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Abstract. Process-based ecological models are essential
tools to quantify and predict forest growth and carbon cy-
cles under the background of climate change. The accurate
description of phenology and tree growth processes enables
an improved understanding and predictive modeling of for-
est dynamics. An individual tree-based carbon model, FOR-
CCHN2 (Forest Ecosystem Carbon Budget Model for China
version 2.0), used non-structural carbohydrate (NSC) pools
to couple tree growth and phenology. This model performed
well in reducing uncertainty when predicting forest carbon
fluxes. Here, we describe the framework in detail and provide
the source code of FORCCHN2. We also present a dynamic-
link library (DLL) package containing the latest version of
FORCCHN2. This package has the advantage of using For-
tran as an interface to make the model run fast on a daily step,
and the package also allows users to call it with their pre-
ferred computer tools (e.g., MATLAB, R, Python). FORC-
CHN2 can be used directly to predict spring and autumn phe-
nological dates, daily carbon fluxes (including photosynthe-
sis, aboveground and belowground autotrophic respiration,
and soil heterotrophic respiration), and biomass on plot, re-
gional, and hemispheric scales. As case studies, we provide
an example of FORCCHN2 running model validations in 78
forest sites and an example model application for the carbon
dynamics of Northern Hemisphere forests. We demonstrate
that FORCCHN2 can produce a reasonable agreement with
flux observations. Given the potential importance of the ap-
plication of this ecological model in many studies, there is

substantial scope for using FORCCHN2 in fields as diverse
as forest ecology, climate change, and carbon estimations.

1 Introduction

Forests contribute an enormous carbon flux to terrestrial
ecosystems (Pan et al., 2011; Keenan and Williams, 2018).
Thus, accurate estimation and prediction of forest dynamics
both play an important role in understanding the carbon cycle
in the background of global change (Beer et al., 2010; Harris
et al., 2021). Over the past few decades, process-based eco-
logical models have often been considered effective tools for
evaluating forest dynamics at multiple scales (Friedlingstein
et al., 2020).

Even though ecological models are widely used in the
prediction of forest dynamics, large uncertainties remain
(Huntzinger et al., 2012; Friedlingstein et al., 2020). Some
of these uncertainties can be attributed to the lack of effective
phenological parameterization in the models and the neglect
of autumn phenology modeling (Raczka et al., 2013), both of
which need to be based on an improved understanding and
coupling of mechanisms regulating forest phenology (Piao
et al., 2019). Furthermore, the previous models assumed that
the reserve carbon of trees acts merely as a carbon buffer
pool between sink and source (Schiestl-Aalto et al., 2015).
Recent studies considered the stored carbon as non-structural
carbohydrates (NSCs), which may have an active role in tree
growth and carbon dynamics (Martínez-Vilalta et al., 2016;
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Piper, 2020). For example, trees rely on NSCs to resume
growth after the non-growing season (Furze et al., 2019). The
individual tree-based model, FORCCHN (Forest Ecosystem
Carbon Budget Model for China) version 2.0 (FORCCHN2),
has been developed to treat these considerations by integrat-
ing two NSC pools (NSC active pool and NSC slow pool)
and optimizing phenological parameters (Fang et al., 2020a;
Fang et al., 2021). FORCCHN2 has improved performance
for predicting forest carbon sinks compared to other models
in North American forests (Fang et al., 2020b).

This model provides temporal predictions of individual
tree growth processes, as well as spatially explicit estima-
tions of carbon dynamics on biomass, photosynthesis, au-
totrophic respiration, and heterotrophic respiration (Fang et
al., 2020b). The latest version can capture forest carbon dy-
namics, but current runs of FORCCHN2 have limitations
that prevent a seamless integration of the model into a data-
oriented software environment (e.g., MATLAB, R, Python).
FORCCHN2 and its previous versions were originally de-
signed for the daily calculation of individual trees in a given
plot and implemented in Fortran (Ma et al., 2017; Zhao et
al., 2019; Fang et al., 2020a). Fortran ensures calculation ef-
ficiency and shortens the model runtime, but the model code
and the implementation are not designed for the end users
with appropriate help and instruction files. Moreover, until
now FORCCHN2 has only been validated and applied in
North America, and there has been no comprehensive pub-
lication describing the model itself and no hemispheric-scale
validation using this model.

Here, we present a dynamic-link library (DLL) package
aimed to provide a flexible and user-friendly interface for im-
plementing the newest version of FORCCHN2. Meanwhile,
we provide the source code and a detailed description of this
model and demonstrate that FORCCHN2 can predict realis-
tic and stable carbon dynamics in hemispheric-scale forests.
With the package, users can conveniently run model pre-
dictions on individual, plot, regional, continental, and hemi-
spheric scales according to their computer tools. This pack-
age is compiled by Fortran 95 and thus can keep the high
calculation efficiency. We also demonstrate the functional-
ity of FORCCHN2 with a usage example, perform a model
validation at carbon flux sites, apply the model on a hemi-
spheric scale (i.e., the Northern Hemisphere), and provide an
open-access dataset of carbon outputs across the Northern
Hemisphere.

2 FORCCHN2 description

FORCCHN2, an individual tree-based carbon dynamic
model, predicts the daily processes of NSC, photosynthe-
sis, growth, phenophase, vegetation (autotrophic) respiration,
and soil dynamics in forests (Fig. 1 and Methods S1–S2).
This model is driven by daily climate data and uses the leaf
area index (LAI) to initialize the vegetation information (i.e.,

tree number, diameter at breast height (DBH), height, and
biomass) over a fixed area (Method S3).

For an individual tree, the NSC produced by photosynthe-
sis is considered the substrate supply for vital activities, such
as participating in autotrophic respiration and forming struc-
tural carbon pools (i.e., leaves, wood, and fine roots) through
growth (Sala et al., 2012; Richardson et al., 2013). The NSC
production is limited by external environmental factors (e.g.,
water, temperature, CO2), and the NSC consumption for the
growth of each structural carbon pool (i.e., leaves, wood, and
fine roots) is regulated by phenology factors and daily cli-
mate (Schiestl-Aalto et al., 2015; Delpierre et al., 2019). The
phenophase of spring and autumn in FORCCHN2 is con-
trolled by heat and chilling requirements, respectively (Fang
et al., 2022b). The spring phenophase is decided by the ef-
fective temperature with the thermal time model (Eqs. 39–
40), and the autumn phenophase is decided by the effective
temperature and photoperiod with the cold degree-day model
(Eqs. 41–42). The model divides NSC into an active NSC
pool and a slow NSC pool. The active pool provides the es-
sential NSC consumption for daily activities; the slow pool
is an NSC storage pool providing the necessary NSC for re-
quirements when the contemporaneous active pool is insuf-
ficient, such as maintaining vegetation respiration during the
non-growing and early growing seasons. These NSC pools
allow trees to be dead if the NSC storage drops below zero.

Dynamic changes of NSC production, allocation and
consumption drive change in the NSC active pool
(NSCactive, kg C) at a daily time step. The NSC slow pool
(NSCslow, kg C) is defined as the NSC storage pool. The
changes in the daily active pool and yearly slow pool are

dNSCactive

dt
=

dGPP
dt
−

∑ dRj

dt
−

∑ dRG
j

dt
−

∑ dGj

dt
, (1)

NSCslow(y)= NSCactive,y, (2)

where t is the day of the year, y is the yth year, j is each
part of the tree (i.e., leaf, fine roots, and wood), GPP is gross
primary productivity (kg C), R is the maintenance respiration
(kg C), RG is the growth respiration (kg C), G is the carbon
demand of growth (kg C), and NSCactive,y is the size of NSC
active pool at the end of yth year (kg C). The NSC active pool
is initialized to zero on the first day of the next year. The cal-
culation of GPP, maintenance respiration, growth respiration,
and growth processes can be found in Methods S1 and S2.

For the relationship between an individual tree and its
neighbors, the model uses a distance-independent gap model
to describe the light competition. To simplify the physiolog-
ical and ecological parameters, each individual tree is as-
sumed to belong to a plant functional type (PFT) instead
of specific tree species (Table S2). The PFT of one tree is
decided by tree species when using the inventory data or is
estimated by forest types and random functions when using
the satellite data. The phenological parameters are parame-
terized by the local climate and observed phenological time
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Figure 1. Schematic representation of FORCCHN2. LAI is leaf area index, NSC is non-structural carbohydrates, C is carbon, and N is
nitrogen.

in the first year (Eqs. S43–S45). A part of structural carbon
pools is then transferred into the soil pools by litterfall. The
main soil processes in FORCCHN2 are soil organic matter
(SOM) decomposition, N mineralization, and water dynam-
ics. According to these attributes, soil pools include above-
ground and belowground metabolic and structural pools; fine
and coarse woody litter pools; and active, slow, and resistant
SOM pools (Table S4). In addition to these pools, the soil
nitrogen pool also includes the inorganic nitrogen pool.

After each time step, the predicted vegetation and soil
statements are converted into output variables such as
biomass and carbon fluxes. The carbon fluxes on the
plot scale include GPP (kg C m−2), net primary produc-
tivity (NPP, kg C m−2), and net ecosystem productivity
(NEP, kg C m−2). The NPP of a given plot at the daily step is
determined by the GPP, R (kg C m−2), and RG (kg C m−2).
The NEP of a given plot at the daily step is determined by
the GPP, R, RG, and soil respiration (RS, kg C m−2):

dNPP
dt
=

∑ dGPPn

dt
−

∑ dRn

dt
−

∑ dRG
n

dt
(3)

dNEP
dt
=

dNPP
dt
−

dRS

dt
, (4)

where n is the nth tree of the plot.
A more detailed description, including inputs, outputs, cal-

culation processes, and parameter sets of FORCCHN2, can
be found in Table 1, Methods S1–S3, and Tables S2–S5.

3 Example runs

Here, we provide an integrated DLL package (“FORC-
CHN2.dll”) to simplify the usage of FORCCHN2. This file
is highly flexible and allows users to adapt model runs to
their own computer language (e.g., MATLAB, R, Fortran,
Python). Except for the model inputs, using only one com-
mand can call the calculation of the model. We provide users
with 32 and 64 bit DLL packages to choose the most suitable
version.

We take the Harvard Forest (a deciduous broadleaf forest
in the eastern United States) and use MATLAB as an exam-
ple run to demonstrate the functionality of FORCCHN2 (the
code of this example can also be accessed via https://github.
com/JingF1/FORCCHN2_model.git, last access: 14 March
2022). First, we install and load the following package.

– >>name1=(’XXX’);%load path of the FORCCHN2
DLL package

– >>name2=[name1,’FORCCHN2_64.dll’];
%input 64-bit or 32-bit DLL file

– >>name3=[name1,’FORCCHN2.h’];
%input header file

– >>loadlibrary(name2,name3);%load the DLL package

Following this, we input the data of Harvard Forest during
1991–2012. The inputs include the year information, the ini-
tialization data (i.e., geography, vegetation, and soil data),
and the driven data (i.e., climate data). The more detailed in-
formation and format of these input data can be found in the
example code (“FORCCHN2_run_example.m”).
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Table 1. Description of functions and variables in FORCCHN2. A detailed explanation of functions and variables can be found in the
FORCCHN2 DLL package documentation. SOS is the start time of leaf growth, EOS is the end time of leaf growth, DOY is the day of the
year, and GPP is gross primary productivity.

Model functions and variables Description

Time step Daily and yearly

Initialization data (inputs) Vegetation: maximum LAI (m2 m−2), forest types, SOS dates (DOY), EOS dates (DOY).
Soil: field capacity (cm), permanent wilting point (cm), soil volume weight (kg m−3), total organic
carbon (kg C m−2), total nitrogen (kg C m−2), silt percent (%), sand percent (%).
Geography: latitude (◦), longitude (◦), elevation (m)

Driven data (inputs) Daily climate: mean temperature (◦C), maximum temperature (◦C), minimum temperature (◦C), air
pressure (hPa), wind (m s−1), relative humidity (%), precipitation (mm), shortwave radiation (W m−2),
CO2 concentration (ppm).

Outputs Daily: aboveground vegetation biomass (kg C m−2), belowground vegetation biomass (kg C m−2),
GPP (kg C m−2), aboveground autotrophic respiration (kg C m−2), belowground autotrophic respira-
tion (kg C m−2), soil heterotrophic respiration (kg C m−2), litter-fall (kg C m−2), soil total organic car-
bon (kg C m−2).
Yearly: same as the daily outputs, with the SOS dates (DOY) and EOS dates (DOY)

After inputting all data, we predict the dynamics of this
forest for a period of 22 years. We can choose four output
results of FORCCHN2.

– >>[fj,yxc,dayout,yearout]= calllib(’FORCCHN2_
64’,’forcchn2’,fj,yxc,dayout,yearout,ntrees,ny0,ny,
ndays,lat,lon,ele,tmax,tmin,tmean,pho,prec,ra,rh,
wind,sfc,pwp,vw,sc0,sn0,silt,sand,class1,evergr0,
deci0,lai0,co2);% run model with DLL file

– >>unloadlibrary FORCCHN2;
%unload the DLL package

Here, the four outputs are as follows: “fj” is the phenology
dates, which include the start time of leaf growth (SOS) and
the end time of leaf growth (EOS); “yxc” is the allocation pa-
rameter of each soil pool, which can be used as input instead
of the initial soil allocation parameters; “dayout” is the daily
carbon dynamics, which includes aboveground and below-
ground biomass, gross primary productivity (GPP), above-
ground and belowground respiration, soil heterotrophic res-
piration, litterfall biomass, and soil carbon; and “yearout” is
the yearly carbon dynamics.

4 External validation

The comparison between model simulations and external
observations is considered a rigorous model test (Houlahan
et al., 2017). Among the various observation methods, the
eddy covariance (EC) technique can provide high-frequency
and accurate measurements of relevant data (Keenan and
Williams, 2018). The FLUXNET2015 dataset (Pastorello
et al., 2020; https://fluxnet.org/, last access: March 2012)
from the EC tower is an ideal dataset to validate FORC-
CHN2 in predicting carbon flux dynamics. This dataset

is developed by using the EC technique to measure the
net ecosystem CO2 exchange (NEE, which is equal to the
negative of NEP) directly in the footprint of the EC tower.
The variable USTAR threshold (VUT) mean values of
FLUXNET2015 are used in this work. We extracted the flux
data from the mean value of the nighttime and the daytime
methods. The nighttime method uses nighttime NEE data
to parameterize a respiration–temperature model that is
then applied to the whole dataset to estimate ecosystem
respiration (ER). The vegetation GPP is then calculated as
the difference between ER and NEE (Lasslop et al., 2010).
The daytime method uses daytime and nighttime NEE data
to parameterize a model with one component based on a
light response curve and vapor pressure deficit for GPP
and a second component using a respiration–temperature
relationship similar to the nighttime method (Pastorello
et al., 2020). Due to the different phenological phasing in
the Northern Hemisphere and Southern Hemisphere, our
predictions focus on the Northern Hemisphere. We chose
the 78 active forest sites with continuous daily observa-
tions in the Northern Hemisphere (i.e., a total of 232 664
observations). These sites cover the most forest types,
including the evergreen broadleaf forest (EBF), evergreen
needleleaf forest (ENF), deciduous broadleaf forest (DBF),
and mixed forest (MF). The distribution of the sites (and
other information) is shown in Fig. S1 and Table S1. We also
extract the climate data from the FLUXNET2015 dataset
to drive the model. Soil data are taken from the Harmo-
nized World Soil Database (HWSD) V1.2 (https://www.
fao.org/soils-portal/data-hub/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/, last access:
13 January 2022.).
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We predict the daily carbon flux at the 78 forest sites and
then validate the predictions with the observations. As the
overall performance, Fig. 2 shows the direct daily compari-
son between predictions and observations. Overall, the model
had the best performance in capturing GPP dynamics, fol-
lowed by ER and NEP (i.e., the predicted GPP has the high-
est R). In FORCCHN2, we use the phenology model and
the optimized phenological parameters to predict the leaf
growth, which could improve the predicted performance of
GPP (Fang et al., 2020b). We did the statistics for the re-
sults at all sites. The validation statistics include the cor-
relation coefficient (R), model efficiency (E, calculated by
Eq. S60), root-mean-square error (RMSE), mean absolute
error (MAE), and bias (calculated by Eq. S61). The calcu-
lation of each statistic can be found in Method S4. Each
site had one group of statistics. Figure 3 shows that FOR-
CCHN2 could reproduce the daily dynamics of the carbon
flux in all sites, particularly for predicting daily GPP (median
of all sites: R = 0.86, E = 0.62, RMSE= 2.29 g C m−2 d−1,
MAE= 1.61 g C m−2 d−1). The predicted ER performs
worse than GPP (i.e., the median of R and E from the
predicted ER is less than GPP) but shows a high correla-
tion with the observed ER (median: R = 0.83, E = 0.25,
RMSE= 1.46 g C m−2 d−1, MAE= 1.04 g C m−2 d−1). NEP
results had the lowest performance for all flux variables
(median: R = 0.61, E =−0.16, RMSE= 1.91 g C m−2 d−1,
MAE= 1.43 g C m−2 d−1). The highest uncertainty in pre-
dicting NEP may be because of the compounding effect of
GPP and ER errors (Balzarolo et al., 2014). In terms of bias,
FORCCHN2 overestimates the GPP and ER (median bias
of 0.49 and 0.56 g C m−2 d−1, respectively) but slightly un-
derestimates the NEP (median bias of −0.14 g C m−2 d−1).
For the different forest types, the predictions present well in
DBF and MF (R = 0.84 and 0.57, E = 0.53 and 0.64, re-
spectively), whereas the lowest performance is found in EBF
(R = 0.61, E = 0.31). These results are consistent with the
previous studies: EBF reveals subtle changes in the leaf phe-
nology and thus increases the difficulty of modeling photo-
synthesis (i.e., GPP) (Raczka et al., 2013; Yuan et al., 2014;
Piao et al., 2019).

5 Applications in the Northern Hemisphere

As a case application on large scale, we predict the car-
bon dynamics in the Northern Hemisphere forests during
1980–2016 (spatial resolution of 0.5× 0.5◦). For the North-
ern Hemisphere, we use the Simple Biosphere (SiB) model of
the International Satellite Land Surface Climatology Project
(ISLSCP II) to represent forest types (Fig. S1, https://daac.
ornl.gov/ISLSCP_II, last access: 29 September 2009) (Friedl
et al., 2010). The LAI data are extracted from the Global
Land Surface Satellite (GLASS) product (http://www.glass.
umd.edu/Download.html, last access: March 2020). The cli-
mate data are from the daily analysis of ERA-Interim from

the European Centre for Medium-range Weather Forecasts
(ECMWF) dataset (Hersbach et al., 2020). Soil data are taken
from the HWSD V1.2.

Figure 4 reported the spatial distribution of 37-year-
averaged GPP, aboveground and belowground autotrophic
respiration, soil heterotrophic respiration, net primary pro-
ductivity (NPP), and net ecosystem productivity (NEP)
for forest areas. All results show a similar spatial pat-
tern, with the largest fluxes occurring around the Equa-
tor, such as the northern part of the Amazon and cen-
tral African tropical rainforests. Monsoonal subtropical re-
gions, such as South Asia and eastern North America,
show the largest fluxes, while the northern forests near the
Arctic Circle had the smallest fluxes. Overall, our predic-
tions demonstrate that the forests in Northern Hemisphere
had a huge carbon sink potential by the vegetation (i.e.,
NPP= 16.76 Pg C yr−1 or 61.45 Gt CO2 yr−1) and the to-
tal ecosystem (NEP= 3.19 Pg C yr−1 or 11.70 Gt CO2 yr−1)
during 1980–2016, which is within the range of the newest
estimation of forest carbon sinks (Harris et al., 2021). As a
comparison, we use the aboveground biomass (AGB) from
the GLASS product (a satellite-derived product, http://www.
glass.umd.edu/Download.html, last access: August 2020)
and the carbon fluxes from the FluxCom dataset (https://
www.bgc-jena.mpg.de/geodb/projects/Data.php, last access:
September 2020) to test our predictions (Figs. S2 and S3).
Both predictions and GLASS observations present the tropi-
cal forests as having the highest AGB and the boreal forests
as having the smallest AGB (Fig. S2). In terms of carbon
fluxes (i.e., GPP, ER, and NEP), the resulting spatial pattern
is consistent with the FluxCom dataset (Fig. S3). However,
the GPP and ER derived from FORCCHN2 for some bo-
real forests are approximately 0.5 kg C m−2 yr−1 smaller, and
for parts of eastern North America they are approximately
0.5 kg C m−2 yr−1 larger than those of FluxCom GPP and
ER, respectively. Compared to the FluxCom NEP, the model
overestimates NEP in some tropical forests and underesti-
mates NEP in some boreal forests.

The predicted carbon results including the variables of
“dayout” and “yearout” in this case (i.e., Northern Hemi-
sphere forests) are deposited in an open-access repository
(Fang, 2022: https://doi.org/10.6084/m9.figshare.18318722.
v1).

6 Conclusions

We developed FORCCHN2 and designed the correspond-
ing DLL package with the intention to simplify the input
and processing of the model and make it more accessible to
ecologists interested in the forest ecosystem, climate change,
carbon cycle, and modeling. This package provides conve-
nient access and allows high computational efficiency with
the Fortran-language-based model predicting the daily dy-
namics of individual trees. With this new package, we have
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Figure 2. Heat plots showing the relationship between predictions and observations of daily gross primary productivity (GPP), ecosystem
respiration (ER), and net ecosystem productivity (NEP) of the studied EC sites. N is the total days of all sites, R is the correlation coefficient,
and RMSE is the root-mean-square error (g C m−2 d−1). EBF is evergreen broadleaf forest, ENF is evergreen needleleaf forest, DBF is
deciduous broadleaf forest, and MF is mixed forest. Diagonal lines are 1 : 1 lines, indicating perfect agreement between predicted and
observed fluxes. Black lines represent the linear regression. Colors indicate the percentage of pixels in each bin area (yellow is the densest).

Figure 3. The statistical results of daily gross primary productivity (GPP, green), ecosystem respiration (ER, blue), and net ecosystem
productivity (NEP, tan) observations versus predictions in the studied EC sites. R is the correlation coefficient, E is the model efficiency,
RMSE is the root-mean-square error, and MAE is the mean absolute error. EBF is evergreen broadleaf forest, ENF is evergreen needleleaf
forest, DBF is deciduous broadleaf forest, and MF is mixed forest.
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Figure 4. The spatial distribution of mean GPP (gross primary productivity), aboveground and belowground autotrophic respiration, soil het-
erotrophic respiration, NPP (net primary productivity), and NEP (net ecosystem productivity) predicted by FORCCHN2 for forest ecosystems
of the Northern Hemisphere during 1980–2016. The spatial resolution is 0.5◦× 0.5◦.

demonstrated the workflow, functions, and applications of
FORCCHN2.

In addition, FORCCHN2 is tested at 78 flux sites, and it is
then applied in predicting the carbon dynamics of all North-
ern Hemisphere forests (1980–2016). Our assessment indi-
cated that FORCCHN2 is able to satisfactorily predict carbon
dynamics. While we provided publicly available data in the
Northern Hemisphere with 0.5◦, our hope is that end users
can offer a wide range of applications and analyses of FOR-
CCHN2, such as providing the new dataset with finer reso-
lution and estimating future changes of forest carbon fluxes.
We are also open to further suggestions on enhanced func-
tions that ecologists may find helpful in subsequent model
versions.

Code and data availability. The source code, instructions, and ex-
ample run, together with FORCCHN2 DLL package, are pub-
licly available via https://doi.org/10.5281/zenodo.6351153 (Fang
et al., 2022a). The datasets predicted by FORCCHN2, including
the 37-year (1980–2016) GPP, aboveground and belowground au-
totrophic respiration, and soil heterotrophic respiration for North-
ern Hemisphere forests (0.5◦× 0.5◦), are publicly available via
https://doi.org/10.6084/m9.figshare.18318722.v1 (Fang, 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-6863-2022-supplement.
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