52045.8059-90.0799DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-NR1	3050	40.0329	-105.546	ENF
US-Prr21065.1237-147.488ENFUS-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-UMd23945.5625-84.6975DBFUS-WCr52045.8059-90.0799DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-Oho	230	41.5545	-83.8438	DBF
US-Syv54046.242-89.3477MFUS-UMB23445.5598-84.7138DBFUS-UMd23945.5625-84.6975DBFUS-WCr52045.8059-90.0799DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-PFa	470	45.9459	-90.2723	MF
US-UMB23445.5598-84.7138DBFUS-UMd23945.5625-84.6975DBFUS-WCr52045.8059-90.0799DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-Prr	210	65.1237	-147.488	ENF
US-UMd23945.5625-84.6975DBFUS-WCr52045.8059-90.0799DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-Syv	540	46.242	-89.3477	MF
US-WCr52045.8059-90.0799DBFUS-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-UMB	234	45.5598	-84.7138	DBF
US-Wi341146.6347-91.0987DBFUS-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-UMd	239	45.5625	-84.6975	DBF
US-Wi435246.7393-91.1663ENFUS-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-WCr	520	45.8059	-90.0799	DBF
US-Wi535346.6531-91.0858ENFUS-Wi834846.7223-91.2524DBF	US-Wi3	411	46.6347	-91.0987	DBF
US-Wi8 348 46.7223 -91.2524 DBF	US-Wi4	352	46.7393	-91.1663	ENF
	US-Wi5	353	46.6531	-91.0858	ENF
US-Wi9 350 46.7385 -91.0746 ENF	US-Wi8	348	46.7223	-91.2524	DBF
	US-Wi9	350	46.7385	-91.0746	ENF

Parameters	Rain forest tree		Evergreen broadleaf tree		Deciduous l	Deciduous broadleaf tree		conifer tree	Deciduous conifer tree
	ST	SIT	ST	SIT	ST	SIT	ST	SIT	
Lo	5.5	11.0	5.5	11.0	5.5	11.0	5.5	11.0	11.0
Am	5.5×10 ⁻⁴	5.5×10 ⁻⁴	5.5×10 ⁻⁴	5.5×10 ⁻⁴	5.0×10 ⁻⁴	5.0×10 ⁻⁴	5.0×10 ⁻⁴	5.0×10 ⁻⁴	5.0×10 ⁻⁴
Sl	1.3×10 ⁻⁵	1.3×10 ⁻⁵	1.3×10 ⁻⁵	1.3×10 ⁻⁵	1.3×10 ⁻⁵	1.3×10 ⁻⁵	1.3×10 ⁻⁵	1.3×10 ⁻⁵	1.3×10 ⁻⁵
Kl	4.5×10 ⁻¹	4.5×10 ⁻¹	4.5×10 ⁻¹	4.5×10 ⁻¹	4.0×10 ⁻¹	4.0×10 ⁻¹	4.0×10 ⁻¹	4.0×10 ⁻¹	3.5×10 ⁻¹
r _L	2.0×10-3	2.0×10-3	2.0×10 ⁻³	2.0×10-3	6.0×10 ⁻³	3.0×10 ⁻³	3.5×10 ⁻³	3.5×10 ⁻³	1.2×10 ⁻²
r _W	1.0×10 ⁻³	1.0×10 ⁻³	1.0×10 ⁻³	1.0×10 ⁻³	2.0×10 ⁻³	2.0×10 ⁻³	2.0×10 ⁻³	2.0×10-3	2.0×10 ⁻³
r _R	1.5×10 ⁻³	1.5×10 ⁻³	1.5×10 ⁻³	1.5×10 ⁻³	2.5×10 ⁻³	2.5×10 ⁻³	2.5×10-3	2.5×10-3	2.5×10 ⁻³
lm ₂	0.50	0.50	0.40	0.40	0.40	0.40	0.50	0.50	0.50
CNL	40.0	40.0	45.0	45.0	40.0	40.0	60.0	60.0	50.0
CN _W	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0
CN _R	40.0	40.0	45.0	45.0	40.0	40.0	60.0	60.0	50.0
Hmax	40.0	60.0	50.0	40.0	40.0	40.0	60.0	60.0	50.0
Dmax	2.0	3.0	2.0	1.5	2.0	1.5	2.0	2.0	2.0
Amax	200.0	100.0	400.0	200.0	400.0	200.0	1000.0	300.0	500.0
eL	600.0	600.0	600.0	600.0	200.0	700.0	700.0	700.0	300.0
e _R	20.0	20.0	20.0	20.0	30.0	30.0	15.0	15.0	28.0
cLAIL	15.0	15.0	15.0	15.0	45.0	20.0	18.0	18.0	40.0
Astem	350.0	350.0	350.0	350.0	350.0	350.0	350.0	350.0	350.0
Tmin	5.0	5.0	3.0	1.0	-1.0	-5.5	-5.5	-2.5	-5.5
Topt	27.0	29.0	27.0	25.0	23.0	20.0	18.0	23.0	16.0
Tmax	50.0	50.0	50.0	50.0	45.0	45.0	40.0	40.0	35.0
DRY	1.0	0.8	0.9	0.8	0.8	0.6	0.9	0.7	0.5
lL	2.0×10-3	2.0×10-3	2.0×10 ⁻³	2.0×10 ⁻³	1.1×10 ⁻⁴	1.1×10 ⁻⁴	2.0×10 ⁻³	2.0×10-3	1.1×10 ⁻⁴
Lr/Nr	40.0	40.0	40.0	40.0	30.0	50.0	80.0	80.0	50.0

Table S2. Physiological and ecological parameters in the original FORCCHN2 model. ST: shade-tolerant; SIT: shade-intolerant

l_R	5.0×10 ⁻⁵	5.0×10 ⁻⁵	5.0×10 ⁻⁵	5.0×10 ⁻⁵	4.0×10 ⁻⁵	4.0×10 ⁻⁵	8.0×10 ⁻⁵	8.0×10 ⁻⁵	8.0×10 ⁻⁵
ср	10	100	10	100	10	100	10	100	100

 L_o -the photosynthesis compensate point; Am-the Maximal photosynthesis; Sl-the initial slope of light intension and photosynthesis[kg C/(m²·h)/(W/m²)]; Kl-the extinction coefficient; r_L -the relative breath rate of foliage (1/d); r_W -the relative breath rate of wood (1/d); r_R -the relative breath rate of root(1/d); l_{m_2} - the threshold value of fruit; CN_L -the C:N ratio of foliage; CN_W -the C:N ratio of wood; CN_R -the C:N ratio of root; Hmax-the maximal tree height (m); Dmax-the maximal tree diameter (m); Amax-the maximal tree age (a); e_L -the coefficient of leaf content (kgC/m²); e_R -the coefficient of root content (kgC/m²); $cLAI_L$ -the coefficient of leaf area (m²/kgC); Astem-the bulk density of wood (kgC/m³); Tmin-the lowest temperature of photosynthesis (°C); Topt-the optimum temperature of photosynthesis (°C); Tmax-the highest temperature of photosynthesis (°C); DRY-the capability of enduring drought; l_L -the relative litter rate of leaves(1/d); Lr/Nr-the ratio of lignin and nitrogen content; l_R -the relative litter rate of root(1/d); cp-the constant depends on the light gradient.

Parameter	Meaning	Value	Unit
S _{A0}	The initial heat parameter on the first day of the year (calculated by first year)	(Eqn S43)	
S_B	a predetermined level to determine Y_{cease} (calculated by first year)	(Eqn S45)	-
с	A parameter of temperature response factor	0.185	-
d	A parameter of temperature response factor	18.4	°C
T_B	The threshold parameter to determine the effective temperature (calculated by first year)	(Eqn S44)	°C

Table S3. Phenological parameters in the FORCCHN2 model

		1	
Symbol	Unit	Litter and matter pool	Value
S1	d-1	Above-ground metabolic litter pool	0.08
S2	d-1	Above-ground structural litter pool	0.021
S3	d-1	Below-ground metabolic litter pool	0.1
S4	d-1	Below-ground structural litter pool	0.027
S5	d-1	Fine woody litter pool	0.01
S6	d-1	Coarse woody litter pool	0.002
S7	d-1	Below-ground coarse litter pool	0.002
S8	d-1	Above-ground active pool	0.04
S9	d-1	Active soil organic matter pool	0.04
S10	d-1	Slow soil organic matter pool	0.001
S11	d-1	Resistant soil organic matter pool	3.5×10^{-5}
-			

 Table S4. Parameters of soil decomposition rate in the FORCCHN2 model.

Table S5. Initialized allocation parameter of each soil pool in the FORCCHN2 model. These parameters are used as s_u in Eqn 16.

Litter and matter pool	Value (1/d)	
Above-ground metabolic litter pool	0.01	
Above-ground structural litter pool	0.01	
Below-ground metabolic litter pool	0.01	
Below-ground structural litter pool	0.01	
Fine woody litter pool	0.01	
Coarse woody litter pool	0.01	
Below-ground coarse litter pool	0.01	
Above-ground active pool	0.01	
Active soil organic matter pool	0.02	
Slow soil organic matter pool	0.02	
Resistant soil organic matter pool	0.88	