Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7545-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-7545-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models
Department of Civil Engineering and School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada
Thorsten Wagener
Department of Civil Engineering, University of Bristol, Bristol, UK
Cabot Institute, University of Bristol, Bristol, UK
Institute for Environmental Science and Geography, University of Potsdam, Potsdam, Germany
Petra Döll
Institut für Physische Geographie, Goethe-Universität Frankfurt am Main and Senckenberg Leibniz Biodiversity and Climate Research Centre Frankfurt (SBiK-F), Frankfurt am Main, Germany
Samuel C. Zipper
Department of Civil Engineering and School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada
Kansas Geological Survey, University of Kansas, Lawrence, KS, USA
Charles West
Department of Civil Engineering, University of Bristol, Bristol, UK
Yoshihide Wada
International Institute for Applied Systems Analysis, Laxenburg, Austria
Richard Taylor
Department of Geography, University College London, London, UK
Bridget Scanlon
Bureau of Economic Geology, The University of Texas at Austin, Austin, TX, USA
Rafael Rosolem
Department of Civil Engineering, University of Bristol, Bristol, UK
Shams Rahman
Department of Civil Engineering, University of Bristol, Bristol, UK
Nurudeen Oshinlaja
School of Earth and Environmental Sciences & Water Research Institute, Cardiff University, Cardiff, UK
Reed Maxwell
Department of Civil and Environmental Engineering and the High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
Min-Hui Lo
Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
Hyungjun Kim
Moon Soul Graduate School of Future Strategy, Korea Advanced Institute of Science Technology, Daejeon, Korea
Department of Civil and Environmental Engineering Korea Advanced Institute of Science Technology, Daejeon, Korea
Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
Mary Hill
Department of Geology, University of Kansas, Lawrence, KS, USA
Andreas Hartmann
Chair of Hydrological Modeling and Water Resources, University of Freiburg, Freiburg, Germany
Department of Civil Engineering, University of Bristol, Bristol, UK
Graham Fogg
Department of Land, Air and Water Resources and Earth and Planetary Sciences, University of California, Davis, CA, USA
James S. Famiglietti
School of Environment and Sustainability and Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
Agnès Ducharne
Sorbonne Université, CNRS, EPHE, IPSL, UMR 7619 METIS, Paris, France
Inge de Graaf
Chair of Environmental Hydrological Systems, University of Freiburg, Freiburg, Germany
Water Systems and Global Change Group, Wageningen University, Wageningen, the Netherlands
Mark Cuthbert
School of Earth and Environmental Sciences & Water Research Institute, Cardiff University, Cardiff, UK
School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia
Laura Condon
Department of Hydrology & Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
Etienne Bresciani
Center for Advanced Studies in Arid Zones (CEAZA), La Serena, Chile
Marc F. P. Bierkens
Physical Geography, Utrecht University, Utrecht, the Netherlands
Deltares, Utrecht, the Netherlands
Related authors
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022, https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Short summary
The relationship between environmental flow violations and freshwater biodiversity at a large scale is not well explored. This study intended to carry out an exploratory evaluation of this relationship at a large scale. While our results suggest that streamflow and EF may not be the only determinants of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods or with other biodiversity data or metrics.
Tunde Olarinoye, Tom Gleeson, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5431–5447, https://doi.org/10.5194/hess-26-5431-2022, https://doi.org/10.5194/hess-26-5431-2022, 2022
Short summary
Short summary
Analysis of karst spring recession is essential for management of groundwater. In karst, recession is dominated by slow and fast components; separating these components is by manual and subjective approaches. In our study, we tested the applicability of automated streamflow recession extraction procedures for a karst spring. Results showed that, by simple modification, streamflow extraction methods can identify slow and fast components: derived recession parameters are within reasonable ranges.
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
A. Hartmann, T. Gleeson, R. Rosolem, F. Pianosi, Y. Wada, and T. Wagener
Geosci. Model Dev., 8, 1729–1746, https://doi.org/10.5194/gmd-8-1729-2015, https://doi.org/10.5194/gmd-8-1729-2015, 2015
Short summary
Short summary
We present a new approach to assess karstic groundwater recharge over Europe and the Mediterranean. Cluster analysis is used to subdivide all karst regions into four typical karst landscapes and to simulate karst recharge with a process-based karst model. We estimate its parameters by a combination of a priori information and observations of soil moisture and evapotranspiration. Independent observations of recharge that present large-scale models significantly under-estimate karstic recharge.
Benjamin D. West, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 29, 245–259, https://doi.org/10.5194/hess-29-245-2025, https://doi.org/10.5194/hess-29-245-2025, 2025
Short summary
Short summary
This article describes the addition of reservoirs to the hydrologic model ParFlow. ParFlow is particularly good at helping us understand some of the broader drivers behind different parts of the water cycle. By having reservoirs in such a model, we hope to be able to better understand both our impacts on the environment and how to adjust our management of reservoirs to changing conditions.
Alexandre Gauvain, Ronan Abhervé, Alexandre Coche, Martin Le Mesnil, Clément Roques, Camille Bouchez, Jean Marçais, Sarah Leray, Etienne Marti, Ronny Figueroa, Etienne Bresciani, Camille Vautier, Bastien Boivin, June Sallou, Johan Bourcier, Benoit Combemale, Philip Brunner, Laurent Longuevergne, Luc Aquilina, and Jean-Raynald de Dreuzy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3962, https://doi.org/10.5194/egusphere-2024-3962, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
HydroModPy is an open-source toolbox that makes it easier to study and model groundwater flow at catchment scale. By combining mapping tools with groundwater modeling, it automates the process of building, analyzing and deploying aquifer models. This allows researchers to simulate groundwater flow that sustains stream baseflows, providing insights for the hydrology community. Designed to be accessible and customizable, HydroModPy supports sustainable water management, research, and education.
Barry van Jaarsveld, Niko Wanders, Edwin H. Sutanudjaja, Jannis Hoch, Bram Droppers, Joren Janzing, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Earth Syst. Dynam., 16, 29–54, https://doi.org/10.5194/esd-16-29-2025, https://doi.org/10.5194/esd-16-29-2025, 2025
Short summary
Short summary
Policy makers use global hydrological models to develop water management strategies and policies. However, it would be better if these models provided information at higher resolution. We present a first-of-its-kind, truly global hyper-resolution model and show that hyper-resolution brings about better estimates of river discharge, and this is especially true for smaller catchments. Our results also suggest that future hyper-resolution models need to include more detailed land cover information.
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Hannes Müller Schmied, Tim Trautmann, Sebastian Ackermann, Denise Cáceres, Martina Flörke, Helena Gerdener, Ellen Kynast, Thedini Asali Peiris, Leonie Schiebener, Maike Schumacher, and Petra Döll
Geosci. Model Dev., 17, 8817–8852, https://doi.org/10.5194/gmd-17-8817-2024, https://doi.org/10.5194/gmd-17-8817-2024, 2024
Short summary
Short summary
Assessing water availability and water use at the global scale is challenging but essential for a range of purposes. We describe the newest version of the global hydrological model WaterGAP, which has been used for numerous water resource assessments since 1996. We show the effects of new model features, as well as model evaluations, against water abstraction statistics and observed streamflow and water storage anomalies. The publicly available model output for several variants is described.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024, https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
Short summary
Research software is vital for scientific progress but is often developed by scientists with limited skills, time, and funding, leading to challenges in usability and maintenance. Our study across 10 sectors shows strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. We recommend workshops; code quality metrics; funding; and following the findable, accessible, interoperable, and reusable (FAIR) standards.
Yanchen Zheng, Gemma Coxon, Mostaquimur Rahman, Ross Woods, Saskia Salwey, Youtong Rong, and Doris Wendt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-211, https://doi.org/10.5194/gmd-2024-211, 2024
Preprint under review for GMD
Short summary
Short summary
Groundwater is vital for people and ecosystems, but most physical models lack surface-groundwater interactions representation, leading to inaccurate streamflow predictions in groundwater-rich areas. This study presents DECIPHeR-GW v1, which links surface and groundwater systems to improve predictions of streamflow and groundwater levels. Tested across England and Wales, DECIPHeR-GW shows high accuracy, especially in south east England, making it a valuable tool for large-scale water management.
Peyman Abbaszadeh, Fadji Zaouna Maina, Chen Yang, Dan Rosen, Sujay Kumar, Matthew Rodell, and Reed Maxwell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-280, https://doi.org/10.5194/hess-2024-280, 2024
Preprint under review for HESS
Short summary
Short summary
To manage Earth's water resources effectively amid climate change, it's crucial to understand both surface and groundwater processes. We developed a new modeling system that combines two advanced tools, ParFlow and LIS/Noah-MP, to better simulate both land surface and groundwater interactions. By testing this integrated model in the Upper Colorado River Basin, we found it improves predictions of hydrologic processes, especially in complex terrains.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Seyed-Mohammad Hosseini-Moghari and Petra Döll
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-291, https://doi.org/10.5194/hess-2024-291, 2024
Preprint under review for HESS
Short summary
Short summary
Modeling reservoir outflow and storage is challenging due to limited publicly available data and human decision-making. For 100 reservoirs in the USA, we examined how calibrating reservoir algorithms against outflow and storage-related variables affects performance. We found that calibration notably improves storage simulations, while outflow simulations are more influenced by the quality of inflow data. We recommend using remotely sensed storage anomalies to calibrate reservoir algorithms.
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-292, https://doi.org/10.5194/hess-2024-292, 2024
Preprint under review for HESS
Short summary
Short summary
We developed the first high-resolution, integrated surface water-groundwater hydrologic model of the entire continental China using ParFlow. The model shows good performance of streamflow and water table depth when compared to global data products and observations. It is essential for water resources management and decision making in China within a consistent framework in the changing world. It also has significant implications for similar modeling in other places in the world.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Pia Ebeling, Andreas Musolff, Rohini Kumar, Andreas Hartmann, and Jan H. Fleckenstein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2761, https://doi.org/10.5194/egusphere-2024-2761, 2024
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Groundwater is a crucial resource at risk by droughts. To understand drought effects on groundwater in Germany, we grouped 6626 wells into six regional and two nationwide head patterns. Weather explained half of the head variations with varied response times. Shallow groundwater responds fast and is more vulnerable to short droughts (few months). Dampened deep heads buffer short droughts but suffer from long droughts and recoveries. Two nationwide trend patterns were linked to human water use.
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024, https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Short summary
We conducted a high-resolution hydrological simulation from 1959 to 2020 across France. We used a simple trial-and-error calibration to reduce the biases of the simulated water budget compared to observations. The selected simulation satisfactorily reproduces water fluxes, including their spatial contrasts and temporal trends. This work offers a reliable historical overview of water resources and a robust configuration for climate change impact analysis at the nationwide scale of France.
Mariana Gomez, Maximilian Nölscher, Andreas Hartmann, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 4407–4425, https://doi.org/10.5194/hess-28-4407-2024, https://doi.org/10.5194/hess-28-4407-2024, 2024
Short summary
Short summary
To understand the impact of external factors on groundwater level modelling using a 1-D convolutional neural network (CNN) model, we train, validate, and tune individual CNN models for 505 wells distributed across Lower Saxony, Germany. We then evaluate the performance of these models against available geospatial and time series features. This study provides new insights into the relationship between these factors and the accuracy of groundwater modelling.
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024, https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary
Short summary
Irrigated agriculture in the North China Plain (NCP) has a significant impact on the local climate. To better understand this impact, we developed a specialized model specifically for the NCP region. This model allows us to simulate the double-cropping vegetation and the dynamic irrigation practices that are commonly employed in the NCP. This model shows improved performance in capturing the general crop growth, such as crop stages, biomass, crop yield, and vegetation greenness.
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O’Rourke, and Beth Dingley
EGUsphere, https://doi.org/10.5194/egusphere-2024-2363, https://doi.org/10.5194/egusphere-2024-2363, 2024
Short summary
Short summary
The Baseline Climate Variables for Earth System Modelling (ESM-BCVs) are defined as a list of 132 variables which have high utility for the evaluation and exploitation of climate simulations. The list reflects the most heavily used variables from Earth System Models, based on an assessment of data publication and download records from the largest archive of global climate projects.
Markus Giese, Yvan Caballero, Andreas Hartmann, and Jean-Baptiste Charlier
EGUsphere, https://doi.org/10.5194/egusphere-2024-2078, https://doi.org/10.5194/egusphere-2024-2078, 2024
Short summary
Short summary
Groundwater recharge and flow processes are difficult to quantify on a larger scale. Therefore, it is difficult to assess groundwater resources, substantially used for fresh water supply, and their changes over time. In karst areas, groundwater drainage networks over large areas are generated due to the soluble rocks. The observation of discharge from springs provides an alternative to estimate changes in groundwater resources over time, which can be connected to changing climatic conditions.
Anna Pazola, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, Ibrahim Baba Goni, and Richard G. Taylor
Hydrol. Earth Syst. Sci., 28, 2949–2967, https://doi.org/10.5194/hess-28-2949-2024, https://doi.org/10.5194/hess-28-2949-2024, 2024
Short summary
Short summary
This study advances groundwater research using a high-resolution random forest model, revealing new recharge areas and spatial variability, mainly in humid regions. Limited data in rainy zones is a constraint for the model. Our findings underscore the promise of machine learning for large-scale groundwater modelling while further emphasizing the importance of data collection for robust results.
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024, https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
Short summary
This study presents a coupling of the large-scale glacier model OGGM and the hydrological model CWatM. Projected future increase in discharge is less strong while future decrease in discharge is stronger when glacier runoff is explicitly included in the large-scale hydrological model. This is because glacier runoff is projected to decrease in nearly all basins. We conclude that an improved glacier representation can prevent underestimating future discharge changes in large river basins.
Petra Döll, Howlader Mohammad Mehedi Hasan, Kerstin Schulze, Helena Gerdener, Lara Börger, Somayeh Shadkam, Sebastian Ackermann, Seyed-Mohammad Hosseini-Moghari, Hannes Müller Schmied, Andreas Güntner, and Jürgen Kusche
Hydrol. Earth Syst. Sci., 28, 2259–2295, https://doi.org/10.5194/hess-28-2259-2024, https://doi.org/10.5194/hess-28-2259-2024, 2024
Short summary
Short summary
Currently, global hydrological models do not benefit from observations of model output variables to reduce and quantify model output uncertainty. For the Mississippi River basin, we explored three approaches for using both streamflow and total water storage anomaly observations to adjust the parameter sets in a global hydrological model. We developed a method for considering the observation uncertainties to quantify the uncertainty of model output and provide recommendations.
Laura Müller and Petra Döll
Geosci. Commun., 7, 121–144, https://doi.org/10.5194/gc-7-121-2024, https://doi.org/10.5194/gc-7-121-2024, 2024
Short summary
Short summary
To be able to adapt to climate change, stakeholders need to be informed about future uncertain climate change hazards. Using freely available output of global hydrological models, we quantified future local changes in water resources and their uncertainty. To communicate these in participatory processes, we propose using "percentile boxes" to support the development of flexible strategies for climate risk management worldwide, involving stakeholders and scientists.
Yanchen Zheng, Gemma Coxon, Ross Woods, Daniel Power, Miguel Angel Rico-Ramirez, David McJannet, Rafael Rosolem, Jianzhu Li, and Ping Feng
Hydrol. Earth Syst. Sci., 28, 1999–2022, https://doi.org/10.5194/hess-28-1999-2024, https://doi.org/10.5194/hess-28-1999-2024, 2024
Short summary
Short summary
Reanalysis soil moisture products are a vital basis for hydrological and environmental research. Previous product evaluation is limited by the scale difference (point and grid scale). This paper adopts cosmic ray neutron sensor observations, a novel technique that provides root-zone soil moisture at field scale. In this paper, global harmonized CRNS observations were used to assess products. ERA5-Land, SMAPL4, CFSv2, CRA40 and GLEAM show better performance than MERRA2, GLDAS-Noah and JRA55.
Nicole Gyakowah Otoo, Edwin H. Sutanudjaja, Michelle T. H. van Vliet, Aafke M. Schipper, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-112, https://doi.org/10.5194/hess-2024-112, 2024
Revised manuscript under review for HESS
Short summary
Short summary
The contribution of groundwater to groundwater dependent ecosystems (GDEs) is declining as a result of an increase in groundwater abstractions and climate change. This may lead to loss of habitat and biodiversity. This proposed framework enables the mapping and understanding of the temporal and spatial dynamics of GDEs on a large scale. The next step is to assess the global impacts of climate change and water use on GDEs' extent and health.
Sadia Bibi, Tingju Zhu, Ashraf Rateb, Bridget R. Scanlon, Muhammad Aqeel Kamran, Abdelrazek Elnashar, Ali Bennour, and Ci Li
Hydrol. Earth Syst. Sci., 28, 1725–1750, https://doi.org/10.5194/hess-28-1725-2024, https://doi.org/10.5194/hess-28-1725-2024, 2024
Short summary
Short summary
We assessed 13 global models using GRACE satellite data over 29 river basins. Simulated seasonal water storage cycles showed discrepancies compared to GRACE. The models overestimated seasonal amplitude in boreal basins and showed underestimation in tropical, arid, and temperate zones, with phase differences of 2–3 months compared to GRACE in cold basins and of 1 month in temperate, arid, and semi-arid basins. Seasonal amplitude and phase differences provide insights for model improvement.
Pedro Felipe Arboleda-Obando, Agnès Ducharne, Zun Yin, and Philippe Ciais
Geosci. Model Dev., 17, 2141–2164, https://doi.org/10.5194/gmd-17-2141-2024, https://doi.org/10.5194/gmd-17-2141-2024, 2024
Short summary
Short summary
We show a new irrigation scheme included in the ORCHIDEE land surface model. The new irrigation scheme restrains irrigation due to water shortage, includes water adduction, and represents environmental limits and facilities to access water, due to representing infrastructure in a simple way. Our results show that the new irrigation scheme helps simulate acceptable land surface conditions and fluxes in irrigated areas, even if there are difficulties due to shortcomings and limited information.
Sneha Chevuru, Rens L. P. H. van Beek, Michelle T. H. van Vliet, Jerom P. M. Aerts, and Marc F. P. Bierkens
EGUsphere, https://doi.org/10.5194/egusphere-2024-465, https://doi.org/10.5194/egusphere-2024-465, 2024
Short summary
Short summary
This paper integrates PCR-GLOBWB 2 hydrological model with WOFOST crop growth model to analyze mutual feedbacks between hydrology and crop growth. It quantifies one-way and two-way feedbacks between hydrology and crop growth, revealing patterns in crop yield and irrigation water use. Dynamic interactions enhance understanding of climate variability impacts on food production, highlighting the importance of two-way model coupling for accurate assessments.
Jennie C. Steyaert and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 1071–1088, https://doi.org/10.5194/hess-28-1071-2024, https://doi.org/10.5194/hess-28-1071-2024, 2024
Short summary
Short summary
Reservoirs impact all river systems in the United States, yet their operations are difficult to quantify due to limited data. Using historical reservoir operations, we find that storage has declined over the past 40 years, with clear regional differences. We observe that active storage ranges are increasing in arid regions and decreasing in humid regions. By evaluating reservoir model assumptions, we find that they may miss out on seasonal dynamics and can underestimate storage.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024, https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Short summary
Long short-term memory (LSTM) is a widely used machine-learning model in hydrology, but it is difficult to extract knowledge from it. We propose HydroLSTM, which represents processes like a hydrological reservoir. Models based on HydroLSTM perform similarly to LSTM while requiring fewer cell states. The learned parameters are informative about the dominant hydrology of a catchment. Our results show how parsimony and hydrological knowledge extraction can be achieved by using the new structure.
Max Berkelhammer, Gerald F. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carter, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark Raleigh, Eric Small, and Kenneth H. Williams
EGUsphere, https://doi.org/10.5194/egusphere-2023-3063, https://doi.org/10.5194/egusphere-2023-3063, 2024
Short summary
Short summary
Warming in montane systems is affecting the amount of snowmelt inputs. This will affect subalpine forests globally that rely on spring snowmelt to support their water demands. We use a network of sensors across in the Upper Colorado Basin to show that changing spring primarily impacts dense forest stands that have high peak water demands. On the other hand, open forest stands show a higher reliance on summer rain and were minimally sensitive to even historically low snow conditions like 2019.
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024, https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary
Short summary
This paper presents the parallel PCR-GLOBWB global-scale groundwater model at 30 arcsec resolution (~1 km at the Equator). Named GLOBGM v1.0, this model is a follow-up of the 5 arcmin (~10 km) model, aiming for a higher-resolution simulation of worldwide fresh groundwater reserves under climate change and excessive pumping. For a long transient simulation using a parallel prototype of MODFLOW 6, we show that our implementation is efficient for a relatively low number of processor cores.
Yong Zhang, Graham E. Fogg, HongGuang Sun, Donald M. Reeves, Roseanna M. Neupauer, and Wei Wei
Hydrol. Earth Syst. Sci., 28, 179–203, https://doi.org/10.5194/hess-28-179-2024, https://doi.org/10.5194/hess-28-179-2024, 2024
Short summary
Short summary
Pollutant release history and source identification are helpful for managing water resources, but it remains a challenge to reliably identify such information for real-world, complex transport processes in rivers and aquifers. In this study, we filled this knowledge gap by deriving a general backward governing equation and developing the efficient solver. Field applications showed that this model and solver are applicable for a broad range of flow systems, dimensions, and spatiotemporal scales.
H. M. Mehedi Hasan, Petra Döll, Seyed-Mohammad Hosseini-Moghari, Fabrice Papa, and Andreas Güntner
EGUsphere, https://doi.org/10.5194/egusphere-2023-2324, https://doi.org/10.5194/egusphere-2023-2324, 2023
Short summary
Short summary
We calibrate a global hydrological model using multiple observations to analyse the benefits and trade-offs of multi-variable calibration. We found such an approach to be very important for understanding the real-world system. However, some observations are very essential to the system, in particular streamflow. We also showed uncertainties in the calibration results, which is often useful for making informed decisions. We emphasis to consider observation uncertainty in model calibration.
Thedini Asali Peiris and Petra Döll
Hydrol. Earth Syst. Sci., 27, 3663–3686, https://doi.org/10.5194/hess-27-3663-2023, https://doi.org/10.5194/hess-27-3663-2023, 2023
Short summary
Short summary
Hydrological models often overlook vegetation's response to CO2 and climate, impairing their ability to forecast impacts on evapotranspiration and water resources. To address this, we suggest involving two model variants: (1) the standard method and (2) a modified approach (proposed here) based on the Priestley–Taylor equation (PT-MA). While not universally applicable, a dual approach helps consider uncertainties related to vegetation responses to climate change, enhancing model representation.
Jinghua Xiong, Abhishek, Li Xu, Hrishikesh A. Chandanpurkar, James S. Famiglietti, Chong Zhang, Gionata Ghiggi, Shenglian Guo, Yun Pan, and Bramha Dutt Vishwakarma
Earth Syst. Sci. Data, 15, 4571–4597, https://doi.org/10.5194/essd-15-4571-2023, https://doi.org/10.5194/essd-15-4571-2023, 2023
Short summary
Short summary
To overcome the shortcomings associated with limited spatiotemporal coverage, input data quality, and model simplifications in prevailing evaporation (ET) estimates, we developed an ensemble of 4669 unique terrestrial ET subsets using an independent mass balance approach. Long-term mean annual ET is within 500–600 mm yr−1 with a unimodal seasonal cycle and several piecewise trends during 2002–2021. The uncertainty-constrained results underpin the notion of increasing ET in a warming climate.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Amanda Triplett and Laura E. Condon
Hydrol. Earth Syst. Sci., 27, 2763–2785, https://doi.org/10.5194/hess-27-2763-2023, https://doi.org/10.5194/hess-27-2763-2023, 2023
Short summary
Short summary
Accelerated melting in mountains is a global phenomenon. The Heihe River basin depends on upstream mountains for its water supply. We built a hydrologic model to examine how shifts in streamflow and warming will impact ground and surface water interactions. The results indicate that degrading permafrost has a larger effect than melting glaciers. Additionally, warming temperatures tend to have more impact than changes to streamflow. These results can inform other mountain–valley system studies.
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023, https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary
Short summary
This publication provides an introduction to the CREDIBLE Uncertainty Estimation (CURE) toolbox. CURE offers workflows for a variety of uncertainty estimation methods. One of its most important features is the requirement that all of the assumptions on which a workflow analysis depends be defined. This facilitates communication with potential users of an analysis. An audit trail log is produced automatically from a workflow for future reference.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Claudia Herbert and Petra Döll
Nat. Hazards Earth Syst. Sci., 23, 2111–2131, https://doi.org/10.5194/nhess-23-2111-2023, https://doi.org/10.5194/nhess-23-2111-2023, 2023
Short summary
Short summary
This paper presents a new method for selecting streamflow drought hazard indicators for monitoring drought hazard for human water supply and river ecosystems in large-scale drought early warning systems. Indicators are classified by their inherent assumptions about the habituation of people and ecosystems to the streamflow regime and their level of drought characterization, namely drought magnitude (water deficit at a certain point in time) and severity (cumulated magnitude since drought onset).
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura E. Condon
EGUsphere, https://doi.org/10.5194/egusphere-2023-666, https://doi.org/10.5194/egusphere-2023-666, 2023
Preprint archived
Short summary
Short summary
Long Short-Term Memory (LSTM) is a widely-used machine learning (ML) model in hydrology. However, it is difficult to extract knowledge from it. We propose HydroLSTM which represents processes analogous to a hydrological reservoir. Models using HydroLSTM perform similarly to LSTM but require fewer cell states. The learned parameters are informative about the dominant hydroclimatic characteristics of a catchment. Our results demonstrate how hydrological knowledge is encoded in the new structure.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci., 27, 1325–1341, https://doi.org/10.5194/hess-27-1325-2023, https://doi.org/10.5194/hess-27-1325-2023, 2023
Short summary
Short summary
We advance our understanding of including information derived from environmental tracers into hydrological modeling. We present a simple approach that integrates streamflow observations and tracer-derived streamflow contributions for model parameter estimation. We consider multiple observed streamflow components and their variation over time to quantify the impact of their inclusion for streamflow prediction at the catchment scale.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023, https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
Short summary
stoPET is a new stochastic potential evapotranspiration (PET) generator for the globe at hourly resolution. Many stochastic weather generators are used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible PET time series. As such, stoPET represents a significant methodological advance. stoPET generate many realizations of PET to conduct climate studies related to the water balance, agriculture, water resources, and ecology.
Romane Berthelin, Tunde Olarinoye, Michael Rinderer, Matías Mudarra, Dominic Demand, Mirjam Scheller, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 27, 385–400, https://doi.org/10.5194/hess-27-385-2023, https://doi.org/10.5194/hess-27-385-2023, 2023
Short summary
Short summary
Karstic recharge processes have mainly been explored using discharge analysis despite the high influence of the heterogeneous surface on hydrological processes. In this paper, we introduce an event-based method which allows for recharge estimation from soil moisture measurements. The method was tested at a karst catchment in Germany but can be applied to other karst areas with precipitation and soil moisture data available. It will allow for a better characterization of karst recharge processes.
Aniket Gupta, Alix Reverdy, Jean-Martial Cohard, Basile Hector, Marc Descloitres, Jean-Pierre Vandervaere, Catherine Coulaud, Romain Biron, Lucie Liger, Reed Maxwell, Jean-Gabriel Valay, and Didier Voisin
Hydrol. Earth Syst. Sci., 27, 191–212, https://doi.org/10.5194/hess-27-191-2023, https://doi.org/10.5194/hess-27-191-2023, 2023
Short summary
Short summary
Patchy snow cover during spring impacts mountainous ecosystems on a large range of spatio-temporal scales. A hydrological model simulated such snow patchiness at 10 m resolution. Slope and orientation controls precipitation, radiation, and wind generate differences in snowmelt, subsurface storage, streamflow, and evapotranspiration. The snow patchiness increases the duration of the snowmelt to stream and subsurface storage, which sustains the plants and streamflow later in the summer.
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022, https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Short summary
The relationship between environmental flow violations and freshwater biodiversity at a large scale is not well explored. This study intended to carry out an exploratory evaluation of this relationship at a large scale. While our results suggest that streamflow and EF may not be the only determinants of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods or with other biodiversity data or metrics.
Rosanna A. Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 26, 5535–5554, https://doi.org/10.5194/hess-26-5535-2022, https://doi.org/10.5194/hess-26-5535-2022, 2022
Short summary
Short summary
This study modelled the impact of climate change on river high flows across Great Britain (GB). Generally, results indicated an increase in the magnitude and frequency of high flows along the west coast of GB by 2050–2075. In contrast, average flows decreased across GB. All flow projections contained large uncertainties; the climate projections were the largest source of uncertainty overall but hydrological modelling uncertainties were considerable in some regions.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-345, https://doi.org/10.5194/hess-2022-345, 2022
Publication in HESS not foreseen
Short summary
Short summary
As the stress on water resources from climate change grows, we need models that represent water processes at the scale of counties, states, and even countries in order to make viable predictions about things will change. While such models are powerful, they can be cumbersome to deal with because they are so large. This research explores a novel way of increasing the efficiency of large-scale hydrologic models using an approach called Simulation-Based Inference.
Tunde Olarinoye, Tom Gleeson, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5431–5447, https://doi.org/10.5194/hess-26-5431-2022, https://doi.org/10.5194/hess-26-5431-2022, 2022
Short summary
Short summary
Analysis of karst spring recession is essential for management of groundwater. In karst, recession is dominated by slow and fast components; separating these components is by manual and subjective approaches. In our study, we tested the applicability of automated streamflow recession extraction procedures for a karst spring. Results showed that, by simple modification, streamflow extraction methods can identify slow and fast components: derived recession parameters are within reasonable ranges.
Yan Liu, Jaime Fernández-Ortega, Matías Mudarra, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5341–5355, https://doi.org/10.5194/hess-26-5341-2022, https://doi.org/10.5194/hess-26-5341-2022, 2022
Short summary
Short summary
We adapt the informal Kling–Gupta efficiency (KGE) with a gamma distribution to apply it as an informal likelihood function in the DiffeRential Evolution Adaptive Metropolis DREAM(ZS) method. Our adapted approach performs as well as the formal likelihood function for exploring posterior distributions of model parameters. The adapted KGE is superior to the formal likelihood function for calibrations combining multiple observations with different lengths, frequencies and units.
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022, https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
Short summary
A farm-scale hydroclimatic machine learning framework to advise farmers was developed. FarmCan uses remote sensing data and farmers' input to forecast crop water deficits. The 8 d composite variables are better than daily ones for forecasting water deficit. Evapotranspiration (ET) and potential ET are more effective than soil moisture at predicting crop water deficit. FarmCan uses a crop-specific schedule to use surface or root zone soil moisture.
Jennie C. Steyaert and Laura E. Condon
EGUsphere, https://doi.org/10.5194/egusphere-2022-1051, https://doi.org/10.5194/egusphere-2022-1051, 2022
Preprint archived
Short summary
Short summary
All river systems in the US are impacted by dams, yet analyses are limited by a lack of data. We use the first national dataset of reservoir data to analyze reservoir storage trends from 1980–2019. We show that reservoir storage has decreased over the past 40 years. The range in monthly storage has increased over time in drier regions and decreased in wetter ones. Lastly, we find that most regions have reservoir storage that takes longer to recover from and are therefore more vulnerable.
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022, https://doi.org/10.5194/gmd-15-7099-2022, 2022
Short summary
Short summary
We develop and test the first large-scale hydrological model at regional scale with a very high spatial resolution that includes a water management and groundwater flow model. This study infers the impact of surface and groundwater-based irrigation on groundwater recharge and on evapotranspiration in both irrigated and non-irrigated areas. We argue that water table recorded in boreholes can be used as validation data if water management is well implemented and spatial resolution is ≤ 100 m.
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Fei Luo, Frank Selten, Kathrin Wehrli, Kai Kornhuber, Philippe Le Sager, Wilhelm May, Thomas Reerink, Sonia I. Seneviratne, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, and Dim Coumou
Weather Clim. Dynam., 3, 905–935, https://doi.org/10.5194/wcd-3-905-2022, https://doi.org/10.5194/wcd-3-905-2022, 2022
Short summary
Short summary
Recent studies have identified the weather systems in observational data, where wave patterns with high-magnitude values that circle around the whole globe in either wavenumber 5 or wavenumber 7 are responsible for the extreme events. In conclusion, we find that the climate models are able to reproduce the large-scale atmospheric circulation patterns as well as their associated surface variables such as temperature, precipitation, and sea level pressure.
Jiawei Hou, Albert I. J. M. van Dijk, Hylke E. Beck, Luigi J. Renzullo, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 26, 3785–3803, https://doi.org/10.5194/hess-26-3785-2022, https://doi.org/10.5194/hess-26-3785-2022, 2022
Short summary
Short summary
We used satellite imagery to measure monthly reservoir water volumes for 6695 reservoirs worldwide for 1984–2015. We investigated how changing precipitation, streamflow, evaporation, and human activity affected reservoir water storage. Almost half of the reservoirs showed significant increasing or decreasing trends over the past three decades. These changes are caused, first and foremost, by changes in precipitation rather than by changes in net evaporation or dam release patterns.
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
William Rust, John P. Bloomfield, Mark Cuthbert, Ron Corstanje, and Ian Holman
Hydrol. Earth Syst. Sci., 26, 2449–2467, https://doi.org/10.5194/hess-26-2449-2022, https://doi.org/10.5194/hess-26-2449-2022, 2022
Short summary
Short summary
We highlight the importance of the North Atlantic Oscillation in controlling droughts in the UK. Specifically, multi-year cycles in the NAO are shown to influence the frequency of droughts and this influence changes considerably over time. We show that the influence of these varying controls is similar to the projected effects of climate change on water resources. We also show that these time-varying behaviours have important implications for water resource forecasts used for drought planning.
Jida Wang, Blake A. Walter, Fangfang Yao, Chunqiao Song, Meng Ding, Abu Sayeed Maroof, Jingying Zhu, Chenyu Fan, Jordan M. McAlister, Safat Sikder, Yongwei Sheng, George H. Allen, Jean-François Crétaux, and Yoshihide Wada
Earth Syst. Sci. Data, 14, 1869–1899, https://doi.org/10.5194/essd-14-1869-2022, https://doi.org/10.5194/essd-14-1869-2022, 2022
Short summary
Short summary
Improved water infrastructure data on dams and reservoirs remain to be critical to hydrologic modeling, energy planning, and environmental conservation. We present a new global dataset, GeoDAR, that includes nearly 25 000 georeferenced dam points and their associated reservoir boundaries. A majority of these features can be linked to the register of the International Commission on Large Dams, extending the potential of registered attribute information for spatially explicit applications.
Yong Chang, Benjamin Mewes, and Andreas Hartmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-77, https://doi.org/10.5194/hess-2022-77, 2022
Revised manuscript not accepted
Short summary
Short summary
This study presents a work to investigate the feasibility of using EC to predict the discharge in a typical karst catchment. We found that the spring discharge can be well predicted by EC in storms using LSTM (Long Short Term Memory) model, while the prediction has relatively large uncertainties in small recharge events. To establish a roust LSTM model for long-term discharge prediction from EC in ungauged catchments, the random or fixed-interval discharge monitoring strategy is recommended.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Shaini Naha, Miguel Angel Rico-Ramirez, and Rafael Rosolem
Hydrol. Earth Syst. Sci., 25, 6339–6357, https://doi.org/10.5194/hess-25-6339-2021, https://doi.org/10.5194/hess-25-6339-2021, 2021
Short summary
Short summary
Rapid growth in population in developing countries leads to an increase in food demand, and as a consequence, percentages of land are being converted to cropland which alters river flow processes. This study describes how the hydrology of a flood-prone river basin in India would respond to the current and future changes in land cover. Our findings indicate that the recurrent flood events occurring in the basin might be influenced by these changes in land cover at the catchment scale.
Mary M. F. O'Neill, Danielle T. Tijerina, Laura E. Condon, and Reed M. Maxwell
Geosci. Model Dev., 14, 7223–7254, https://doi.org/10.5194/gmd-14-7223-2021, https://doi.org/10.5194/gmd-14-7223-2021, 2021
Short summary
Short summary
Modeling the hydrologic cycle at high resolution and at large spatial scales is an incredible opportunity and challenge for hydrologists. In this paper, we present the results of a high-resolution hydrologic simulation configured over the contiguous United States. We discuss simulated water fluxes through groundwater, soil, plants, and over land, and we compare model results to in situ observations and satellite products in order to build confidence and guide future model development.
Daniel Power, Miguel Angel Rico-Ramirez, Sharon Desilets, Darin Desilets, and Rafael Rosolem
Geosci. Model Dev., 14, 7287–7307, https://doi.org/10.5194/gmd-14-7287-2021, https://doi.org/10.5194/gmd-14-7287-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensors estimate root-zone soil moisture at sub-kilometre scales. There are national-scale networks of these sensors across the globe; however, methods for converting neutron signals to soil moisture values are inconsistent. This paper describes our open-source Python tool that processes raw sensor data into soil moisture estimates. The aim is to allow a user to ensure they have a harmonized data set, along with informative metadata, to facilitate both research and teaching.
Seoung Soo Lee, Kyung-Ja Ha, Manguttathil Gopalakrishnan Manoj, Mohammad Kamruzzaman, Hyungjun Kim, Nobuyuki Utsumi, Youtong Zheng, Byung-Gon Kim, Chang Hoon Jung, Junshik Um, Jianping Guo, Kyoung Ock Choi, and Go-Un Kim
Atmos. Chem. Phys., 21, 16843–16868, https://doi.org/10.5194/acp-21-16843-2021, https://doi.org/10.5194/acp-21-16843-2021, 2021
Short summary
Short summary
Using a modeling framework, a midlatitude stratocumulus cloud system is simulated. It is found that cloud mass in the system becomes very low due to interactions between ice and liquid particles compared to that in the absence of ice particles. It is also found that interactions between cloud mass and aerosols lead to a reduction in cloud mass in the system, and this is contrary to an aerosol-induced increase in cloud mass in the absence of ice particles.
Axel P. Belemtougri, Agnès Ducharne, and Harouna Karambiri
Proc. IAHS, 384, 19–23, https://doi.org/10.5194/piahs-384-19-2021, https://doi.org/10.5194/piahs-384-19-2021, 2021
E. Andrés Quichimbo, Michael Bliss Singer, Katerina Michaelides, Daniel E. J. Hobley, Rafael Rosolem, and Mark O. Cuthbert
Geosci. Model Dev., 14, 6893–6917, https://doi.org/10.5194/gmd-14-6893-2021, https://doi.org/10.5194/gmd-14-6893-2021, 2021
Short summary
Short summary
Understanding and quantifying water partitioning in dryland regions are of key importance to anticipate the future impacts of climate change in water resources and dryland ecosystems. Here, we have developed a simple hydrological model (DRYP) that incorporates the key processes of water partitioning in drylands. DRYP is a modular, versatile, and parsimonious model that can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland regions.
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021, https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
Short summary
We introduce a simple analytical framework that allows us to estimate to what extent large-scale groundwater withdrawal affects groundwater levels and streamflow. It also calculates which part of the groundwater withdrawal comes out of groundwater storage and which part from a reduction in streamflow. Global depletion rates obtained with the framework are compared with estimates from satellites, from global- and continental-scale groundwater models, and from in situ datasets.
Daisuke Tokuda, Hyungjun Kim, Dai Yamazaki, and Taikan Oki
Geosci. Model Dev., 14, 5669–5693, https://doi.org/10.5194/gmd-14-5669-2021, https://doi.org/10.5194/gmd-14-5669-2021, 2021
Short summary
Short summary
We developed TCHOIR, a hydrologic simulation framework, to solve fluvial- and thermodynamics of the river–lake continuum. This provides an algorithm for upscaling high-resolution topography as well, which enables the representation of those interactions at the global scale. Validation against in situ and satellite observations shows that the coupled mode outperforms river- or lake-only modes. TCHOIR will contribute to elucidating the role of surface hydrology in Earth’s energy and water cycle.
Tesfalem Abraham, Yan Liu, Sirak Tekleab, and Andreas Hartmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-271, https://doi.org/10.5194/hess-2021-271, 2021
Preprint withdrawn
Short summary
Short summary
In this study we demonstrate the use of global data products for the regionalization of model parameters. We combine three steps of uncertainty quantification from the parameter sampling, best parameter sets identification, and spatial cross-validation. Our results show the best validation parameters provide the most robust regionalization results, and the uncertainties from the regionalization in the ungauged catchments are higher than those obtained from simulations in the gauged catchments.
Jan L. Gunnink, Hung Van Pham, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 3297–3319, https://doi.org/10.5194/essd-13-3297-2021, https://doi.org/10.5194/essd-13-3297-2021, 2021
Short summary
Short summary
In the Mekong Delta (Vietnam) groundwater is important for domestic, agricultural and industrial use. Increased pumping of groundwater has caused land subsidence and increased the risk of salinization, thereby endangering the livelihood of the population in the delta. We made a model of the salinity of the groundwater by integrating different sources of information and determined fresh groundwater volumes. The resulting model can be used by researchers and policymakers.
Jun Zhang, Laura E. Condon, Hoang Tran, and Reed M. Maxwell
Earth Syst. Sci. Data, 13, 3263–3279, https://doi.org/10.5194/essd-13-3263-2021, https://doi.org/10.5194/essd-13-3263-2021, 2021
Short summary
Short summary
Existing national topographic datasets for the US may not be compatible with gridded hydrologic models. A national topographic dataset developed to support physically based hydrologic models at 1 km and 250 m over the contiguous US is provided. We used a Priority Flood algorithm to ensure hydrologically consistent drainage networks and evaluated the performance with an integrated hydrologic model. Datasets and scripts are available for direct data usage or modification of processing as desired.
Maria Magdalena Warter, Michael Bliss Singer, Mark O. Cuthbert, Dar Roberts, Kelly K. Caylor, Romy Sabathier, and John Stella
Hydrol. Earth Syst. Sci., 25, 3713–3729, https://doi.org/10.5194/hess-25-3713-2021, https://doi.org/10.5194/hess-25-3713-2021, 2021
Short summary
Short summary
Intensified drying of soil and grassland vegetation is raising the impact of fire severity and extent in Southern California. While browned grassland is a common sight during the dry season, this study has shown that there is a pronounced shift in the timing of senescence, due to changing climate conditions favoring milder winter temperatures and increased precipitation variability. Vegetation may be limited in its ability to adapt to these shifts, as drought periods become more frequent.
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Thorsten Wagener, Dragan Savic, David Butler, Reza Ahmadian, Tom Arnot, Jonathan Dawes, Slobodan Djordjevic, Roger Falconer, Raziyeh Farmani, Debbie Ford, Jan Hofman, Zoran Kapelan, Shunqi Pan, and Ross Woods
Hydrol. Earth Syst. Sci., 25, 2721–2738, https://doi.org/10.5194/hess-25-2721-2021, https://doi.org/10.5194/hess-25-2721-2021, 2021
Short summary
Short summary
How can we effectively train PhD candidates both (i) across different knowledge domains in water science and engineering and (ii) in computer science? To address this issue, the Water Informatics in Science and Engineering Centre for Doctoral Training (WISE CDT) offers a postgraduate programme that fosters enhanced levels of innovation and collaboration by training a cohort of engineers and scientists at the boundary of water informatics, science and engineering.
Eklavyya Popat and Petra Döll
Nat. Hazards Earth Syst. Sci., 21, 1337–1354, https://doi.org/10.5194/nhess-21-1337-2021, https://doi.org/10.5194/nhess-21-1337-2021, 2021
Short summary
Short summary
Two drought hazard indices are presented that combine drought deficit and anomaly aspects: one for soil moisture drought (SMDAI) where we simplified the DSI and the other for streamflow drought (QDAI), which is to our knowledge the first ever deficit anomaly drought index including surface water demand. Both indices are tested at the global scale with WaterGAP 2.2d outputs, providing more differentiated spatial and temporal patterns distinguishing the actual degree of respective drought hazard.
William Rust, Mark Cuthbert, John Bloomfield, Ron Corstanje, Nicholas Howden, and Ian Holman
Hydrol. Earth Syst. Sci., 25, 2223–2237, https://doi.org/10.5194/hess-25-2223-2021, https://doi.org/10.5194/hess-25-2223-2021, 2021
Short summary
Short summary
In this paper, we find evidence for the cyclical behaviour (on a 7-year basis) in UK streamflow records that match the main cycle of the North Atlantic Oscillation. Furthermore, we find that the strength of these 7-year cycles in streamflow is dependent on proportional contributions from groundwater and the response times of the underlying groundwater systems. This may allow for improvements to water management practices through better understanding of long-term streamflow behaviour.
Hiroki Mizuochi, Agnès Ducharne, Frédérique Cheruy, Josefine Ghattas, Amen Al-Yaari, Jean-Pierre Wigneron, Vladislav Bastrikov, Philippe Peylin, Fabienne Maignan, and Nicolas Vuichard
Hydrol. Earth Syst. Sci., 25, 2199–2221, https://doi.org/10.5194/hess-25-2199-2021, https://doi.org/10.5194/hess-25-2199-2021, 2021
Hannes Müller Schmied, Denise Cáceres, Stephanie Eisner, Martina Flörke, Claudia Herbert, Christoph Niemann, Thedini Asali Peiris, Eklavyya Popat, Felix Theodor Portmann, Robert Reinecke, Maike Schumacher, Somayeh Shadkam, Camelia-Eliza Telteu, Tim Trautmann, and Petra Döll
Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, https://doi.org/10.5194/gmd-14-1037-2021, 2021
Short summary
Short summary
In a globalized world with large flows of virtual water between river basins and international responsibilities for the sustainable development of the Earth system and its inhabitants, quantitative estimates of water flows and storages and of water demand by humans are required. Global hydrological models such as WaterGAP are developed to provide this information. Here we present a thorough description, evaluation and application examples of the most recent model version, WaterGAP v2.2d.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Edward R. Jones, Michelle T. H. van Vliet, Manzoor Qadir, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 237–254, https://doi.org/10.5194/essd-13-237-2021, https://doi.org/10.5194/essd-13-237-2021, 2021
Short summary
Short summary
Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation. This study provides a global outlook on the state of domestic and industrial wastewater production, collection, treatment and reuse. Our results can serve as a baseline in evaluating progress towards policy goals (e.g. Sustainable Development Goals) and as input data in large-scale water resource assessments (e.g. water quality modelling).
Isaac Kipkemoi, Katerina Michaelides, Rafael Rosolem, and Michael Bliss Singer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-48, https://doi.org/10.5194/hess-2021-48, 2021
Manuscript not accepted for further review
Short summary
Short summary
The work is a novel investigation of the role of temporal rainfall resolution and intensity in affecting the water balance of soil in a dryland environment. This research has implications for what rainfall data are used to assess the impact of climate and climate change on the regional water balance. This information is critical for anticipating the impact of a changing climate on dryland communities globally who need it to know when to plant their seeds or where livestock pasture is available.
Gabriel C. Rau, Mark O. Cuthbert, R. Ian Acworth, and Philipp Blum
Hydrol. Earth Syst. Sci., 24, 6033–6046, https://doi.org/10.5194/hess-24-6033-2020, https://doi.org/10.5194/hess-24-6033-2020, 2020
Short summary
Short summary
This work provides an important generalisation of a previously developed method that quantifies subsurface barometric efficiency using the groundwater level response to Earth and atmospheric tides. The new approach additionally allows the quantification of hydraulic conductivity and specific storage. This enables improved and rapid assessment of subsurface processes and properties using standard pressure measurements.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Elisa Bozzolan, Elizabeth Holcombe, Francesca Pianosi, and Thorsten Wagener
Nat. Hazards Earth Syst. Sci., 20, 3161–3177, https://doi.org/10.5194/nhess-20-3161-2020, https://doi.org/10.5194/nhess-20-3161-2020, 2020
Short summary
Short summary
We include informal housing in slope stability analysis, considering different slope properties and precipitation events (including climate change). The dominant failure processes are identified, and their relative role in slope failure is quantified. A new rainfall threshold is assessed for urbanised slopes. Instability
rulesare provided to recognise urbanised slopes most at risk. The methodology is suitable for regions with scarce field measurements and landslide inventories.
Lena R. Boysen, Victor Brovkin, Julia Pongratz, David M. Lawrence, Peter Lawrence, Nicolas Vuichard, Philippe Peylin, Spencer Liddicoat, Tomohiro Hajima, Yanwu Zhang, Matthias Rocher, Christine Delire, Roland Séférian, Vivek K. Arora, Lars Nieradzik, Peter Anthoni, Wim Thiery, Marysa M. Laguë, Deborah Lawrence, and Min-Hui Lo
Biogeosciences, 17, 5615–5638, https://doi.org/10.5194/bg-17-5615-2020, https://doi.org/10.5194/bg-17-5615-2020, 2020
Short summary
Short summary
We find a biogeophysically induced global cooling with strong carbon losses in a 20 million square kilometre idealized deforestation experiment performed by nine CMIP6 Earth system models. It takes many decades for the temperature signal to emerge, with non-local effects playing an important role. Despite a consistent experimental setup, models diverge substantially in their climate responses. This study offers unprecedented insights for understanding land use change effects in CMIP6 models.
Natasha MacBean, Russell L. Scott, Joel A. Biederman, Catherine Ottlé, Nicolas Vuichard, Agnès Ducharne, Thomas Kolb, Sabina Dore, Marcy Litvak, and David J. P. Moore
Hydrol. Earth Syst. Sci., 24, 5203–5230, https://doi.org/10.5194/hess-24-5203-2020, https://doi.org/10.5194/hess-24-5203-2020, 2020
Denise Cáceres, Ben Marzeion, Jan Hendrik Malles, Benjamin Daniel Gutknecht, Hannes Müller Schmied, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020, https://doi.org/10.5194/hess-24-4831-2020, 2020
Short summary
Short summary
We analysed how and to which extent changes in water storage on continents had an effect on global ocean mass over the period 1948–2016. Continents lost water to oceans at an accelerated rate, inducing sea level rise. Shrinking glaciers explain 81 % of the long-term continental water mass loss, while declining groundwater levels, mainly due to sustained groundwater pumping for irrigation, is the second major driver. This long-term decline was partly offset by the impoundment of water in dams.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Nicolas Massei, Daniel G. Kingston, David M. Hannah, Jean-Philippe Vidal, Bastien Dieppois, Manuel Fossa, Andreas Hartmann, David A. Lavers, and Benoit Laignel
Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020, https://doi.org/10.5194/piahs-383-141-2020, 2020
Short summary
Short summary
This paper presents recent thoughts by members of EURO-FRIEND Water project 3 “Large-scale-variations in hydrological characteristics” about research needed to characterize and understand large-scale hydrology under global changes. Emphasis is put on the necessary efforts to better understand 1 – the impact of low-frequency climate variability on hydrological trends and extremes, 2 – the role of basin properties on modulating the climate signal producing hydrological responses on the basin scale.
Mohammad Shamsudduha and Richard G. Taylor
Earth Syst. Dynam., 11, 755–774, https://doi.org/10.5194/esd-11-755-2020, https://doi.org/10.5194/esd-11-755-2020, 2020
Short summary
Short summary
Recent assessments of the sustainability of global groundwater resources using the Gravity Recovery and Climate Experiment (GRACE) satellites assume that the underlying trends are linear. Here, we assess recent changes in groundwater storage (ΔGWS) in the world’s large aquifer systems using an ensemble of GRACE datasets and show that trends are mostly non-linear. Non-linearity in ΔGWS derives, in part, from the episodic nature of groundwater replenishment associated with extreme precipitation.
Simon Opie, Richard G. Taylor, Chris M. Brierley, Mohammad Shamsudduha, and Mark O. Cuthbert
Earth Syst. Dynam., 11, 775–791, https://doi.org/10.5194/esd-11-775-2020, https://doi.org/10.5194/esd-11-775-2020, 2020
Short summary
Short summary
Knowledge of the relationship between climate and groundwater is limited and typically undermined by the scale, duration and accessibility of observations. Using monthly satellite measurements newly compiled over 14 years in the tropics and sub-tropics, we show that the imprint of precipitation history on groundwater, i.e. hydraulic memory, is longer in drylands than humid environments with important implications for the understanding and management of groundwater resources under climate change.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Salma Tafasca, Agnès Ducharne, and Christian Valentin
Hydrol. Earth Syst. Sci., 24, 3753–3774, https://doi.org/10.5194/hess-24-3753-2020, https://doi.org/10.5194/hess-24-3753-2020, 2020
Short summary
Short summary
In land surface models (LSMs), soil properties are inferred from soil texture. In this study, we use different input global soil texture maps from the literature to investigate the impact of soil texture on the simulated water budget in an LSM. The medium loamy textures give the highest evapotranspiration and lowest total runoff rates. However, the different soil texture maps result in similar water budgets because of their inherent similarities, especially when upscaled at the 0.5° resolution.
Peter Burek, Yusuke Satoh, Taher Kahil, Ting Tang, Peter Greve, Mikhail Smilovic, Luca Guillaumot, Fang Zhao, and Yoshihide Wada
Geosci. Model Dev., 13, 3267–3298, https://doi.org/10.5194/gmd-13-3267-2020, https://doi.org/10.5194/gmd-13-3267-2020, 2020
Short summary
Short summary
We present the new global hydrological model "Community Water Model" (CWatM), which can be used globally and regionally. The model is open source and written with the Python programming language. It uses global, freely available data in a smart and state-of-the-art format. It includes the major hydrological processes but also takes into account human activities, such as water use and reservoir regulation, by calculating water demand from the agriculture, domestic, and industrial sectors.
Shaini Naha, Miguel A. Rico-Ramirez, and Rafael Rosolem
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-220, https://doi.org/10.5194/hess-2020-220, 2020
Manuscript not accepted for further review
Short summary
Short summary
Rapid growth in population in developing countries leads to an increase in food demand and as a consequence, percentages of land are being converted to cropland which alters the river flow processes. Therefore we try to understand the exact role of these changes in modifying the river flows through the prediction of the impacts of these changes in the future by taking a clue from the past. This study concludes that recurrent flood events might be influenced by these changes in future.
Christopher P. O. Reyer, Ramiro Silveyra Gonzalez, Klara Dolos, Florian Hartig, Ylva Hauf, Matthias Noack, Petra Lasch-Born, Thomas Rötzer, Hans Pretzsch, Henning Meesenburg, Stefan Fleck, Markus Wagner, Andreas Bolte, Tanja G. M. Sanders, Pasi Kolari, Annikki Mäkelä, Timo Vesala, Ivan Mammarella, Jukka Pumpanen, Alessio Collalti, Carlo Trotta, Giorgio Matteucci, Ettore D'Andrea, Lenka Foltýnová, Jan Krejza, Andreas Ibrom, Kim Pilegaard, Denis Loustau, Jean-Marc Bonnefond, Paul Berbigier, Delphine Picart, Sébastien Lafont, Michael Dietze, David Cameron, Massimo Vieno, Hanqin Tian, Alicia Palacios-Orueta, Victor Cicuendez, Laura Recuero, Klaus Wiese, Matthias Büchner, Stefan Lange, Jan Volkholz, Hyungjun Kim, Joanna A. Horemans, Friedrich Bohn, Jörg Steinkamp, Alexander Chikalanov, Graham P. Weedon, Justin Sheffield, Flurin Babst, Iliusi Vega del Valle, Felicitas Suckow, Simon Martel, Mats Mahnken, Martin Gutsch, and Katja Frieler
Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, https://doi.org/10.5194/essd-12-1295-2020, 2020
Short summary
Short summary
Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database provides a wide range of empirical data to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale to support systematic model intercomparisons and model development in Europe.
Stephen R. Maples, Laura Foglia, Graham E. Fogg, and Reed M. Maxwell
Hydrol. Earth Syst. Sci., 24, 2437–2456, https://doi.org/10.5194/hess-24-2437-2020, https://doi.org/10.5194/hess-24-2437-2020, 2020
Short summary
Short summary
In this study, we use a combination of local- and global-sensitivity analyses to evaluate the relative importance of (1) the configuration of subsurface alluvial geology and (2) the hydraulic properties of geologic facies on recharge processes. Results show that there is a large variation of recharge rates possible in a typical alluvial aquifer system and that the configuration proportion of sand and gravel deposits in the subsurface have a large impact on recharge rates.
Seyed-Mohammad Hosseini-Moghari, Shahab Araghinejad, Mohammad J. Tourian, Kumars Ebrahimi, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 1939–1956, https://doi.org/10.5194/hess-24-1939-2020, https://doi.org/10.5194/hess-24-1939-2020, 2020
Short summary
Short summary
This paper uses a multi-objective approach for calibrating the WGHM model to determine the role of human water use and climate variations in the recent loss of water storage in Lake Urmia basin, Iran. We found that even without human water use Lake Urmia would not have recovered from the significant loss of lake water volume caused by the drought year 2008.
Hong Xuan Do, Fang Zhao, Seth Westra, Michael Leonard, Lukas Gudmundsson, Julien Eric Stanislas Boulange, Jinfeng Chang, Philippe Ciais, Dieter Gerten, Simon N. Gosling, Hannes Müller Schmied, Tobias Stacke, Camelia-Eliza Telteu, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 24, 1543–1564, https://doi.org/10.5194/hess-24-1543-2020, https://doi.org/10.5194/hess-24-1543-2020, 2020
Short summary
Short summary
We presented a global comparison between observed and simulated trends in a flood index over the 1971–2005 period using the Global Streamflow Indices and Metadata archive and six global hydrological models available through The Inter-Sectoral Impact Model Intercomparison Project. Streamflow simulations over 2006–2099 period robustly project high flood hazard in several regions. These high-flood-risk areas, however, are under-sampled by the current global streamflow databases.
Benjamin N. O. Kuffour, Nicholas B. Engdahl, Carol S. Woodward, Laura E. Condon, Stefan Kollet, and Reed M. Maxwell
Geosci. Model Dev., 13, 1373–1397, https://doi.org/10.5194/gmd-13-1373-2020, https://doi.org/10.5194/gmd-13-1373-2020, 2020
Short summary
Short summary
Integrated hydrologic models (IHMs) were developed in order to allow for more accurate simulations of real-world ecohydrologic conditions. Many IHMs exist, and the literature can be dense, so it is often difficult to understand what a specific model can and cannot do. We provide a review of the current core capabilities, solution techniques, communication structure with other models, some limitations, and potential future improvements of one such open-source integrated model called ParFlow.
Adriano Vinca, Simon Parkinson, Edward Byers, Peter Burek, Zarrar Khan, Volker Krey, Fabio A. Diuana, Yaoping Wang, Ansir Ilyas, Alexandre C. Köberle, Iain Staffell, Stefan Pfenninger, Abubakr Muhammad, Andrew Rowe, Roberto Schaeffer, Narasimha D. Rao, Yoshihide Wada, Ned Djilali, and Keywan Riahi
Geosci. Model Dev., 13, 1095–1121, https://doi.org/10.5194/gmd-13-1095-2020, https://doi.org/10.5194/gmd-13-1095-2020, 2020
Short summary
Short summary
This article describes a newly developed numerical model that can assess impacts of long-term policies for the energy, water and land (WEL) sectors at the scale of a river basin. We show the importance of having an integrated method when jointly considering multiple policies as opposed to conventional sectoral analysis. This model can be useful for studying river basins, such as the Indus basin, that are exposed to challenges over WEL sectors, like water scarcity or food and energy access.
Isabel Meza, Stefan Siebert, Petra Döll, Jürgen Kusche, Claudia Herbert, Ehsan Eyshi Rezaei, Hamideh Nouri, Helena Gerdener, Eklavyya Popat, Janna Frischen, Gustavo Naumann, Jürgen V. Vogt, Yvonne Walz, Zita Sebesvari, and Michael Hagenlocher
Nat. Hazards Earth Syst. Sci., 20, 695–712, https://doi.org/10.5194/nhess-20-695-2020, https://doi.org/10.5194/nhess-20-695-2020, 2020
Short summary
Short summary
The paper presents, for the first time, a global-scale drought risk assessment for both irrigated and rainfed agricultural systems while considering drought hazard indicators, exposure and expert-weighted vulnerability indicators. We identify global patterns of drought risk and, by disaggregating risk into its underlying components and factors, provide entry points for risk reduction.
Romane Berthelin, Michael Rinderer, Bartolomé Andreo, Andy Baker, Daniela Kilian, Gabriele Leonhardt, Annette Lotz, Kurt Lichtenwoehrer, Matías Mudarra, Ingrid Y. Padilla, Fernando Pantoja Agreda, Rafael Rosolem, Abel Vale, and Andreas Hartmann
Geosci. Instrum. Method. Data Syst., 9, 11–23, https://doi.org/10.5194/gi-9-11-2020, https://doi.org/10.5194/gi-9-11-2020, 2020
Short summary
Short summary
We present the setup of a soil moisture monitoring network, which is implemented at five karstic sites with different climates across the globe. More than 400 soil moisture probes operating at a high spatio-temporal resolution will improve the understanding of groundwater recharge and evapotranspiration processes in karstic areas.
Simon P. K. Bowring, Ronny Lauerwald, Bertrand Guenet, Dan Zhu, Matthieu Guimberteau, Pierre Regnier, Ardalan Tootchi, Agnès Ducharne, and Philippe Ciais
Geosci. Model Dev., 13, 507–520, https://doi.org/10.5194/gmd-13-507-2020, https://doi.org/10.5194/gmd-13-507-2020, 2020
Short summary
Short summary
In this second part of the study, we performed simulations of the carbon and water budget of the Lena catchment with the land surface model ORCHIDEE MICT-LEAK, enabled to simulate dissolved organic carbon (DOC) production in soils and its transport and fate in high-latitude inland waters. We compare simulations using this model to existing data sources to show that it is capable of reproducing dissolved carbon fluxes of potentially great importance for the future of the global permafrost.
Joeri van Engelen, Jarno Verkaik, Jude King, Eman R. Nofal, Marc F. P. Bierkens, and Gualbert H. P. Oude Essink
Hydrol. Earth Syst. Sci., 23, 5175–5198, https://doi.org/10.5194/hess-23-5175-2019, https://doi.org/10.5194/hess-23-5175-2019, 2019
Short summary
Short summary
The Nile Delta is an important agricultural area with a fast-growing population, relying increasingly on groundwater. However, saline groundwater extends far land-inward, rendering groundwater close to the coastal zone useless for consumption or agriculture. It normally is assumed that this is caused by mixing due to velocity differences, but here we show that it might also be caused by the coastline being located more land-inward 8000 years ago.
Robert Reinecke, Laura Foglia, Steffen Mehl, Jonathan D. Herman, Alexander Wachholz, Tim Trautmann, and Petra Döll
Hydrol. Earth Syst. Sci., 23, 4561–4582, https://doi.org/10.5194/hess-23-4561-2019, https://doi.org/10.5194/hess-23-4561-2019, 2019
Short summary
Short summary
Recently, the first global groundwater models were developed to better understand surface-water–groundwater interactions and human water use impacts. However, the reliability of model outputs is limited by a lack of data as well as model assumptions required due to the necessarily coarse spatial resolution. In this study we present the first global maps of model sensitivity according to their parameterization and build a foundation to improve datasets, model design, and model understanding.
Xingdong Li, Di Long, Qi Huang, Pengfei Han, Fanyu Zhao, and Yoshihide Wada
Earth Syst. Sci. Data, 11, 1603–1627, https://doi.org/10.5194/essd-11-1603-2019, https://doi.org/10.5194/essd-11-1603-2019, 2019
Short summary
Short summary
Lakes on the Tibetan Plateau experienced rapid changes (mainly expanding) in the past 2 decades. Here we provide a data set of high temporal resolution and accuracy reflecting changes in water level and storage of Tibetan lakes. A novel source of water levels generated from Landsat archives was validated with in situ data and adopted to resolve the inconsistency in existing studies, benefiting monitoring of lake overflow floods, seasonal and interannual variability, and long-term trends.
Rosanna A. Lane, Gemma Coxon, Jim E. Freer, Thorsten Wagener, Penny J. Johnes, John P. Bloomfield, Sheila Greene, Christopher J. A. Macleod, and Sim M. Reaney
Hydrol. Earth Syst. Sci., 23, 4011–4032, https://doi.org/10.5194/hess-23-4011-2019, https://doi.org/10.5194/hess-23-4011-2019, 2019
Short summary
Short summary
We evaluated four hydrological model structures and their parameters on over 1100 catchments across Great Britain, considering modelling uncertainties. Models performed well for most catchments but failed in parts of Scotland and south-eastern England. Failures were often linked to inconsistencies in the water balance. This research shows what conceptual lumped models can achieve, gives insights into where and why these models may fail, and provides a benchmark of national modelling capability.
Simon P. K. Bowring, Ronny Lauerwald, Bertrand Guenet, Dan Zhu, Matthieu Guimberteau, Ardalan Tootchi, Agnès Ducharne, and Philippe Ciais
Geosci. Model Dev., 12, 3503–3521, https://doi.org/10.5194/gmd-12-3503-2019, https://doi.org/10.5194/gmd-12-3503-2019, 2019
Short summary
Short summary
Few Earth system models represent permafrost soil biogeochemistry, contributing to uncertainty in estimating its response and that of the planet to warming. Because the permafrost contains over double the carbon in the present atmosphere, its fate as it is
unlockedby warming is globally significant. One way it can be mobilised is into rivers, the sea, or the atmosphere: a vector previously ignored in climate modelling. We present a model scheme for resolving this vector at a global scale.
William Rust, Ian Holman, John Bloomfield, Mark Cuthbert, and Ron Corstanje
Hydrol. Earth Syst. Sci., 23, 3233–3245, https://doi.org/10.5194/hess-23-3233-2019, https://doi.org/10.5194/hess-23-3233-2019, 2019
Short summary
Short summary
We show that major groundwater resources in the UK exhibit strong multi-year cycles, accounting for up to 40 % of total groundwater level variability. By comparing these cycles with recorded widespread groundwater droughts over the past 60 years, we provide evidence that climatic systems (such as the North Atlantic Oscillation) ultimately drive drought-risk periods in UK groundwater. The recursive nature of these drought-risk periods may lead to improved preparedness for future droughts.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Shushi Peng, Gerhard Krinner, Ardalan Tootchi, Agnès Ducharne, and Adam Hastie
Geosci. Model Dev., 12, 2961–2982, https://doi.org/10.5194/gmd-12-2961-2019, https://doi.org/10.5194/gmd-12-2961-2019, 2019
Short summary
Short summary
We present a model that can simulate the dynamics of peatland area extent and the vertical buildup of peat. The model is validated across a range of northern peatland sites and over the Northern Hemisphere (> 30° N). It is able to reproduce the spatial extent of northern peatlands and peat carbon accumulation over the Holocene.
Robert Reinecke, Laura Foglia, Steffen Mehl, Tim Trautmann, Denise Cáceres, and Petra Döll
Geosci. Model Dev., 12, 2401–2418, https://doi.org/10.5194/gmd-12-2401-2019, https://doi.org/10.5194/gmd-12-2401-2019, 2019
Short summary
Short summary
G³M is a new global groundwater model (http://globalgroundwatermodel.org) that simulates lateral and vertical flows as well as exchanges with surface water bodies like rivers, lakes, and wetlands for the whole globe except Antarctica and Greenland. The newly developed model framework enables an efficient integration into established global hydrological models. This paper presents the G³M concept and specific model design decisions together with first results under a naturalized equilibrium.
Cécile B. Ménard, Richard Essery, Alan Barr, Paul Bartlett, Jeff Derry, Marie Dumont, Charles Fierz, Hyungjun Kim, Anna Kontu, Yves Lejeune, Danny Marks, Masashi Niwano, Mark Raleigh, Libo Wang, and Nander Wever
Earth Syst. Sci. Data, 11, 865–880, https://doi.org/10.5194/essd-11-865-2019, https://doi.org/10.5194/essd-11-865-2019, 2019
Short summary
Short summary
This paper describes long-term meteorological and evaluation datasets from 10 reference sites for use in snow modelling. We demonstrate how data sharing is crucial to the identification of errors and how the publication of these datasets contributes to good practice, consistency, and reproducibility in geosciences. The ease of use, availability, and quality of the datasets will help model developers quantify and reduce model uncertainties and errors.
Gemma Coxon, Jim Freer, Rosanna Lane, Toby Dunne, Wouter J. M. Knoben, Nicholas J. K. Howden, Niall Quinn, Thorsten Wagener, and Ross Woods
Geosci. Model Dev., 12, 2285–2306, https://doi.org/10.5194/gmd-12-2285-2019, https://doi.org/10.5194/gmd-12-2285-2019, 2019
Short summary
Short summary
DECIPHeR (Dynamic fluxEs and ConnectIvity for Predictions of Hydrology) is a new modelling framework that can be applied from small catchment to continental scales for complex river basins. This paper describes the modelling framework and its key components and demonstrates the model’s ability to be applied across a large model domain. This work highlights the potential for catchment- to continental-scale predictions of streamflow to support robust environmental management and policy decisions.
Annette Hein, Laura Condon, and Reed Maxwell
Hydrol. Earth Syst. Sci., 23, 1931–1950, https://doi.org/10.5194/hess-23-1931-2019, https://doi.org/10.5194/hess-23-1931-2019, 2019
Short summary
Short summary
Drought is a natural disaster that can result from changes to temperature, precipitation and/or vegetation. Here we apply a
high-resolution computer model to explore the relative importance of each factor on the North American High Plains, one of the most important agricultural regions of the USA. Decreased precipitation caused larger changes in hydrologic variables (evapotranspiration, soil moisture, stream flow and water table levels) than increased temperature or disturbed vegetation did.
Seshagiri Rao Kolusu, Mohammad Shamsudduha, Martin C. Todd, Richard G. Taylor, David Seddon, Japhet J. Kashaigili, Girma Y. Ebrahim, Mark O. Cuthbert, James P. R. Sorensen, Karen G. Villholth, Alan M. MacDonald, and Dave A. MacLeod
Hydrol. Earth Syst. Sci., 23, 1751–1762, https://doi.org/10.5194/hess-23-1751-2019, https://doi.org/10.5194/hess-23-1751-2019, 2019
Xingcai Liu, Wenfeng Liu, Hong Yang, Qiuhong Tang, Martina Flörke, Yoshimitsu Masaki, Hannes Müller Schmied, Sebastian Ostberg, Yadu Pokhrel, Yusuke Satoh, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 23, 1245–1261, https://doi.org/10.5194/hess-23-1245-2019, https://doi.org/10.5194/hess-23-1245-2019, 2019
Short summary
Short summary
Human activities associated with water resource management have significantly increased in China during the past decades. This assessment helps us understand how streamflow has been affected by climate and human activities in China. Our analyses indicate that the climate impact has dominated streamflow changes in most areas, and human activities (in terms of water withdrawals) have increasingly decreased streamflow in the northern basins of China which are vulnerable to future climate change.
Soumendra N. Bhanja, Abhijit Mukherjee, R. Rangarajan, Bridget R. Scanlon, Pragnaditya Malakar, and Shubha Verma
Hydrol. Earth Syst. Sci., 23, 711–722, https://doi.org/10.5194/hess-23-711-2019, https://doi.org/10.5194/hess-23-711-2019, 2019
Short summary
Short summary
Groundwater depletion in India has been a much-debated issue in recent years. Here we investigate long-term, spatiotemporal variation in prevailing groundwater recharge rates across India. Groundwater recharge rates have been estimated based on field-scale groundwater-level measurements and the tracer injection approach; recharge rates from the two estimates compared favorably. The role of precipitation in controlling groundwater recharge is studied.
Ardalan Tootchi, Anne Jost, and Agnès Ducharne
Earth Syst. Sci. Data, 11, 189–220, https://doi.org/10.5194/essd-11-189-2019, https://doi.org/10.5194/essd-11-189-2019, 2019
Short summary
Short summary
The role of wetlands at regional and global scales depends on their distribution and extent, which is highly uncertain in the literature. We developed comprehensive wetland maps using satellite imagery products and ground water modeling. These high-resolution maps encompass regularly flooded to non-flooded groundwater wetlands, covering more than 21 % of the land surface area, which is among the highest estimates. Wetlands are particularly concentrated over the tropics and northern cold zones.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Trung Nguyen-Quang, Jan Polcher, Agnès Ducharne, Thomas Arsouze, Xudong Zhou, Ana Schneider, and Lluís Fita
Geosci. Model Dev., 11, 4965–4985, https://doi.org/10.5194/gmd-11-4965-2018, https://doi.org/10.5194/gmd-11-4965-2018, 2018
Short summary
Short summary
This study presents a revised river routing scheme for the Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) land surface model. The revision is carried out to benefit from the high-resolution topography provided by the Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS). We demonstrate that the finer description of the catchments allows for an improvement of the simulated river discharge of ORCHIDEE in an area with complex topography.
Fanny Sarrazin, Andreas Hartmann, Francesca Pianosi, Rafael Rosolem, and Thorsten Wagener
Geosci. Model Dev., 11, 4933–4964, https://doi.org/10.5194/gmd-11-4933-2018, https://doi.org/10.5194/gmd-11-4933-2018, 2018
Short summary
Short summary
We propose the first large-scale vegetation–recharge model for karst regions (V2Karst), which enables the analysis of the impact of changes in climate and land cover on karst groundwater recharge. We demonstrate the plausibility of V2Karst simulations against observations at FLUXNET sites and of controlling modelled processes using sensitivity analysis. We perform virtual experiments to further test the model and gain insight into its sensitivity to precipitation pattern and vegetation cover.
Keith J. Beven, Susana Almeida, Willy P. Aspinall, Paul D. Bates, Sarka Blazkova, Edoardo Borgomeo, Jim Freer, Katsuichiro Goda, Jim W. Hall, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, David B. Stephenson, Thorsten Wagener, Matt Watson, and Kate L. Wilkins
Nat. Hazards Earth Syst. Sci., 18, 2741–2768, https://doi.org/10.5194/nhess-18-2741-2018, https://doi.org/10.5194/nhess-18-2741-2018, 2018
Short summary
Short summary
This paper discusses how uncertainties resulting from lack of knowledge are considered in a number of different natural hazard areas including floods, landslides and debris flows, dam safety, droughts, earthquakes, tsunamis, volcanic ash clouds and pyroclastic flows, and wind storms. As every analysis is necessarily conditional on the assumptions made about the nature of sources of such uncertainties it is also important to follow the guidelines for good practice suggested in Part 2.
Keith J. Beven, Willy P. Aspinall, Paul D. Bates, Edoardo Borgomeo, Katsuichiro Goda, Jim W. Hall, Trevor Page, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, Thorsten Wagener, and Matt Watson
Nat. Hazards Earth Syst. Sci., 18, 2769–2783, https://doi.org/10.5194/nhess-18-2769-2018, https://doi.org/10.5194/nhess-18-2769-2018, 2018
Short summary
Short summary
Part 1 of this paper discussed the uncertainties arising from gaps in knowledge or limited understanding of the processes involved in different natural hazard areas. These are the epistemic uncertainties that can be difficult to constrain, especially in terms of event or scenario probabilities. A conceptual framework for good practice in dealing with epistemic uncertainties is outlined and implications of applying the principles to natural hazard science are discussed.
Zun Yin, Catherine Ottlé, Philippe Ciais, Matthieu Guimberteau, Xuhui Wang, Dan Zhu, Fabienne Maignan, Shushi Peng, Shilong Piao, Jan Polcher, Feng Zhou, Hyungjun Kim, and other China-Trend-Stream project members
Hydrol. Earth Syst. Sci., 22, 5463–5484, https://doi.org/10.5194/hess-22-5463-2018, https://doi.org/10.5194/hess-22-5463-2018, 2018
Short summary
Short summary
Simulations in China were performed in ORCHIDEE driven by different forcing datasets: GSWP3, PGF, CRU-NCEP, and WFDEI. Simulated soil moisture was compared to several datasets to evaluate the ability of ORCHIDEE in reproducing soil moisture dynamics. Results showed that ORCHIDEE soil moisture coincided well with other datasets in wet areas and in non-irrigated areas. It suggested that the ORCHIDEE-MICT was suitable for further hydrological studies in China.
Pute Wu, La Zhuo, Guoping Zhang, Mesfin M. Mekonnen, Arjen Y. Hoekstra, Yoshihide Wada, Xuerui Gao, Xining Zhao, Yubao Wang, and Shikun Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-436, https://doi.org/10.5194/hess-2018-436, 2018
Manuscript not accepted for further review
Short summary
Short summary
This study estimates the concomitant economic benefits and values to the crop-related (physical and virtual) water flows at a basin level. The net benefit of blue water was 13–42 % lower than that of green water in the case for the Yellow River Basin. The basin got a net income through the virtual water exports. It is necessary to manage the internal trade-offs between the water consumption and economic returns, for maximizing both the water use efficiency and water economic productivities.
Daniel Zamrsky, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 10, 1591–1603, https://doi.org/10.5194/essd-10-1591-2018, https://doi.org/10.5194/essd-10-1591-2018, 2018
Short summary
Short summary
An increasing number of coastal areas worldwide are facing a threat of groundwater quality degradation by saltwater intrusion. Groundwater flow models help to get a better idea of the volumes of fresh groundwater reserves in these areas. Our research provides information on aquifer thickness, which is one of the most important parameters for such models. However, we found that geological complexity of coastal aquifer systems is at least equally as important a factor for accurate predictions.
Zhao Chen, Andreas Hartmann, Thorsten Wagener, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 22, 3807–3823, https://doi.org/10.5194/hess-22-3807-2018, https://doi.org/10.5194/hess-22-3807-2018, 2018
Short summary
Short summary
This paper investigates potential impacts of climate change on mountainous karst systems. Our study highlights the fast groundwater dynamics in mountainous karst catchments, which make them highly vulnerable to future changing-climate conditions. Additionally, this work presents a novel holistic modeling approach, which can be transferred to similar karst systems for studying the impact of climate change on local karst water resources.
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
Edwin H. Sutanudjaja, Rens van Beek, Niko Wanders, Yoshihide Wada, Joyce H. C. Bosmans, Niels Drost, Ruud J. van der Ent, Inge E. M. de Graaf, Jannis M. Hoch, Kor de Jong, Derek Karssenberg, Patricia López López, Stefanie Peßenteiner, Oliver Schmitz, Menno W. Straatsma, Ekkamol Vannametee, Dominik Wisser, and Marc F. P. Bierkens
Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, https://doi.org/10.5194/gmd-11-2429-2018, 2018
Short summary
Short summary
PCR-GLOBWB 2 is an integrated hydrology and water resource model that fully integrates water use simulation and consolidates all features that have been developed since PCR-GLOBWB 1 was introduced. PCR-GLOBWB 2 can have a global coverage at 5 arcmin resolution and supersedes PCR-GLOBWB 1, which has a resolution of 30 arcmin only. Comparing the 5 arcmin with 30 arcmin simulations using discharge data, we clearly find improvement in the model performance of the higher-resolution model.
Hafsa Ahmed Munia, Joseph H. A. Guillaume, Naho Mirumachi, Yoshihide Wada, and Matti Kummu
Hydrol. Earth Syst. Sci., 22, 2795–2809, https://doi.org/10.5194/hess-22-2795-2018, https://doi.org/10.5194/hess-22-2795-2018, 2018
Short summary
Short summary
An analytical framework is developed drawing on ideas of regime shifts from resilience literature to understand the transition between cases where water scarcity is or is not experienced depending on whether water from upstream is or is not available. The analysis shows 386 million people dependent on upstream water to avoid possible stress and 306 million people dependent on upstream water to avoid possible shortage. This provides insights into implications for negotiations between sub-basins.
Zhongwei Huang, Mohamad Hejazi, Xinya Li, Qiuhong Tang, Chris Vernon, Guoyong Leng, Yaling Liu, Petra Döll, Stephanie Eisner, Dieter Gerten, Naota Hanasaki, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 22, 2117–2133, https://doi.org/10.5194/hess-22-2117-2018, https://doi.org/10.5194/hess-22-2117-2018, 2018
Short summary
Short summary
This study generate a historical global monthly gridded water withdrawal data (0.5 × 0.5 degrees) for the period 1971–2010, distinguishing six water use sectors (irrigation, domestic, electricity generation, livestock, mining, and manufacturing). This dataset is the first reconstructed global water withdrawal data product at sub-annual and gridded resolution that is derived from different models and data sources, and was generated by spatially and temporally downscaling country-scale estimates.
Natthachet Tangdamrongsub, Shin-Chan Han, Mark Decker, In-Young Yeo, and Hyungjun Kim
Hydrol. Earth Syst. Sci., 22, 1811–1829, https://doi.org/10.5194/hess-22-1811-2018, https://doi.org/10.5194/hess-22-1811-2018, 2018
Short summary
Short summary
We present a new approach to improve the water storage estimate. Our approach combines GRACE's raw data (least-squares normal equation) with the results from the Community Atmosphere Land Exchange (CABLE) model. No post-processing filter is applied to GRACE data, and the full GRACE signal and error information are exploited. The approach is applied over 10 Australian river basins, and the evident improvement of the water storage estimate, particularly groundwater component, is clearly observed.
Etienne Bresciani, Roger H. Cranswick, Eddie W. Banks, Jordi Batlle-Aguilar, Peter G. Cook, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 1629–1648, https://doi.org/10.5194/hess-22-1629-2018, https://doi.org/10.5194/hess-22-1629-2018, 2018
Short summary
Short summary
This article tackles the problem of finding the origin of groundwater in basin aquifers adjacent to mountains. In particular, we aim to determine whether the recharge occurs predominantly through stream infiltration along the mountain front or through subsurface flow from the mountain. To this end, we discuss the use of routinely measured variables: hydraulic head, chloride and electrical conductivity. A case study from Australia demonstrates the approach.
Simon Brenner, Gemma Coxon, Nicholas J. K. Howden, Jim Freer, and Andreas Hartmann
Nat. Hazards Earth Syst. Sci., 18, 445–461, https://doi.org/10.5194/nhess-18-445-2018, https://doi.org/10.5194/nhess-18-445-2018, 2018
Short summary
Short summary
In this study we simulate groundwater levels with a semi-distributed karst model. Using a percentile approach we can assess the number of days exceeding or falling below selected groundwater level percentiles. We show that our approach is able to predict groundwater levels across all considered timescales up to the 75th percentile. We then use our approach to assess future changes in groundwater dynamics and show that projected climate changes may lead to generally lower groundwater levels.
Sebastian Huizer, Max Radermacher, Sierd de Vries, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 22, 1065–1080, https://doi.org/10.5194/hess-22-1065-2018, https://doi.org/10.5194/hess-22-1065-2018, 2018
Short summary
Short summary
For a large beach nourishment called the Sand Engine we have examined the impact of groundwater recharge, tides, storm surges, and geomorphological changes on the growth of the fresh groundwater resources between 2011 and 2016. With detailed model simulations of these coastal processes we were able to get a good match with field measurements, and demonstrated the importance of wave runup and coastal erosion in studies on fresh groundwater in such dynamic coastal environments.
Ardalan Tootchi, Anne Jost, and Agnès Ducharne
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-48, https://doi.org/10.5194/hess-2018-48, 2018
Manuscript not accepted for further review
Short summary
Short summary
There is a massive disagreement between wetland extent estimates in literature (3 to 21 % of the land surface area). Some inundated wetlands could be detected using satellite imagery while non-inundated ones and those below vegetation are not easily detectedable. We mapped all wetlands, using both satellite data and geomorphological information, showing large wetland over boreal and tropical zones plus thousands of small oases in arid areas.
Brian J. Dermody, Murugesu Sivapalan, Elke Stehfest, Detlef P. van Vuuren, Martin J. Wassen, Marc F. P. Bierkens, and Stefan C. Dekker
Earth Syst. Dynam., 9, 103–118, https://doi.org/10.5194/esd-9-103-2018, https://doi.org/10.5194/esd-9-103-2018, 2018
Short summary
Short summary
Ensuring sustainable food and water security is an urgent and complex challenge. As the world becomes increasingly globalised and interdependent, food and water management policies may have unintended consequences across regions, sectors and scales. Current decision-making tools do not capture these complexities and thus miss important dynamics. We present a modelling framework to capture regional and sectoral interdependence and cross-scale feedbacks within the global food system.
Matthieu Guimberteau, Dan Zhu, Fabienne Maignan, Ye Huang, Chao Yue, Sarah Dantec-Nédélec, Catherine Ottlé, Albert Jornet-Puig, Ana Bastos, Pierre Laurent, Daniel Goll, Simon Bowring, Jinfeng Chang, Bertrand Guenet, Marwa Tifafi, Shushi Peng, Gerhard Krinner, Agnès Ducharne, Fuxing Wang, Tao Wang, Xuhui Wang, Yilong Wang, Zun Yin, Ronny Lauerwald, Emilie Joetzjer, Chunjing Qiu, Hyungjun Kim, and Philippe Ciais
Geosci. Model Dev., 11, 121–163, https://doi.org/10.5194/gmd-11-121-2018, https://doi.org/10.5194/gmd-11-121-2018, 2018
Short summary
Short summary
Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently developed fire module.
Andreas Hartmann, Juan Antonio Barberá, and Bartolomé Andreo
Hydrol. Earth Syst. Sci., 21, 5971–5985, https://doi.org/10.5194/hess-21-5971-2017, https://doi.org/10.5194/hess-21-5971-2017, 2017
Short summary
Short summary
In karst modeling, there is often an imbalance between the complexity of model structures and the data availability for parameterization. We present a new approach to quantify the value of water quality data for improved karst model parameterization. We show that focusing on “informative” time periods, which are time periods with decreased observation uncertainty, allows for further reduction of simulation uncertainty. Our approach is transferable to other sites with limited data availability.
Joyce H. C. Bosmans, Ludovicus P. H. van Beek, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 5603–5626, https://doi.org/10.5194/hess-21-5603-2017, https://doi.org/10.5194/hess-21-5603-2017, 2017
Short summary
Short summary
We investigate how changes in land cover, such as deforestation, affect river runoff and evaporation from the land surface. We use computer simulations to show that the impact of land cover changes is significant and, when globally averaged, it is as important as more direct human impacts through water use (such as irrigation). There is large spatial variability in the impact of land cover change, with the largest changes when tall vegetation (such as forests) is replaced by crop fields.
Jannis M. Hoch, Jeffrey C. Neal, Fedor Baart, Rens van Beek, Hessel C. Winsemius, Paul D. Bates, and Marc F. P. Bierkens
Geosci. Model Dev., 10, 3913–3929, https://doi.org/10.5194/gmd-10-3913-2017, https://doi.org/10.5194/gmd-10-3913-2017, 2017
Short summary
Short summary
To improve flood hazard assessments, it is vital to model all relevant processes. We here present GLOFRIM, a framework for coupling hydrologic and hydrodynamic models to increase the number of physical processes represented in hazard computations. GLOFRIM is openly available, versatile, and extensible with more models. Results also underpin its added value for model benchmarking, showing that not only model forcing but also grid properties and the numerical scheme influence output accuracy.
Ronny Lauerwald, Pierre Regnier, Marta Camino-Serrano, Bertrand Guenet, Matthieu Guimberteau, Agnès Ducharne, Jan Polcher, and Philippe Ciais
Geosci. Model Dev., 10, 3821–3859, https://doi.org/10.5194/gmd-10-3821-2017, https://doi.org/10.5194/gmd-10-3821-2017, 2017
Short summary
Short summary
ORCHILEAK is a new branch of the terrestrial ecosystem model ORCHIDEE that represents dissolved organic carbon (DOC) production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition, and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks on floodplains and in swamps. We parameterized and validated ORCHILEAK for the Amazon basin.
Tingju Zhu, Petra Döll, Hannes Müller Schmied, Claudia Ringler, and Mark W. Rosegrant
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-216, https://doi.org/10.5194/gmd-2017-216, 2017
Revised manuscript has not been submitted
Short summary
Short summary
The global hydrological model IGHM was developed to simulate water availability over global land areas month by month. The simulated water availability is for analyzing irrigation water supply and crop production in a global water and food projections model, IMPACT. Water availability simulated by another global hydrological model, WGHM, was used to determine parameter values in IGHM. This paper describes the structure of IGHM, the method of its parameter determination, and its performance.
Cherry May R. Mateo, Dai Yamazaki, Hyungjun Kim, Adisorn Champathong, Jai Vaze, and Taikan Oki
Hydrol. Earth Syst. Sci., 21, 5143–5163, https://doi.org/10.5194/hess-21-5143-2017, https://doi.org/10.5194/hess-21-5143-2017, 2017
Short summary
Short summary
Providing large-scale (regional or global) simulation of floods at fine spatial resolution is difficult due to computational constraints but is necessary to provide consistent estimates of hazards, especially in data-scarce regions. We assessed the capability of an advanced global-scale river model to simulate an extreme flood at fine resolution. We found that when multiple flow connections in rivers are represented, the model can provide reliable fine-resolution predictions of flood inundation.
Martin Schrön, Markus Köhli, Lena Scheiffele, Joost Iwema, Heye R. Bogena, Ling Lv, Edoardo Martini, Gabriele Baroni, Rafael Rosolem, Jannis Weimar, Juliane Mai, Matthias Cuntz, Corinna Rebmann, Sascha E. Oswald, Peter Dietrich, Ulrich Schmidt, and Steffen Zacharias
Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, https://doi.org/10.5194/hess-21-5009-2017, 2017
Short summary
Short summary
A field-scale average of near-surface water content can be sensed by cosmic-ray neutron detectors. To interpret, calibrate, and validate the integral signal, it is important to account for its sensitivity to heterogeneous patterns like dry or wet spots. We show how point samples contribute to the neutron signal based on their depth and distance from the detector. This approach robustly improves the sensor performance and data consistency, and even reveals otherwise hidden hydrological features.
Mohammad Shamsudduha, Richard G. Taylor, Darren Jones, Laurent Longuevergne, Michael Owor, and Callist Tindimugaya
Hydrol. Earth Syst. Sci., 21, 4533–4549, https://doi.org/10.5194/hess-21-4533-2017, https://doi.org/10.5194/hess-21-4533-2017, 2017
Short summary
Short summary
This study tests the phase and amplitude of GRACE TWS signals in the Upper Nile Basin from five commonly used gridded products (NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS) using in situ data and soil moisture from the Global Land Data Assimilation System. Resolution of changes in groundwater storage (ΔGWS) from GRACE is greatly constrained by the uncertain simulated soil moisture storage and the low amplitude in ΔGWS observed in deeply weathered crystalline rocks in the Upper Nile Basin.
Yoshihide Wada, Marc F. P. Bierkens, Ad de Roo, Paul A. Dirmeyer, James S. Famiglietti, Naota Hanasaki, Megan Konar, Junguo Liu, Hannes Müller Schmied, Taikan Oki, Yadu Pokhrel, Murugesu Sivapalan, Tara J. Troy, Albert I. J. M. van Dijk, Tim van Emmerik, Marjolein H. J. Van Huijgevoort, Henny A. J. Van Lanen, Charles J. Vörösmarty, Niko Wanders, and Howard Wheater
Hydrol. Earth Syst. Sci., 21, 4169–4193, https://doi.org/10.5194/hess-21-4169-2017, https://doi.org/10.5194/hess-21-4169-2017, 2017
Short summary
Short summary
Rapidly increasing population and human activities have altered terrestrial water fluxes on an unprecedented scale. Awareness of potential water scarcity led to first global water resource assessments; however, few hydrological models considered the interaction between terrestrial water fluxes and human activities. Our contribution highlights the importance of human activities transforming the Earth's water cycle, and how hydrological models can include such influences in an integrated manner.
Naze Candogan Yossef, Rens van Beek, Albrecht Weerts, Hessel Winsemius, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 4103–4114, https://doi.org/10.5194/hess-21-4103-2017, https://doi.org/10.5194/hess-21-4103-2017, 2017
Short summary
Short summary
This paper presents a skill assessment of the global seasonal streamflow forecasting system FEWS-World. For 20 large basins of the world, forecasts using the ESP procedure are compared to forecasts using actual S3 seasonal meteorological forecast ensembles by ECMWF. The results are discussed in the context of prevailing hydroclimatic conditions per basin. The study concludes that in general, the skill of ECMWF S3 forecasts is close to that of the ESP forecasts.
Rob Lamb, Willy Aspinall, Henry Odbert, and Thorsten Wagener
Nat. Hazards Earth Syst. Sci., 17, 1393–1409, https://doi.org/10.5194/nhess-17-1393-2017, https://doi.org/10.5194/nhess-17-1393-2017, 2017
Short summary
Short summary
Scour (erosion) during floods can cause bridges to collapse. Modern design and maintenance mitigates the risk, so failures are rare. The residual risk is uncertain, but expert knowledge can help constrain it. We asked 19 experts about scour risk using methods designed to treat judgements alongside other scientific data. The findings identified knowledge gaps about scour processes and suggest wider uncertainty about scour risk than might be inferred from observation, models or experiments alone.
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
Emmy E. Stigter, Niko Wanders, Tuomo M. Saloranta, Joseph M. Shea, Marc F. P. Bierkens, and Walter W. Immerzeel
The Cryosphere, 11, 1647–1664, https://doi.org/10.5194/tc-11-1647-2017, https://doi.org/10.5194/tc-11-1647-2017, 2017
Martyn P. Clark, Marc F. P. Bierkens, Luis Samaniego, Ross A. Woods, Remko Uijlenhoet, Katrina E. Bennett, Valentijn R. N. Pauwels, Xitian Cai, Andrew W. Wood, and Christa D. Peters-Lidard
Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, https://doi.org/10.5194/hess-21-3427-2017, 2017
Short summary
Short summary
The diversity in hydrologic models has led to controversy surrounding the “correct” approach to hydrologic modeling. In this paper we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, summarize modeling advances that address these challenges, and define outstanding research needs.
Christa Kelleher, Brian McGlynn, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 21, 3325–3352, https://doi.org/10.5194/hess-21-3325-2017, https://doi.org/10.5194/hess-21-3325-2017, 2017
Short summary
Short summary
Models are tools for understanding how watersheds function and may respond to land cover and climate change. Before we can use models towards these purposes, we need to ensure that a model adequately represents watershed-wide observations. In this paper, we propose a new way to evaluate whether model simulations match observations, using a variety of information sources. We show how this information can reduce uncertainty in inputs to models, reducing uncertainty in hydrologic predictions.
Eduardo Eiji Maeda, Xuanlong Ma, Fabien Hubert Wagner, Hyungjun Kim, Taikan Oki, Derek Eamus, and Alfredo Huete
Earth Syst. Dynam., 8, 439–454, https://doi.org/10.5194/esd-8-439-2017, https://doi.org/10.5194/esd-8-439-2017, 2017
Short summary
Short summary
The Amazon River basin continuously transfers massive volumes of water from the land surface to the atmosphere, thereby having massive influence on global climate patterns. Nonetheless, the characteristics of ET across the Amazon basin, as well as the relative contribution of the multiple drivers to this process, are still uncertain. This study carries out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers across the Amazon Basin.
Patricia López López, Edwin H. Sutanudjaja, Jaap Schellekens, Geert Sterk, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 3125–3144, https://doi.org/10.5194/hess-21-3125-2017, https://doi.org/10.5194/hess-21-3125-2017, 2017
Short summary
Short summary
We perform various calibration experiments of a large-scale hydrological model using satellite-based products of evapotranspiration and soil moisture in the Oum Er Rbia River basin in Morocco. In addition, we study the impact on discharge estimates of three global precipitation products in comparison with model parameter calibration. Results show that evapotranspiration and soil moisture observations can be used for model calibration, resulting in discharge estimates of acceptable accuracy.
Anna Kuentz, Berit Arheimer, Yeshewatesfa Hundecha, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 21, 2863–2879, https://doi.org/10.5194/hess-21-2863-2017, https://doi.org/10.5194/hess-21-2863-2017, 2017
Short summary
Short summary
Our study aims to explore and understand the physical controls on spatial patterns of pan-European flow signatures by taking advantage of large open datasets. Using tools like correlation analysis, stepwise regressions and different types of catchment classifications, we explore the relationships between catchment descriptors and flow signatures across 35 215 catchments which cover a wide range of pan-European physiographic and anthropogenic characteristics.
Joost Iwema, Rafael Rosolem, Mostaquimur Rahman, Eleanor Blyth, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 21, 2843–2861, https://doi.org/10.5194/hess-21-2843-2017, https://doi.org/10.5194/hess-21-2843-2017, 2017
Short summary
Short summary
We investigated whether the simulation of water flux from the land surface to the atmosphere (using the Joint UK Land Environment Simulator model) could be improved by replacing traditional soil moisture sensor data with data from the more novel Cosmic-Ray Neutron soil moisture sensor. Despite observed differences between the two types of soil moisture measurement data, we found no substantial differences in improvement in water flux estimation, based on multiple calibration experiments.
Matthieu Guimberteau, Philippe Ciais, Agnès Ducharne, Juan Pablo Boisier, Ana Paula Dutra Aguiar, Hester Biemans, Hannes De Deurwaerder, David Galbraith, Bart Kruijt, Fanny Langerwisch, German Poveda, Anja Rammig, Daniel Andres Rodriguez, Graciela Tejada, Kirsten Thonicke, Celso Von Randow, Rita C. S. Von Randow, Ke Zhang, and Hans Verbeeck
Hydrol. Earth Syst. Sci., 21, 1455–1475, https://doi.org/10.5194/hess-21-1455-2017, https://doi.org/10.5194/hess-21-1455-2017, 2017
Laura E. Condon and Reed M. Maxwell
Hydrol. Earth Syst. Sci., 21, 1117–1135, https://doi.org/10.5194/hess-21-1117-2017, https://doi.org/10.5194/hess-21-1117-2017, 2017
Short summary
Short summary
We evaluate the impact of groundwater–surface water exchanges on the fraction of precipitation that leaves a watershed as either surface runoff or evapotranspiration. Results show that groundwater storage can systematically influence watershed behavior at the land surface. This is an important finding because most studies of tradeoffs between runoff and evapotranspiration assume that watersheds are in a steady-state condition where there are no net exchanges between the surface and subsurface.
Susana Almeida, Elizabeth Ann Holcombe, Francesca Pianosi, and Thorsten Wagener
Nat. Hazards Earth Syst. Sci., 17, 225–241, https://doi.org/10.5194/nhess-17-225-2017, https://doi.org/10.5194/nhess-17-225-2017, 2017
Short summary
Short summary
Landslides threaten communities globally, yet predicting their occurrence is challenged by uncertainty about slope properties and climate change. We present an approach to identify the dominant drivers of slope instability and the critical thresholds at which slope failure may occur. This information helps decision makers to target data acquisition to improve landslide predictability, and supports policy development to reduce landslide occurrence and impacts in highly uncertain environments.
James M. Gilbert and Reed M. Maxwell
Hydrol. Earth Syst. Sci., 21, 923–947, https://doi.org/10.5194/hess-21-923-2017, https://doi.org/10.5194/hess-21-923-2017, 2017
Short summary
Short summary
Understanding how groundwater and streamflow interact over large areas is a challenge. In this study we use a computer simulation that calculates water movement and storage at the land surface and in the subsurface within California's San Joaquin River basin to analyze different parts of the watershed. Results show that the mountains may be an important source of groundwater to the Central Valley while differences in relative speed of groundwater and river flow affect their connection patterns.
Mostaquimur Rahman and Rafael Rosolem
Hydrol. Earth Syst. Sci., 21, 459–471, https://doi.org/10.5194/hess-21-459-2017, https://doi.org/10.5194/hess-21-459-2017, 2017
Short summary
Short summary
Modelling water flow through chalk (a fine-grained porous medium traversed by fractures) is important for optimizing water resource management practices in the UK. However, efficient simulations of water movement through chalk are difficult due to the porous nature of chalk, creating high-velocity preferential flow paths. This paper describes a novel approach to representing chalk hydrology in land surface modelling for large-scale applications.
Jannis M. Hoch, Arjen V. Haag, Arthur van Dam, Hessel C. Winsemius, Ludovicus P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 117–132, https://doi.org/10.5194/hess-21-117-2017, https://doi.org/10.5194/hess-21-117-2017, 2017
Short summary
Short summary
Modelling inundations is pivotal to assess current and future flood hazard, and to define sound measures and policies. Yet, many models focus on the hydrologic or hydrodynamic aspect of floods only. We combined both by spatially coupling a hydrologic with a hydrodynamic model. This way we are able to balance the weaknesses of each model with the strengths of the other. We found that model coupling can indeed strongly improve discharge simulation, and see big potential in our approach.
Melissa Wood, Renaud Hostache, Jeffrey Neal, Thorsten Wagener, Laura Giustarini, Marco Chini, Giovani Corato, Patrick Matgen, and Paul Bates
Hydrol. Earth Syst. Sci., 20, 4983–4997, https://doi.org/10.5194/hess-20-4983-2016, https://doi.org/10.5194/hess-20-4983-2016, 2016
Short summary
Short summary
We propose a methodology to calibrate the bankfull channel depth and roughness parameters in a 2-D hydraulic model using an archive of medium-resolution SAR satellite-derived flood extent maps. We used an identifiability methodology to locate the parameters and suggest the SAR images which could be optimally used for model calibration. We found that SAR images acquired around the flood peak provide best calibration potential for the depth parameter, improving when SAR images are combined.
Remko Nijzink, Christopher Hutton, Ilias Pechlivanidis, René Capell, Berit Arheimer, Jim Freer, Dawei Han, Thorsten Wagener, Kevin McGuire, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 4775–4799, https://doi.org/10.5194/hess-20-4775-2016, https://doi.org/10.5194/hess-20-4775-2016, 2016
Short summary
Short summary
The core component of many hydrological systems, the moisture storage capacity available to vegetation, is typically treated as a calibration parameter in hydrological models and often considered to remain constant in time. In this paper we test the potential of a recently introduced method to robustly estimate catchment-scale root-zone storage capacities exclusively based on climate data to reproduce the temporal evolution of root-zone storage under change (deforestation).
Davi de C. D. Melo, Bridget R. Scanlon, Zizhan Zhang, Edson Wendland, and Lei Yin
Hydrol. Earth Syst. Sci., 20, 4673–4688, https://doi.org/10.5194/hess-20-4673-2016, https://doi.org/10.5194/hess-20-4673-2016, 2016
Short summary
Short summary
Drought propagation from rainfall deficits to reservoir depletion was studied based on remote sensing, monitoring and modelling data. Regional droughts were shown by widespread depletion in total water storage that reduced soil moisture storage and runoff, greatly reducing reservoir storage. The multidisciplinary approach to drought assessment shows the linkages between meteorological and hydrological droughts that are essential for managing water resources subjected to climate extremes.
Rolf Hut, Niels Drost, Maarten van Meersbergen, Edwin Sutanudjaja, Marc Bierkens, and Nick van de Giesen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-225, https://doi.org/10.5194/gmd-2016-225, 2016
Revised manuscript not accepted
Short summary
Short summary
A system that predicts the amount of water flowing in each river on earth, 9 days ahead, is build using existing parts of open source computer code build by different researchers in other projects.
The glue between all pre-existing parts are all open interfaces which means that the pieces system click together like a house of LEGOs. It is easy to remove a piece (a brick) and replace it with another, improved, piece.
The resulting predictions are available online at forecast.ewatercycle.org
Hannes Müller Schmied, Linda Adam, Stephanie Eisner, Gabriel Fink, Martina Flörke, Hyungjun Kim, Taikan Oki, Felix Theodor Portmann, Robert Reinecke, Claudia Riedel, Qi Song, Jing Zhang, and Petra Döll
Proc. IAHS, 374, 53–62, https://doi.org/10.5194/piahs-374-53-2016, https://doi.org/10.5194/piahs-374-53-2016, 2016
Short summary
Short summary
We analyzed simulated water balance components on global and continental scale as impacted by the uncertainty of climate forcing datasets. On average, around 62 % of precipitation on global land area evapotranspires and 38 % is discharge to oceans and inland sinks. Human water use increased during the 20th century by a factor of 5. Uncertainty of precipitation variable has most impact on model results, followed by shortwave downward radiation. Model calibration reduces this uncertainty.
Jean-Philippe Vidal, Benoît Hingray, Claire Magand, Eric Sauquet, and Agnès Ducharne
Hydrol. Earth Syst. Sci., 20, 3651–3672, https://doi.org/10.5194/hess-20-3651-2016, https://doi.org/10.5194/hess-20-3651-2016, 2016
Short summary
Short summary
Possible transient futures of winter and summer low flows for two snow-influenced catchments in the southern French Alps show a strong decrease signal. It is however largely masked by the year-to-year variability, which should be the main target for defining adaptation strategies. Responses of different hydrological models strongly diverge in the future, suggesting to carefully check the robustness of evapotranspiration and snowpack components under a changing climate.
Anne F. Van Loon, Kerstin Stahl, Giuliano Di Baldassarre, Julian Clark, Sally Rangecroft, Niko Wanders, Tom Gleeson, Albert I. J. M. Van Dijk, Lena M. Tallaksen, Jamie Hannaford, Remko Uijlenhoet, Adriaan J. Teuling, David M. Hannah, Justin Sheffield, Mark Svoboda, Boud Verbeiren, Thorsten Wagener, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, https://doi.org/10.5194/hess-20-3631-2016, 2016
Short summary
Short summary
In the Anthropocene, drought cannot be viewed as a natural hazard independent of people. Drought can be alleviated or made worse by human activities and drought impacts are dependent on a myriad of factors. In this paper, we identify research gaps and suggest a framework that will allow us to adequately analyse and manage drought in the Anthropocene. We need to focus on attribution of drought to different drivers, linking drought to its impacts, and feedbacks between drought and society.
Bart van den Hurk, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé Douville, Jeanne Colin, Agnès Ducharne, Frederique Cheruy, Nicholas Viovy, Michael J. Puma, Yoshihide Wada, Weiping Li, Binghao Jia, Andrea Alessandri, Dave M. Lawrence, Graham P. Weedon, Richard Ellis, Stefan Hagemann, Jiafu Mao, Mark G. Flanner, Matteo Zampieri, Stefano Materia, Rachel M. Law, and Justin Sheffield
Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, https://doi.org/10.5194/gmd-9-2809-2016, 2016
Short summary
Short summary
This manuscript describes the setup of the CMIP6 project Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).
Sebastian Huizer, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 20, 3149–3166, https://doi.org/10.5194/hess-20-3149-2016, https://doi.org/10.5194/hess-20-3149-2016, 2016
Short summary
Short summary
The anticipation of sea-level rise has led to an innovative project called the Sand Engine, where a large volume of sand was placed on the Dutch coast. The intention is that the sand is redistributed by wind, current and tide, reinforcing coastal defence structures. Model simulations show that this large sand replenishment can result in a substantial growth of fresh groundwater resources. Thus, sand replenishments could combine coastal protection with an increase of fresh groundwater resources.
Patricia López López, Niko Wanders, Jaap Schellekens, Luigi J. Renzullo, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 20, 3059–3076, https://doi.org/10.5194/hess-20-3059-2016, https://doi.org/10.5194/hess-20-3059-2016, 2016
Short summary
Short summary
We perform a joint assimilation experiment of high-resolution satellite soil moisture and discharge observations in the Murrumbidgee River basin with a large-scale hydrological model. Additionally, we study the impact of high- and low-resolution meteorological forcing on the model performance. We show that the assimilation of high-resolution satellite soil moisture and discharge observations has a significant impact on discharge simulations and can bring them closer to locally calibrated models.
András Bárdossy, Yingchun Huang, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 20, 2913–2928, https://doi.org/10.5194/hess-20-2913-2016, https://doi.org/10.5194/hess-20-2913-2016, 2016
Short summary
Short summary
This paper explores the simultaneous calibration method to transfer model parameters from gauged to ungauged catchments. It is hypothesized that the model parameters can be separated into two categories: one reflecting the dynamic behavior and the other representing the long-term water balance. The results of three numerical experiments indicate that a good parameter transfer to ungauged catchments can be achieved through simultaneous calibration of models for a number of catchments.
Hannes Müller Schmied, Linda Adam, Stephanie Eisner, Gabriel Fink, Martina Flörke, Hyungjun Kim, Taikan Oki, Felix Theodor Portmann, Robert Reinecke, Claudia Riedel, Qi Song, Jing Zhang, and Petra Döll
Hydrol. Earth Syst. Sci., 20, 2877–2898, https://doi.org/10.5194/hess-20-2877-2016, https://doi.org/10.5194/hess-20-2877-2016, 2016
Short summary
Short summary
The assessment of water balance components of the global land surface by means of hydrological models is affected by large uncertainties, in particular related to meteorological forcing. We analyze the effect of five state-of-the-art forcings on water balance components at different spatial and temporal scales modeled with WaterGAP. Furthermore, the dominant effect (precipitation/human alteration) for long-term changes in river discharge is assessed.
Wolfgang Kurtz, Guowei He, Stefan J. Kollet, Reed M. Maxwell, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 9, 1341–1360, https://doi.org/10.5194/gmd-9-1341-2016, https://doi.org/10.5194/gmd-9-1341-2016, 2016
Short summary
Short summary
This paper describes the development of a modular data assimilation (DA) system for the integrated Earth system model TerrSysMP with the help of the PDAF data assimilation library.
Currently, pressure and soil moisture data can be used to update model states and parameters in the subsurface compartment of TerrSysMP.
Results from an idealized twin experiment show that the developed DA system provides a good parallel performance and is also applicable for high-resolution modelling problems.
Inge E. M. de Graaf, Rens L. P. H. van Beek, Tom Gleeson, Nils Moosdorf, Oliver Schmitz, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-121, https://doi.org/10.5194/hess-2016-121, 2016
Revised manuscript not accepted
Short summary
Short summary
In this study we want to understand groundwater flows at the global scale better. We simulated groundwater storage and fluctuations in confined and unconfined aquifer systems. This is the first study that includes confined systems at the global scale. Confined systems change timing and amplitude of head fluctuations, flow paths, and groundwater-surface water interactions. Hotspots of groundwater depletion are identified and resulted in a global estimate of 6700 km3.
Maria Stergiadi, Marcel van der Perk, Ton C. M. de Nijs, and Marc F. P. Bierkens
Biogeosciences, 13, 1519–1536, https://doi.org/10.5194/bg-13-1519-2016, https://doi.org/10.5194/bg-13-1519-2016, 2016
Short summary
Short summary
We modelled the effects of changes in climate and land management on soil organic carbon (SOC) and dissolved organic carbon (DOC) levels in sandy and loamy soils under forest, grassland, and arable land. Climate change causes a decrease in both SOC and DOC for the agricultural systems, whereas for the forest systems, SOC slightly increases. A reduction in fertilizer application leads to a decrease in SOC and DOC levels under arable land but has a negligible effect under grassland.
Susana Almeida, Nataliya Le Vine, Neil McIntyre, Thorsten Wagener, and Wouter Buytaert
Hydrol. Earth Syst. Sci., 20, 887–901, https://doi.org/10.5194/hess-20-887-2016, https://doi.org/10.5194/hess-20-887-2016, 2016
Short summary
Short summary
The absence of flow data to calibrate hydrologic models may reduce the ability of such models to reliably inform water resources management. To address this limitation, it is common to condition hydrological model parameters on regionalized signatures. In this study, we justify the inclusion of larger sets of signatures in the regionalization procedure if their error correlations are formally accounted for and thus enable a more complete use of all available information.
Yakov A. Pachepsky, Gonzalo Martinez, Feng Pan, Thorsten Wagener, and Thomas Nicholson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-46, https://doi.org/10.5194/hess-2016-46, 2016
Preprint withdrawn
Short summary
Short summary
Hydrological models are frequently evaluated in terms of their accuracy to predict observations. However, we noticed that such approaches could not fully reflect the differences in their ability to represent the patterns of the observations nor the differences between the abstractions assumed in the models. We showed that information theory-based metrics are very useful for that purpose and provide additional criterion to choose the most appropriate models for specific watershed characterisitcs.
Y. Wada, M. Flörke, N. Hanasaki, S. Eisner, G. Fischer, S. Tramberend, Y. Satoh, M. T. H. van Vliet, P. Yillia, C. Ringler, P. Burek, and D. Wiberg
Geosci. Model Dev., 9, 175–222, https://doi.org/10.5194/gmd-9-175-2016, https://doi.org/10.5194/gmd-9-175-2016, 2016
Short summary
Short summary
The Water Futures and Solutions (WFaS) initiative coordinates its work with other ongoing scenario efforts for the sake of establishing a consistent set of new global water scenarios based on the shared socio-economic pathways (SSPs) and the representative concentration pathways (RCPs). The WFaS "fast-track" assessment uses three global water models, H08, PCR-GLOBWB, and WaterGAP, to provide the first multi-model analysis of global water use for the 21st century based on the water scenarios.
A. Hartmann, J. Kobler, M. Kralik, T. Dirnböck, F. Humer, and M. Weiler
Biogeosciences, 13, 159–174, https://doi.org/10.5194/bg-13-159-2016, https://doi.org/10.5194/bg-13-159-2016, 2016
Short summary
Short summary
We consider the time period before and after a wind disturbance in an Austrian karst system. Using a process-based flow and solute transport simulation model we estimate impacts on DIN and DOC. We show that DIN increases for several years, while DOC remains within its pre-disturbance variability. Simulated transit times indicate that impact passes through the hydrological system within some months but with a small fraction exceeding transit times of even a year.
K. J. Beven, S. Almeida, W. P. Aspinall, P. D. Bates, S. Blazkova, E. Borgomeo, K. Goda, J. C. Phillips, M. Simpson, P. J. Smith, D. B. Stephenson, T. Wagener, M. Watson, and K. L. Wilkins
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2015-295, https://doi.org/10.5194/nhess-2015-295, 2016
Preprint withdrawn
Short summary
Short summary
Uncertainties in natural hazard risk assessment are generally dominated by the sources arising from lack of knowledge or understanding of the processes involved. This is Part 2 of 2 papers reviewing these epistemic uncertainties and covers different areas of natural hazards including landslides and debris flows, dam safety, droughts, earthquakes, tsunamis, volcanic ash clouds and pyroclastic flows, and wind storms. It is based on the work of the UK CREDIBLE research consortium.
K. J. Beven, W. P. Aspinall, P. D. Bates, E. Borgomeo, K. Goda, J. W. Hall, T. Page, J. C. Phillips, J. T. Rougier, M. Simpson, D. B. Stephenson, P. J. Smith, T. Wagener, and M. Watson
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-7333-2015, https://doi.org/10.5194/nhessd-3-7333-2015, 2015
Preprint withdrawn
Short summary
Short summary
Uncertainties in natural hazard risk assessment are generally dominated by the sources arising from lack of knowledge or understanding of the processes involved. This is Part 1 of 2 papers reviewing these epistemic uncertainties that can be difficult to constrain, especially in terms of event or scenario probabilities. It is based on the work of the CREDIBLE research consortium on Risk and Uncertainty in Natural Hazards.
W. W. Immerzeel, N. Wanders, A. F. Lutz, J. M. Shea, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 19, 4673–4687, https://doi.org/10.5194/hess-19-4673-2015, https://doi.org/10.5194/hess-19-4673-2015, 2015
Short summary
Short summary
The water resources of the upper Indus river basin (UIB) are important for millions of people, yet little is known about the rain and snow fall in the high-altitude regions because of the inaccessibility, the climatic complexity and the lack of observations. In this study we use mass balance of glaciers to reconstruct the amount of precipitation in the UIB and we conclude that this amount is much higher than previously thought.
T. I. E. Veldkamp, S. Eisner, Y. Wada, J. C. J. H. Aerts, and P. J. Ward
Hydrol. Earth Syst. Sci., 19, 4081–4098, https://doi.org/10.5194/hess-19-4081-2015, https://doi.org/10.5194/hess-19-4081-2015, 2015
Short summary
Short summary
Freshwater shortage is one of the most important risks, partially driven by climate variability. Here we present a first global scale sensitivity assessment of water scarcity events to El Niño-Southern Oscillation, the most dominant climate variability signal. Given the found correlations, covering a large share of the global land area, and seen the developments of water scarcity impacts under changing socioeconomic conditions, we show that there is large potential for ENSO-based risk reduction.
R. G. Anderson, M.-H. Lo, S. Swenson, J. S. Famiglietti, Q. Tang, T. H. Skaggs, Y.-H. Lin, and R.-J. Wu
Geosci. Model Dev., 8, 3021–3031, https://doi.org/10.5194/gmd-8-3021-2015, https://doi.org/10.5194/gmd-8-3021-2015, 2015
Short summary
Short summary
Current land surface models (LSMs) poorly represent irrigation impacts on regional hydrology. Approaches to include irrigation in LSMs are based on either potentially outdated irrigation inventory data or soil moisture curves that are not constrained by regional water balances. We use satellite remote sensing of actual ET and groundwater depletion to develop recent estimates of regional irrigation data. Remote sensing parameterizations of irrigation improve model performance.
B. R. Voortman, R. P. Bartholomeus, S. E. A. T. M. van der Zee, M. F. P. Bierkens, and J. P. M. Witte
Hydrol. Earth Syst. Sci., 19, 3787–3805, https://doi.org/10.5194/hess-19-3787-2015, https://doi.org/10.5194/hess-19-3787-2015, 2015
Short summary
Short summary
This study explores the magnitude of energy and water fluxes in an inland dune ecosystem in the Netherlands. We parameterized the Penman-Monteith evapotranspiration model for four different surfaces: bare sand, moss, grass and heather. The knowledge presented in this paper will help improve the simulations of water recharge in sand dunes by hydrological models, and allow the quantification of the cost and benefit of nature conservation in terms of groundwater recharge.
X. Han, X. Li, G. He, P. Kumbhar, C. Montzka, S. Kollet, T. Miyoshi, R. Rosolem, Y. Zhang, H. Vereecken, and H.-J. H. Franssen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-7395-2015, https://doi.org/10.5194/gmdd-8-7395-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
DasPy is a ready to use open source parallel multivariate land data assimilation framework with joint state and parameter estimation using Local Ensemble Transform Kalman Filter. The Community Land Model (4.5) was integrated as model operator. The Community Microwave Emission Modelling platform, COsmic-ray Soil Moisture Interaction Code and the Two-Source Formulation were integrated as observation operators for the multivariate assimilation of soil moisture and soil temperature, respectively.
J. Iwema, R. Rosolem, R. Baatz, T. Wagener, and H. R. Bogena
Hydrol. Earth Syst. Sci., 19, 3203–3216, https://doi.org/10.5194/hess-19-3203-2015, https://doi.org/10.5194/hess-19-3203-2015, 2015
Short summary
Short summary
The cosmic-ray neutron sensor can provide soil moisture content averages over areas of roughly half a kilometre by half a kilometre. Although this sensor is usually calibrated using soil samples taken on a single day, we found that multiple sampling days are needed. The calibration results were also affected by the soil wetness conditions of the sampling days. The outcome of this study will help researchers to calibrate/validate new cosmic-ray neutron sensor sites more accurately.
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, https://doi.org/10.5194/esd-6-447-2015, 2015
P. T. S. Oliveira, E. Wendland, M. A. Nearing, R. L. Scott, R. Rosolem, and H. R. da Rocha
Hydrol. Earth Syst. Sci., 19, 2899–2910, https://doi.org/10.5194/hess-19-2899-2015, https://doi.org/10.5194/hess-19-2899-2015, 2015
Short summary
Short summary
We determined the main components of the water balance for an undisturbed cerrado.
Evapotranspiration ranged from 1.91 to 2.60mm per day for the dry and wet seasons, respectively. Canopy interception ranged from 4 to 20% and stemflow values were approximately 1% of gross precipitation.
The average runoff coefficient was less than 1%, while cerrado deforestation has the potential to increase that amount up to 20-fold.
The water storage may be estimated by the difference between P and ET.
A. Hartmann, T. Gleeson, R. Rosolem, F. Pianosi, Y. Wada, and T. Wagener
Geosci. Model Dev., 8, 1729–1746, https://doi.org/10.5194/gmd-8-1729-2015, https://doi.org/10.5194/gmd-8-1729-2015, 2015
Short summary
Short summary
We present a new approach to assess karstic groundwater recharge over Europe and the Mediterranean. Cluster analysis is used to subdivide all karst regions into four typical karst landscapes and to simulate karst recharge with a process-based karst model. We estimate its parameters by a combination of a priori information and observations of soil moisture and evapotranspiration. Independent observations of recharge that present large-scale models significantly under-estimate karstic recharge.
S. Ceola, B. Arheimer, E. Baratti, G. Blöschl, R. Capell, A. Castellarin, J. Freer, D. Han, M. Hrachowitz, Y. Hundecha, C. Hutton, G. Lindström, A. Montanari, R. Nijzink, J. Parajka, E. Toth, A. Viglione, and T. Wagener
Hydrol. Earth Syst. Sci., 19, 2101–2117, https://doi.org/10.5194/hess-19-2101-2015, https://doi.org/10.5194/hess-19-2101-2015, 2015
Short summary
Short summary
We present the outcomes of a collaborative hydrological experiment undertaken by five different international research groups in a virtual laboratory. Moving from the definition of accurate protocols, a rainfall-runoff model was independently applied by the research groups, which then engaged in a comparative discussion. The results revealed that sharing protocols and running the experiment within a controlled environment is fundamental for ensuring experiment repeatability and reproducibility.
A. Lourens, M. F. P. Bierkens, and F. C. van Geer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-4191-2015, https://doi.org/10.5194/hessd-12-4191-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We present a method to find the most likely properties (layer thickness and conductivity) for each litho-class of the constituting layers of an aquitard, using a readily calibrated groundwater model. The prior litho-class properties are uncertain, and based on borehole data. The groundwater model parameters are assumed to be the truth. The combination of prior data and calibration result yields the most likely litho-class properties. The method is applicable to aquifers as well.
R. M. Maxwell, L. E. Condon, and S. J. Kollet
Geosci. Model Dev., 8, 923–937, https://doi.org/10.5194/gmd-8-923-2015, https://doi.org/10.5194/gmd-8-923-2015, 2015
Short summary
Short summary
A model that simulates groundwater and surface water flow has been developed for the major river basins of the continental United States. Fundamental data sets provide input to the model resulting in a natural organization of stream networks and groundwater flow that is compared to observations of surface water and groundwater. Model results show relationships between flow and area that are moderated by aridity and represent an important step toward integrated hydrological prediction.
S. Siebert, M. Kummu, M. Porkka, P. Döll, N. Ramankutty, and B. R. Scanlon
Hydrol. Earth Syst. Sci., 19, 1521–1545, https://doi.org/10.5194/hess-19-1521-2015, https://doi.org/10.5194/hess-19-1521-2015, 2015
Short summary
Short summary
We developed the historical irrigation data set (HID) depicting the spatio-temporal development of the area equipped for irrigation (AEI) between 1900 and 2005 at 5arcmin resolution.
The HID reflects very well the spatial patterns of irrigated land as shown on two historical maps for 1910 and 1960.
Global AEI increased from 63 million ha (Mha) in 1900 to 111 Mha in 1950 and 306 Mha in 2005. Mean aridity on irrigated land increased and mean natural river discharge decreased from 1900 to 1950.
I. E. M. de Graaf, E. H. Sutanudjaja, L. P. H. van Beek, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 19, 823–837, https://doi.org/10.5194/hess-19-823-2015, https://doi.org/10.5194/hess-19-823-2015, 2015
Short summary
Short summary
In this paper we present a high-resolution global-scale groundwater model of an upper aquifer. An equilibrium water table at its natural state is constructed. Aquifer parameterization is based on available global datasets on lithology and conductivity combined with estimated aquifer thickness. The results showed groundwater levels are well simulated for many regions of the world. Simulated flow paths showed the relevance of including lateral groundwater flows in global scale hydrological models.
X. Han, H.-J. H. Franssen, R. Rosolem, R. Jin, X. Li, and H. Vereecken
Hydrol. Earth Syst. Sci., 19, 615–629, https://doi.org/10.5194/hess-19-615-2015, https://doi.org/10.5194/hess-19-615-2015, 2015
Short summary
Short summary
This paper presents the joint assimilation of cosmic-ray neutron counts and land surface temperature with parameter estimation of leaf area index at an irrigated corn field. The results show that the data assimilation can reduce the systematic input errors due to the lack of irrigation data. The estimations of soil moisture, evapotranspiration and leaf area index can be improved in the joint assimilation framework.
L. E. Condon, S. Gangopadhyay, and T. Pruitt
Hydrol. Earth Syst. Sci., 19, 159–175, https://doi.org/10.5194/hess-19-159-2015, https://doi.org/10.5194/hess-19-159-2015, 2015
N. Wanders, Y. Wada, and H. A. J. Van Lanen
Earth Syst. Dynam., 6, 1–15, https://doi.org/10.5194/esd-6-1-2015, https://doi.org/10.5194/esd-6-1-2015, 2015
Short summary
Short summary
This study shows the impact of a changing climate on hydrological drought. The study illustrates that an alternative drought identification that considers adaptation to an altered hydrological regime has a substantial influence on the way in which drought impact is calculated. The obtained results show that an adaptive threshold approach is the way forward to study the impact of climate change on the identification and characterization of hydrological drought events.
B. J. Dermody, R. P. H. van Beek, E. Meeks, K. Klein Goldewijk, W. Scheidel, Y. van der Velde, M. F. P. Bierkens, M. J. Wassen, and S. C. Dekker
Hydrol. Earth Syst. Sci., 18, 5025–5040, https://doi.org/10.5194/hess-18-5025-2014, https://doi.org/10.5194/hess-18-5025-2014, 2014
Short summary
Short summary
Our virtual water network of the Roman World shows that virtual water trade and irrigation provided the Romans with resilience to interannual climate variability. Virtual water trade enabled the Romans to meet food demands from regions with a surplus. Irrigation provided stable water supplies for agriculture, particularly in large river catchments. However, virtual water trade also stimulated urbanization and population growth, which eroded Roman resilience to climate variability over time.
R. Rosolem, T. Hoar, A. Arellano, J. L. Anderson, W. J. Shuttleworth, X. Zeng, and T. E. Franz
Hydrol. Earth Syst. Sci., 18, 4363–4379, https://doi.org/10.5194/hess-18-4363-2014, https://doi.org/10.5194/hess-18-4363-2014, 2014
J. R. Delsman, K. R. M. Hu-a-ng, P. C. Vos, P. G. B. de Louw, G. H. P. Oude Essink, P. J. Stuyfzand, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 18, 3891–3905, https://doi.org/10.5194/hess-18-3891-2014, https://doi.org/10.5194/hess-18-3891-2014, 2014
H. Müller Schmied, S. Eisner, D. Franz, M. Wattenbach, F. T. Portmann, M. Flörke, and P. Döll
Hydrol. Earth Syst. Sci., 18, 3511–3538, https://doi.org/10.5194/hess-18-3511-2014, https://doi.org/10.5194/hess-18-3511-2014, 2014
A. I. J. M. van Dijk, L. J. Renzullo, Y. Wada, and P. Tregoning
Hydrol. Earth Syst. Sci., 18, 2955–2973, https://doi.org/10.5194/hess-18-2955-2014, https://doi.org/10.5194/hess-18-2955-2014, 2014
P. Roudier, A. Ducharne, and L. Feyen
Hydrol. Earth Syst. Sci., 18, 2789–2801, https://doi.org/10.5194/hess-18-2789-2014, https://doi.org/10.5194/hess-18-2789-2014, 2014
A. B. A. Slangen, R. S. W. van de Wal, Y. Wada, and L. L. A. Vermeersen
Earth Syst. Dynam., 5, 243–255, https://doi.org/10.5194/esd-5-243-2014, https://doi.org/10.5194/esd-5-243-2014, 2014
N. Wanders, D. Karssenberg, A. de Roo, S. M. de Jong, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 18, 2343–2357, https://doi.org/10.5194/hess-18-2343-2014, https://doi.org/10.5194/hess-18-2343-2014, 2014
M. Guimberteau, A. Ducharne, P. Ciais, J. P. Boisier, S. Peng, M. De Weirdt, and H. Verbeeck
Geosci. Model Dev., 7, 1115–1136, https://doi.org/10.5194/gmd-7-1115-2014, https://doi.org/10.5194/gmd-7-1115-2014, 2014
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
H. Hoff, P. Döll, M. Fader, D. Gerten, S. Hauser, and S. Siebert
Hydrol. Earth Syst. Sci., 18, 213–226, https://doi.org/10.5194/hess-18-213-2014, https://doi.org/10.5194/hess-18-213-2014, 2014
Y. Wada, D. Wisser, and M. F. P. Bierkens
Earth Syst. Dynam., 5, 15–40, https://doi.org/10.5194/esd-5-15-2014, https://doi.org/10.5194/esd-5-15-2014, 2014
J. D. Herman, J. B. Kollat, P. M. Reed, and T. Wagener
Hydrol. Earth Syst. Sci., 17, 5109–5125, https://doi.org/10.5194/hess-17-5109-2013, https://doi.org/10.5194/hess-17-5109-2013, 2013
L. Longuevergne, C. R. Wilson, B. R. Scanlon, and J. F. Crétaux
Hydrol. Earth Syst. Sci., 17, 4817–4830, https://doi.org/10.5194/hess-17-4817-2013, https://doi.org/10.5194/hess-17-4817-2013, 2013
J. C. S. Davie, P. D. Falloon, R. Kahana, R. Dankers, R. Betts, F. T. Portmann, D. Wisser, D. B. Clark, A. Ito, Y. Masaki, K. Nishina, B. Fekete, Z. Tessler, Y. Wada, X. Liu, Q. Tang, S. Hagemann, T. Stacke, R. Pavlick, S. Schaphoff, S. N. Gosling, W. Franssen, and N. Arnell
Earth Syst. Dynam., 4, 359–374, https://doi.org/10.5194/esd-4-359-2013, https://doi.org/10.5194/esd-4-359-2013, 2013
A. F. Lutz, W. W. Immerzeel, A. Gobiet, F. Pellicciotti, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 17, 3661–3677, https://doi.org/10.5194/hess-17-3661-2013, https://doi.org/10.5194/hess-17-3661-2013, 2013
A. Hartmann, M. Weiler, T. Wagener, J. Lange, M. Kralik, F. Humer, N. Mizyed, A. Rimmer, J. A. Barberá, B. Andreo, C. Butscher, and P. Huggenberger
Hydrol. Earth Syst. Sci., 17, 3305–3321, https://doi.org/10.5194/hess-17-3305-2013, https://doi.org/10.5194/hess-17-3305-2013, 2013
J. Shuttleworth, R. Rosolem, M. Zreda, and T. Franz
Hydrol. Earth Syst. Sci., 17, 3205–3217, https://doi.org/10.5194/hess-17-3205-2013, https://doi.org/10.5194/hess-17-3205-2013, 2013
E. Vannametee, D. Karssenberg, M. R. Hendriks, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 17, 2981–3004, https://doi.org/10.5194/hess-17-2981-2013, https://doi.org/10.5194/hess-17-2981-2013, 2013
T. E. Franz, M. Zreda, R. Rosolem, and T. P. A. Ferre
Hydrol. Earth Syst. Sci., 17, 453–460, https://doi.org/10.5194/hess-17-453-2013, https://doi.org/10.5194/hess-17-453-2013, 2013
A. F. Bouwman, M. F. P. Bierkens, J. Griffioen, M. M. Hefting, J. J. Middelburg, H. Middelkoop, and C. P. Slomp
Biogeosciences, 10, 1–22, https://doi.org/10.5194/bg-10-1-2013, https://doi.org/10.5194/bg-10-1-2013, 2013
Related subject area
Hydrology
The global water resources and use model WaterGAP v2.2e: description and evaluation of modifications and new features
Generalised drought index: a novel multi-scale daily approach for drought assessment
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Regionalization in global hydrological models and its impact on runoff simulations: a case study using WaterGAP3 (v 1.0.0)
SERGHEI v2.0: introducing a performance-portable, high-performance three-dimensional variably-saturated subsurface flow solver (SERGHEI-RE)
Virtual joint field campaign: a framework of synthetic landscapes to assess multiscale measurement methods of water storage
Modelling rainfall with a Bartlett-Lewis process: pyBL (v1.0.0), a Python software package and an application with short records
The Water Table Model (WTM) v2.0.1: Coupled groundwater and dynamic lake modelling
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Fluvial flood inundation and socio-economic impact model based on open data
RoGeR v3.0.5 – a process-based hydrological toolbox model in Python
Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – towards an improved representation of mountain water resources in global assessments
An open-source refactoring of the Canadian Small Lakes Model for estimates of evaporation from medium-sized reservoirs
EvalHyd v0.1.2: a polyglot tool for the evaluation of deterministic and probabilistic streamflow predictions
Modelling water quantity and quality for integrated water cycle management with the Water Systems Integrated Modelling framework (WSIMOD) software
HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model
Wflow_sbm v0.7.3, a spatially distributed hydrological model: from global data to local applications
Reservoir Assessment Tool version 3.0: a scalable and user-friendly software platform to mobilize the global water management community
HydroFATE (v1): a high-resolution contaminant fate model for the global river system
Validation of a new global irrigation scheme in the land surface model ORCHIDEE v2.2
GPEP v1.0: the Geospatial Probabilistic Estimation Package to support Earth science applications
GEMS v1.0: Generalizable Empirical Model of Snow Accumulation and Melt, based on daily snow mass changes in response to climate and topographic drivers
mesas.py v1.0: a flexible Python package for modeling solute transport and transit times using StorAge Selection functions
rSHUD v2.0: advancing the Simulator for Hydrologic Unstructured Domains and unstructured hydrological modeling in the R environment
GLOBGM v1.0: a parallel implementation of a 30 arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model
Development of inter-grid-cell lateral unsaturated and saturated flow model in the E3SM Land Model (v2.0)
Selecting a conceptual hydrological model using Bayes' factors computed with Replica Exchange Hamiltonian Monte Carlo and Thermodynamic Integration
pyESDv1.0.1: an open-source Python framework for empirical-statistical downscaling of climate information
Representing the impact of Rhizophora mangroves on flow in a hydrodynamic model (COAWST_rh v1.0): the importance of three-dimensional root system structures
Dynamically weighted ensemble of geoscientific models via automated machine-learning-based classification
Enhancing the representation of water management in global hydrological models
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
DynQual v1.0: a high-resolution global surface water quality model
Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model
Simulation of crop yield using the global hydrological model H08 (crp.v1)
How is a global sensitivity analysis of a catchment-scale, distributed pesticide transfer model performed? Application to the PESHMELBA model
iHydroSlide3D v1.0: an advanced hydrological–geotechnical model for hydrological simulation and three-dimensional landslide prediction
GEB v0.1: a large-scale agent-based socio-hydrological model – simulating 10 million individual farming households in a fully distributed hydrological model
Tracing and visualisation of contributing water sources in the LISFLOOD-FP model of flood inundation (within CAESAR-Lisflood version 1.9j-WS)
Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe
Evaluating a global soil moisture dataset from a multitask model (GSM3 v1.0) with potential applications for crop threats
SERGHEI (SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-water solver for hydrology and environmental hydraulics
A simple, efficient, mass-conservative approach to solving Richards' equation (openRE, v1.0)
Customized deep learning for precipitation bias correction and downscaling
Implementation and sensitivity analysis of the Dam-Reservoir OPeration model (DROP v1.0) over Spain
Hannes Müller Schmied, Tim Trautmann, Sebastian Ackermann, Denise Cáceres, Martina Flörke, Helena Gerdener, Ellen Kynast, Thedini Asali Peiris, Leonie Schiebener, Maike Schumacher, and Petra Döll
Geosci. Model Dev., 17, 8817–8852, https://doi.org/10.5194/gmd-17-8817-2024, https://doi.org/10.5194/gmd-17-8817-2024, 2024
Short summary
Short summary
Assessing water availability and water use at the global scale is challenging but essential for a range of purposes. We describe the newest version of the global hydrological model WaterGAP, which has been used for numerous water resource assessments since 1996. We show the effects of new model features, as well as model evaluations, against water abstraction statistics and observed streamflow and water storage anomalies. The publicly available model output for several variants is described.
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024, https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Short summary
This study proposes a new daily drought index, the generalised drought index (GDI). The GDI not only identifies the same events as established indices but is also capable of improving their results. The index is empirically based and easy to compute, not requiring fitting the data to a probability distribution. The GDI can detect flash droughts and longer-term events, making it a versatile tool for drought monitoring.
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024, https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Short summary
We develop an operational forecast system, Coastlines-LO, that can simulate water levels and surface waves in Lake Ontario driven by forecasts of wind speeds and pressure fields from an atmospheric model. The model has relatively low computational requirements, and results compare well with near-real-time observations, as well as with results from other existing forecast systems. Results show that with shorter forecast lengths, storm surge and wave predictions can improve in accuracy.
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024, https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
Short summary
Accurate hydrologic modeling is vital to characterizing water cycle responses to climate change. For the first time at this scale, we use differentiable physics-informed machine learning hydrologic models to simulate rainfall–runoff processes for 3753 basins around the world and compare them with purely data-driven and traditional modeling approaches. This sets a benchmark for hydrologic estimates around the world and builds foundations for improving global hydrologic simulations.
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024, https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Short summary
Geoscientists commonly use various potential evapotranpiration (PET) formulas for environmental studies, which can be prone to errors and sensitive to climate change. PyEt, a tested and open-source Python package, simplifies the application of 20 PET methods for both time series and gridded data, ensuring accurate and consistent PET estimations suitable for a wide range of environmental applications.
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024, https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Short summary
The soil water potential (SWP) determines various soil water processes. Since remote sensing techniques cannot measure it directly, it is often deduced from volumetric water content (VWC) information. However, under dynamic field conditions, the relationship between SWP and VWC is highly ambiguous due to different factors that cannot be modeled with the classical approach. Applying a deep neural network with an autoencoder enables the prediction of the dynamic SWP.
Jenny Kupzig, Nina Kupzig, and Martina Flörke
Geosci. Model Dev., 17, 6819–6846, https://doi.org/10.5194/gmd-17-6819-2024, https://doi.org/10.5194/gmd-17-6819-2024, 2024
Short summary
Short summary
Valid simulation results from global hydrological models (GHMs) are essential, e.g., to studying climate change impacts. Adapting GHMs to ungauged basins requires regionalization, enabling valid simulations. In this study, we highlight the impact of regionalization of GHMs on runoff simulations using an ensemble of regionalization methods for WaterGAP3. We have found that regionalization leads to temporally and spatially varying uncertainty, potentially reaching up to inter-model differences.
Zhi Li, Gregor Rickert, Na Zheng, Zhibo Zhang, Ilhan Özgen-Xian, and Daniel Caviedes-Voullième
EGUsphere, https://doi.org/10.5194/egusphere-2024-2588, https://doi.org/10.5194/egusphere-2024-2588, 2024
Short summary
Short summary
We introduce SERGHEI-RE, a 3D subsurface flow simulator with performance-portable parallel computing capabilities. SERGHEI-RE performs effectively on various computational devices, from personal computers to advanced clusters. It allows users to solve flow equations with multiple numerical schemes, making it adaptable to various hydrological scenarios. Testing results show its accuracy and performance, confirming that SERGHEI-RE is a powerful tool for hydrological research.
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-106, https://doi.org/10.5194/gmd-2024-106, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Multiple methods for measuring soil moisture beyond the point scale exist. Their validation generally hindered by lack of knowing the truth. We propose a virtual framework, in which this truth is fully known and the sensor observations for Cosmic Ray Neutron Sensing, Remote Sensing, and Hydrogravimetry are simulated. This allows the rigourous testing of these virtual sensors to understand their effectiveness and limitations.
Chi-Ling Wei, Pei-Chun Chen, Chien-Yu Tseng, Ting-Yu Dai, Yun-Ting Ho, Ching-Chun Chou, Christian Onof, and Li-Pen Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1918, https://doi.org/10.5194/egusphere-2024-1918, 2024
Short summary
Short summary
pyBL is an open-source package for generating realistic rainfall time series based on the Bartlett-Lewis (BL) model. It can preserve not only standard but also extreme rainfall statistics across various timescales. Notably, compared to traditional frequency analysis methods, the BL model requires only half the record length (or even shorter) to achieve similar consistency in estimating sub-hourly rainfall extremes. This makes it a valuable tool for modelling rainfall extremes with short records.
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-131, https://doi.org/10.5194/gmd-2024-131, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We present the Water Table Model (WTM), which simulates groundwater and lake levels at continental scales over millennia. Our simulations show that North America held more ground- and lake-water at the Last Glacial Maximum than in the present day – enough to lower sea level by 6 cm. We also simulate the changing water table from 21,000 to 16,000 years ago, finding that groundwater storage decreased following reduced precipitation in the model inputs. Open-source WTM code is available on Github.
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024, https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary
Short summary
STORM v.2 (short for STOchastic Rainfall Model version 2.0) is an open-source and user-friendly modelling framework for simulating rainfall fields over a basin. It also allows simulating the impact of plausible climate change either on the total seasonal rainfall or the storm’s maximum intensity.
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024, https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
Short summary
River floods are among the most devastating natural hazards. We propose a flood model with a statistical approach based on openly available data. The model is integrated in a framework for estimating impacts of physical hazards. Although the model only agrees moderately with satellite-detected flood extents, we show that it can be used for forecasting the magnitude of flood events in terms of socio-economic impacts and for comparing these with past events.
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024, https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Short summary
The new process-based hydrological toolbox model, RoGeR (https://roger.readthedocs.io/), can be used to estimate the components of the hydrological cycle and the related travel times of pollutants through parts of the hydrological cycle. These estimations may contribute to effective water resources management. This paper presents the toolbox concept and provides a simple example of providing estimations to water resources management.
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024, https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
Short summary
This study presents a coupling of the large-scale glacier model OGGM and the hydrological model CWatM. Projected future increase in discharge is less strong while future decrease in discharge is stronger when glacier runoff is explicitly included in the large-scale hydrological model. This is because glacier runoff is projected to decrease in nearly all basins. We conclude that an improved glacier representation can prevent underestimating future discharge changes in large river basins.
M. Graham Clark and Sean K. Carey
Geosci. Model Dev., 17, 4911–4922, https://doi.org/10.5194/gmd-17-4911-2024, https://doi.org/10.5194/gmd-17-4911-2024, 2024
Short summary
Short summary
This paper provides validation of the Canadian Small Lakes Model (CSLM) for estimating evaporation rates from reservoirs and a refactoring of the original FORTRAN code into MATLAB and Python, which are now stored in GitHub repositories. Here we provide direct observations of the surface energy exchange obtained with an eddy covariance system to validate the CSLM. There was good agreement between observations and estimations except under specific atmospheric conditions when evaporation is low.
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024, https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
Barnaby Dobson, Leyang Liu, and Ana Mijic
Geosci. Model Dev., 17, 4495–4513, https://doi.org/10.5194/gmd-17-4495-2024, https://doi.org/10.5194/gmd-17-4495-2024, 2024
Short summary
Short summary
Water management is challenging when models don't capture the entire water cycle. We propose that using integrated models facilitates management and improves understanding. We introduce a software tool designed for this task. We discuss its foundation, how it simulates water system components and their interactions, and its customisation. We provide a flexible way to represent water systems, and we hope it will inspire more research and practical applications for sustainable water management.
Qi Tang, Hugo Delottier, Wolfgang Kurtz, Lars Nerger, Oliver S. Schilling, and Philip Brunner
Geosci. Model Dev., 17, 3559–3578, https://doi.org/10.5194/gmd-17-3559-2024, https://doi.org/10.5194/gmd-17-3559-2024, 2024
Short summary
Short summary
We have developed a new data assimilation framework by coupling an integrated hydrological model HydroGeoSphere with the data assimilation software PDAF. Compared to existing hydrological data assimilation systems, the advantage of our newly developed framework lies in its consideration of the physically based model; its large selection of different assimilation algorithms; and its modularity with respect to the combination of different types of observations, states and parameters.
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024, https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
Short summary
We present the wflow_sbm distributed hydrological model, recently released by Deltares, as part of the Wflow.jl open-source modelling framework in the programming language Julia. Wflow_sbm has a fast runtime, making it suitable for large-scale modelling. Wflow_sbm models can be set a priori for any catchment with the Python tool HydroMT-Wflow based on globally available datasets, which results in satisfactory to good performance (without much tuning). We show this for a number of specific cases.
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024, https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
Short summary
The Reservoir Assessment Tool (RAT) merges satellite data with hydrological models, enabling robust estimation of reservoir parameters like inflow, outflow, surface area, and storage changes around the world. Version 3.0 of RAT lowers the barrier of entry for new users and achieves scalability and computational efficiency. RAT 3.0 also facilitates open-source development of functions for continuous improvement to mobilize and empower the global water management community.
Heloisa Ehalt Macedo, Bernhard Lehner, Jim Nicell, and Günther Grill
Geosci. Model Dev., 17, 2877–2899, https://doi.org/10.5194/gmd-17-2877-2024, https://doi.org/10.5194/gmd-17-2877-2024, 2024
Short summary
Short summary
Treated and untreated wastewaters are sources of contaminants of emerging concern. HydroFATE, a new global model, estimates their concentrations in surface waters, identifying streams that are most at risk and guiding monitoring/mitigation efforts to safeguard aquatic ecosystems and human health. Model predictions were validated against field measurements of the antibiotic sulfamethoxazole, with predicted concentrations exceeding ecological thresholds in more than 400 000 km of rivers worldwide.
Pedro Felipe Arboleda-Obando, Agnès Ducharne, Zun Yin, and Philippe Ciais
Geosci. Model Dev., 17, 2141–2164, https://doi.org/10.5194/gmd-17-2141-2024, https://doi.org/10.5194/gmd-17-2141-2024, 2024
Short summary
Short summary
We show a new irrigation scheme included in the ORCHIDEE land surface model. The new irrigation scheme restrains irrigation due to water shortage, includes water adduction, and represents environmental limits and facilities to access water, due to representing infrastructure in a simple way. Our results show that the new irrigation scheme helps simulate acceptable land surface conditions and fluxes in irrigated areas, even if there are difficulties due to shortcomings and limited information.
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024, https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary
Short summary
Ensemble geophysical datasets are crucial for understanding uncertainties and supporting probabilistic estimation/prediction. However, open-access tools for creating these datasets are limited. We have developed the Python-based Geospatial Probabilistic Estimation Package (GPEP). Through several experiments, we demonstrate GPEP's ability to estimate precipitation, temperature, and snow water equivalent. GPEP will be a useful tool to support uncertainty analysis in Earth science applications.
Atabek Umirbekov, Richard Essery, and Daniel Müller
Geosci. Model Dev., 17, 911–929, https://doi.org/10.5194/gmd-17-911-2024, https://doi.org/10.5194/gmd-17-911-2024, 2024
Short summary
Short summary
We present a parsimonious snow model which simulates snow mass without the need for extensive calibration. The model is based on a machine learning algorithm that has been trained on diverse set of daily observations of snow accumulation or melt, along with corresponding climate and topography data. We validated the model using in situ data from numerous new locations. The model provides a promising solution for accurate snow mass estimation across regions where in situ data are limited.
Ciaran J. Harman and Esther Xu Fei
Geosci. Model Dev., 17, 477–495, https://doi.org/10.5194/gmd-17-477-2024, https://doi.org/10.5194/gmd-17-477-2024, 2024
Short summary
Short summary
Over the last 10 years, scientists have developed StorAge Selection: a new way of modeling how material is transported through complex systems. Here, we present some new, easy-to-use, flexible, and very accurate code for implementing this method. We show that, in cases where we know exactly what the answer should be, our code gets the right answer. We also show that our code is closer than some other codes to the right answer in an important way: it conserves mass.
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527, https://doi.org/10.5194/gmd-17-497-2024, https://doi.org/10.5194/gmd-17-497-2024, 2024
Short summary
Short summary
Our team developed rSHUD v2.0, a toolkit that simplifies the use of the SHUD, a model simulating water movement in the environment. We demonstrated its effectiveness in two watersheds, one in the USA and one in China. The toolkit also facilitated the creation of the Global Hydrological Data Cloud, a platform for automatic data processing and model deployment, marking a significant advancement in hydrological research.
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024, https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary
Short summary
This paper presents the parallel PCR-GLOBWB global-scale groundwater model at 30 arcsec resolution (~1 km at the Equator). Named GLOBGM v1.0, this model is a follow-up of the 5 arcmin (~10 km) model, aiming for a higher-resolution simulation of worldwide fresh groundwater reserves under climate change and excessive pumping. For a long transient simulation using a parallel prototype of MODFLOW 6, we show that our implementation is efficient for a relatively low number of processor cores.
Han Qiu, Gautam Bisht, Lingcheng Li, Dalei Hao, and Donghui Xu
Geosci. Model Dev., 17, 143–167, https://doi.org/10.5194/gmd-17-143-2024, https://doi.org/10.5194/gmd-17-143-2024, 2024
Short summary
Short summary
We developed and validated an inter-grid-cell lateral groundwater flow model for both saturated and unsaturated zone in the ELMv2.0 framework. The developed model was benchmarked against PFLOTRAN, a 3D subsurface flow and transport model and showed comparable performance with PFLOTRAN. The developed model was also applied to the Little Washita experimental watershed. The spatial pattern of simulated groundwater table depth agreed well with the global groundwater table benchmark dataset.
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale
EGUsphere, https://doi.org/10.5194/egusphere-2023-2865, https://doi.org/10.5194/egusphere-2023-2865, 2024
Short summary
Short summary
Hydrologists are often faced with selecting amongst a set of competing models with different numbers of parameters and ability to fit available data. The Bayes’ factor is a tool that can be used to compare models, however it is very difficult to compute the Bayes’ factor numerically. In our paper we explore and develop highly efficient algorithms for computing the Bayes’ factor of hydrological systems, which will bring this useful tool for selecting models to everyday hydrological practice.
Daniel Boateng and Sebastian G. Mutz
Geosci. Model Dev., 16, 6479–6514, https://doi.org/10.5194/gmd-16-6479-2023, https://doi.org/10.5194/gmd-16-6479-2023, 2023
Short summary
Short summary
We present an open-source Python framework for performing empirical-statistical downscaling of climate information, such as precipitation. The user-friendly package comprises all the downscaling cycles including data preparation, model selection, training, and evaluation, designed in an efficient and flexible manner, allowing for quick and reproducible downscaling products. The framework would contribute to climate change impact assessments by generating accurate high-resolution climate data.
Masaya Yoshikai, Takashi Nakamura, Eugene C. Herrera, Rempei Suwa, Rene Rollon, Raghab Ray, Keita Furukawa, and Kazuo Nadaoka
Geosci. Model Dev., 16, 5847–5863, https://doi.org/10.5194/gmd-16-5847-2023, https://doi.org/10.5194/gmd-16-5847-2023, 2023
Short summary
Short summary
Due to complex root system structures, representing the impacts of Rhizophora mangroves on flow in hydrodynamic models has been challenging. This study presents a new drag and turbulence model that leverages an empirical model for root systems. The model can be applied without rigorous measurements of root structures and showed high performance in flow simulations; this may provide a better understanding of hydrodynamics and related transport processes in Rhizophora mangrove forests.
Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, and Xi Chen
Geosci. Model Dev., 16, 5685–5701, https://doi.org/10.5194/gmd-16-5685-2023, https://doi.org/10.5194/gmd-16-5685-2023, 2023
Short summary
Short summary
Effectively assembling multiple models for approaching a benchmark solution remains a long-standing issue for various geoscience domains. We here propose an automated machine learning-assisted ensemble framework (AutoML-Ens) that attempts to resolve this challenge. Results demonstrate the great potential of AutoML-Ens for improving estimations due to its two unique features, i.e., assigning dynamic weights for candidate models and taking full advantage of AutoML-assisted workflow.
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023, https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary
Short summary
NEOPRENE is an open-source, freely available library allowing scientists and practitioners to generate synthetic time series and maps of rainfall. These outputs will help to explore plausible events that were never observed in the past but may occur in the near future and to generate possible future events under climate change conditions. The paper shows how to use the library to downscale daily precipitation and how to use synthetic generation to improve our characterization of extreme events.
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, https://doi.org/10.5194/gmd-16-4957-2023, 2023
Short summary
Short summary
We apply the exponential filter (EF) method to satellite soil moisture retrievals to estimate the water content in the unobserved root zone globally from 2002–2020. Quality assessment against an independent dataset shows satisfactory results. Error characterization is carried out using the standard uncertainty propagation law and empirically estimated values of EF model structural uncertainty and parameter uncertainty. This is followed by analysis of temporal uncertainty variations.
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
Geosci. Model Dev., 16, 4767–4791, https://doi.org/10.5194/gmd-16-4767-2023, https://doi.org/10.5194/gmd-16-4767-2023, 2023
Short summary
Short summary
Water in natural environments consists of many ions. Ions are electrically charged and exert electric forces on each other. We discuss whether the electric forces are relevant in describing mixing and reaction processes in natural environments. By comparing our computer simulations to lab experiments in literature, we show that the electric interactions between ions can play an essential role in mixing and reaction processes, in which case they should not be neglected in numerical modeling.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Hugo Delottier, John Doherty, and Philip Brunner
Geosci. Model Dev., 16, 4213–4231, https://doi.org/10.5194/gmd-16-4213-2023, https://doi.org/10.5194/gmd-16-4213-2023, 2023
Short summary
Short summary
Long run times are usually a barrier to the quantification and reduction of predictive uncertainty with complex hydrological models. Data space inversion (DSI) provides an alternative and highly model-run-efficient method for uncertainty quantification. This paper demonstrates DSI's ability to robustly quantify predictive uncertainty and extend the methodology to provide practical metrics that can guide data acquisition and analysis to achieve goals of decision-support modelling.
Zhipin Ai and Naota Hanasaki
Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, https://doi.org/10.5194/gmd-16-3275-2023, 2023
Short summary
Short summary
Simultaneously simulating food production and the requirements and availability of water resources in a spatially explicit manner within a single framework remains challenging on a global scale. Here, we successfully enhanced the global hydrological model H08 that considers human water use and management to simulate the yields of four major staple crops: maize, wheat, rice, and soybean. Our improved model will be beneficial for advancing global food–water nexus studies in the future.
Emilie Rouzies, Claire Lauvernet, Bruno Sudret, and Arthur Vidard
Geosci. Model Dev., 16, 3137–3163, https://doi.org/10.5194/gmd-16-3137-2023, https://doi.org/10.5194/gmd-16-3137-2023, 2023
Short summary
Short summary
Water and pesticide transfer models are complex and should be simplified to be used in decision support. Indeed, these models simulate many spatial processes in interaction, involving a large number of parameters. Sensitivity analysis allows us to select the most influential input parameters, but it has to be adapted to spatial modelling. This study will identify relevant methods that can be transposed to any hydrological and water quality model and improve the fate of pesticide knowledge.
Guoding Chen, Ke Zhang, Sheng Wang, Yi Xia, and Lijun Chao
Geosci. Model Dev., 16, 2915–2937, https://doi.org/10.5194/gmd-16-2915-2023, https://doi.org/10.5194/gmd-16-2915-2023, 2023
Short summary
Short summary
In this study, we developed a novel modeling system called iHydroSlide3D v1.0 by coupling a modified a 3D landslide model with a distributed hydrology model. The model is able to apply flexibly different simulating resolutions for hydrological and slope stability submodules and gain a high computational efficiency through parallel computation. The test results in the Yuehe River basin, China, show a good predicative capability for cascading flood–landslide events.
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Matthew D. Wilson and Thomas J. Coulthard
Geosci. Model Dev., 16, 2415–2436, https://doi.org/10.5194/gmd-16-2415-2023, https://doi.org/10.5194/gmd-16-2415-2023, 2023
Short summary
Short summary
During flooding, the sources of water that inundate a location can influence impacts such as pollution. However, methods to trace water sources in flood events are currently only available in complex, computationally expensive hydraulic models. We propose a simplified method which can be added to efficient, reduced-complexity model codes, enabling an improved understanding of flood dynamics and its impacts. We demonstrate its application for three sites at a range of spatial and temporal scales.
Bibi S. Naz, Wendy Sharples, Yueling Ma, Klaus Goergen, and Stefan Kollet
Geosci. Model Dev., 16, 1617–1639, https://doi.org/10.5194/gmd-16-1617-2023, https://doi.org/10.5194/gmd-16-1617-2023, 2023
Short summary
Short summary
It is challenging to apply a high-resolution integrated land surface and groundwater model over large spatial scales. In this paper, we demonstrate the application of such a model over a pan-European domain at 3 km resolution and perform an extensive evaluation of simulated water states and fluxes by comparing with in situ and satellite data. This study can serve as a benchmark and baseline for future studies of climate change impact projections and for hydrological forecasting.
Jiangtao Liu, David Hughes, Farshid Rahmani, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 16, 1553–1567, https://doi.org/10.5194/gmd-16-1553-2023, https://doi.org/10.5194/gmd-16-1553-2023, 2023
Short summary
Short summary
Under-monitored regions like Africa need high-quality soil moisture predictions to help with food production, but it is not clear if soil moisture processes are similar enough around the world for data-driven models to maintain accuracy. We present a deep-learning-based soil moisture model that learns from both in situ data and satellite data and performs better than satellite products at the global scale. These results help us apply our model globally while better understanding its limitations.
Daniel Caviedes-Voullième, Mario Morales-Hernández, Matthew R. Norman, and Ilhan Özgen-Xian
Geosci. Model Dev., 16, 977–1008, https://doi.org/10.5194/gmd-16-977-2023, https://doi.org/10.5194/gmd-16-977-2023, 2023
Short summary
Short summary
This paper introduces the SERGHEI framework and a solver for shallow-water problems. Such models, often used for surface flow and flood modelling, are computationally intense. In recent years the trends to increase computational power have changed, requiring models to adapt to new hardware and new software paradigms. SERGHEI addresses these challenges, allowing surface flow simulation to be enabled on the newest and upcoming consumer hardware and supercomputers very efficiently.
Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias
Geosci. Model Dev., 16, 659–677, https://doi.org/10.5194/gmd-16-659-2023, https://doi.org/10.5194/gmd-16-659-2023, 2023
Short summary
Short summary
Richards' equation (RE) is used to describe the movement and storage of water in a soil profile and is a component of many hydrological and earth-system models. Solving RE numerically is challenging due to the non-linearities in the properties. Here, we present a simple but effective and mass-conservative solution to solving RE, which is ideal for teaching/learning purposes but also useful in prototype models that are used to explore alternative process representations.
Fang Wang, Di Tian, and Mark Carroll
Geosci. Model Dev., 16, 535–556, https://doi.org/10.5194/gmd-16-535-2023, https://doi.org/10.5194/gmd-16-535-2023, 2023
Short summary
Short summary
Gridded precipitation datasets suffer from biases and coarse resolutions. We developed a customized deep learning (DL) model to bias-correct and downscale gridded precipitation data using radar observations. The results showed that the customized DL model can generate improved precipitation at fine resolutions where regular DL and statistical methods experience challenges. The new model can be used to improve precipitation estimates, especially for capturing extremes at smaller scales.
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023, https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Short summary
Predicting water resource evolution is a key challenge for the coming century.
Anthropogenic impacts on water resources, and particularly the effects of dams and reservoirs on river flows, are still poorly known and generally neglected in global hydrological studies. A parameterized reservoir model is reproduced to compute monthly releases in Spanish anthropized river basins. For global application, an exhaustive sensitivity analysis of the model parameters is performed on flows and volumes.
Cited articles
Al-Yaari, A., Ducharne, A., Cheruy, F., Crow, W. T., and Wigneron, J. P.:
Satellite-based soil moisture provides missing link between summertime
precipitation and surface temperature biases in CMIP5 simulations over
conterminous United States, Scientific Reports, 9, 1657,
https://doi.org/10.1038/s41598-018-38309-5, 2019.
Anderson, M. P., Woessner, W. W., and Hunt, R. J.: Applied groundwater modeling, 2nd edn., Academic Press, San Diego, 2015.
Anderson, R. G., Lo, M.-H., Swenson, S., Famiglietti, J. S., Tang, Q., Skaggs, T. H., Lin, Y.-H., and Wu, R.-J.: Using satellite-based estimates of evapotranspiration and groundwater changes to determine anthropogenic water fluxes in land surface models, Geosci. Model Dev., 8, 3021–3031, https://doi.org/10.5194/gmd-8-3021-2015, 2015.
Anyah, R. O., Weaver, C. P., Miguez-Macho, G., Fan, Y., and Robock, A.
Incorporating water table dynamics in climate modeling: 3. Simulated
groundwater influence on coupled land-atmosphere variability, J. Geophys. Res., 113, D07103, https://doi.org/10.1029/2007JD009087, 2008.
Aspinall, W.: A route to more tractable expert advice, Nature, 463, 294–295, https://doi.org/10.1038/463294a, 2010.
ASTM Standard Guide for Conducting a Sensitivity Analysis for a Groundwater
Flow Model Application, ASTM International D5611-94, West Conshohocken, PA,
available at: https://www.astm.org/ (last access: 15 November 2021), 2016.
Bamber, J. L. and Aspinall, W. P.: An expert judgement assessment of future sea level rise from the ice sheets, Nat. Clim. Change, 3, 424–427, 2013.
Barnett, B., Townley, L. R., Post, V. E. A., Evans, R. E., Hunt, R. J., Peeters, L., Richardson, S., Werner, A. D., Knapton, A., Boronkay, A.: Australian groundwater modelling guidelines, National Water Commission, Canberra, 203 pp., 2012.
Barthel, R.: HESS Opinions “Integration of groundwater and surface water research: an interdisciplinary problem?”, Hydrol. Earth Syst. Sci., 18, 2615–2628, https://doi.org/10.5194/hess-18-2615-2014, 2014.
Beck, H. E., van Dijk, A. I. J. M., Miralles, D. G., de Jeu, R. A. M., Bruijnzeel, L. A., McVicar, T. R., and Schellekens, J.: Global patterns in base flow index and recession based on streamflow observations from 3394 catchments, Water Resour. Res., 49, 7843–7863, 2013.
Befus, K., Jasechko, S., Luijendijk, E., Gleeson, T., and Cardenas, M. B.: The rapid yet uneven turnover of Earth's groundwater, Geophys. Res. Lett., 11, 5511–5520, https://doi.org/10.1002/2017GL073322, 2017.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Beven, K.: On the concept of model structural error, Water Sci. Technol., 52, 167–175, 2005.
Beven, K.: Facets of uncertainty: epistemic uncertainty, nonstationarity,
likelihood, hypothesis testing, and communication, Hydrolog. Sci. J., 61, 1652–1665, https://doi.org/10.1080/02626667.2015.1031761, 2016.
Beven, K.: How to make advances in hydrological modelling, Hydrol. Res., 50, 1481–1494, 2019.
Beven, K.: Deep learning, hydrological processes and the uniqueness of place,
Hydrol. Process., 34, 3608–3613, https://doi.org/10.1002/hyp.13805, 2020.
Beven, K. J., Aspinall, W. P., Bates, P. D., Borgomeo, E., Goda, K., Hall, J. W., Page, T., Phillips, J. C., Simpson, M., Smith, P. J., Wagener, T., and Watson, M.: Epistemic uncertainties and natural hazard risk assessment – Part 2: What should constitute good practice?, Nat. Hazards Earth Syst. Sci., 18, 2769–2783, https://doi.org/10.5194/nhess-18-2769-2018, 2018.
Bierkens, M. F. P.: Global hydrology 2015: State, trends, and directions, Water Resour. Res., 51, 4923–4947, https://doi.org/10.1002/2015WR017173, 2015.
Bierkens, M. F. P. and Wada, Y.: Non-renewable groundwater use and
groundwater depletion: A review, Environ. Res. Lett., 14, 063002, https://doi.org/10.1088/1748-9326/ab1a5f, 2019.
Blöschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije, H. (Eds.): Runoff Prediction in Ungauged Basins: Synthesis Across Processes, Places and Scales, Cambridge University Press, 465 pp., ISBN: 978-1107028180, 2013.
Boone, A. A., Habets, F., Noilhan, J., Clark, D., Dirmeyer, P., Fox, S.,
Gusev, Y., Haddeland, I., Koster, R., Lohmann, D., Mahanama, S., Mitchell,
K., Nasonova, O., Niu, G. Y., Pitman, A., Polcher, J., Shmakin, A. B.,
Tanaka, K., Van Den Hurk, B., Vérant, S., Verseghy, D., Viterbo, P., and
Yang, Z. L.: The Rhône-aggregation land surface scheme intercomparison
project: An overview, J. Climate, 17, 187–208,
https://doi.org/10.1175/1520-0442(2004)017<0187:TRLSSI>2.0.CO;2, 2004.
Borgonovo, E., Lu, X., Plischke, E., Rakovec, O., and Hill, M. C.: Making the
most out of a hydrological model data set: Sensitivity analyses to open the
model black-box, Water Resour. Res., 53, 7933–7950, https://doi.org/10.1002/2017WR020767, 2017.
Bresciani, E., Goderniaux, P., and Batelaan, O.: Hydrogeological controls of
water table-land surface interactions, Geophys. Res. Lett., 43, 9653–9661, 2016.
Bresciani, E., Cranswick, R. H., Banks, E. W., Batlle-Aguilar, J., Cook, P. G., and Batelaan, O.: Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers, Hydrol. Earth Syst. Sci., 22, 1629–1648, https://doi.org/10.5194/hess-22-1629-2018, 2018.
Brunner, P. and Simmons, C. T.: HydroGeoSphere: A Fully Integrated, Physically Based Hydrological Model, Groundwater, 50, 170–176, https://doi.org/10.1111/j.1745-6584.2011.00882.x, 2012.
Brunner, P., Doherty, J., and Simmons, C. T.: Uncertainty assessment and
implications for data acquisition in support of integrated hydrologic
models, Water Resour. Res., 48, W07513, https://doi.org/10.1029/2011WR011342, 2012.
Burgess, W. G., Shamsudduha, M., Taylor, R. G., Zahid, A., Ahmed, K. M.,
Mukherjee, A., Lapworth, D. J., and Bense, V. F.: Terrestrial water load and
groundwater fluctuation in the Bengal Basin, Scientific Reports, 7, 3872, 2017.
Cáceres, D., Marzeion, B., Malles, J. H., Gutknecht, B. D., Müller Schmied, H., and Döll, P.: Assessing global water mass transfers from continents to oceans over the period 1948–2016, Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020, 2020.
Ceola, S., Arheimer, B., Baratti, E., Blöschl, G., Capell, R., Castellarin, A., Freer, J., Han, D., Hrachowitz, M., Hundecha, Y., Hutton, C., Lindström, G., Montanari, A., Nijzink, R., Parajka, J., Toth, E., Viglione, A., and Wagener, T.: Virtual laboratories: new opportunities for collaborative water science, Hydrol. Earth Syst. Sci., 19, 2101–2117, https://doi.org/10.5194/hess-19-2101-2015, 2015.
Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T., and Hay, L. E.: Framework for Understanding Structural
Errors (FUSE): A modular framework to diagnose differences between
hydrological models, Water Resour. Res., 44, W00B02,
https://doi.org/10.1029/2007WR006735, 2008.
Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E.,
Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Brekke, L. D.,
Arnold, J. R., Gochis, D. J., and Rasmussen R. M.: A unified approach for
process-based hydrologic modeling: 1. Modeling concept, Water Resour. Res., 51, 2498–2514, https://doi.org/10.1002/2015WR017198, 2015.
Condon, L. E. and Maxwell, R. M.: Simulating the sensitivity of
evapotranspiration and streamflow to large-scale groundwater depletion, Science Advances, 5, eaav4574, https://doi.org/10.1126/sciadv.aav4574, 2019.
Condon, L. E., Markovich, K. H., Kelleher, C. A., McDonnell, J. J.,
Ferguson, G., and McIntosh, J. C.: Where Is the Bottom of a Watershed?,
Water Resour. Res., 56, e2019WR026010, https://doi.org/10.1029/2019wr026010, 2020.
Condon, L. E., Kollet, S., Bierkens, M. F. P., Maxwell, R. M., Hill, M. C., Verhoef, A., Van Loon, A. F., Fogg, G. E., Sulis, M., Fransen, H.-J. H., and Corinna Abesser, C.: Global groundwater modeling and monitoring?: Opportunities and challenges, Water Resour. Res., in review, 2021.
Cooke, R.: Experts in uncertainty: opinion and subjective probability in science, Oxford University Press, UK, ISBN-10: 0195064658, 1991.
Cuthbert, M. O., Gleeson, T., Moosdorf, N., Befus, K. M., Schneider, A.,
Hartmann, J., and Lehner, B.: Global patterns and dynamics of
climate–groundwater interactions, Nat. Clim. Change, 9, 137–141, https://doi.org/10.1038/s41558-018-0386-4, 2019a.
Cuthbert, M. O., Taylor, R. G., Favreau, G., Todd, M. C., Shamsudduha, M.,
Villholth, K. G., MacDonald, A. M., Scanlon, B. R., Kotchoni, D. O. V.,
Vouillamoz, J. M., Lawson, F. M. A., Adjomayi, P. A., Kashaigili, J.,
Seddon, D., Sorensen, J. P. R., Ebrahim, G. Y., Owor, M., Nyenje, P. M.,
Nazoumou, Y., Goni, I., Ousmane, B. I., Sibanda, T., Ascott, M. J.,
Macdonald, D. M. J., Agyekum, W., Koussoube, Y., Wanke, H., Kim, H., Wada,
Y., Lo, M. H., Oki, T., and Kukuric, N.: Observed controls on resilience of
groundwater to climate variability in sub-Saharan Africa, Nature, 572,
230–234, 2019b.
Dalin, C., Wada, Y., Kastner, T., and Puma, M. J.: Groundwater depletion
embedded in international food trade, Nature, 543, 700–704, https://doi.org/10.1038/nature21403, 2017.
DeAngelis, A., Dominguez, F., Fan, Y., Robock, A., Kustu, M. D., and
Robinson, D.: Evidence of enhanced precipitation due to irrigation over the
Great Plains of the United States, J. Geophys. Res., 115, D15115, https://doi.org/10.1029/2010JD013892, 2010.
Dirmeyer, P. A.: A History and Review of the Global Soil Wetness Project
(GSWP), J. Hydrometeorol., 12, 729–749, https://doi.org/10.1175/jhm-d-10-05010, 2011.
Doherty, J., and Christensen, S.: Use of paired simple and complex models to
reduce predictive bias and quantify uncertainty, Water Resour. Res., 47, W12534, https://doi.org/10.1029/2011WR010763, 2011.
Döll, P. and Fiedler, K.: Global-scale modeling of groundwater recharge, Hydrol. Earth Syst. Sci., 12, 863–885, https://doi.org/10.5194/hess-12-863-2008, 2008.
Döll, P., Douville, H., Güntner, A., Müller Schmied, H., and Wada, Y.: Modelling freshwater resources at the global scale: Challenges and
prospects, Surv. Geophys., 37, 195–221, https://doi.org/10.1007/s10712-015-9343-1, 2016.
Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., and
Eicker, A.: Global-scale assessment of groundwater depletion and related
groundwater abstractions: Combining hydrological modeling with information
from well observations and GRACE satellites, Water Resour. Res., 50, 5698–5720, https://doi.org/10.1002/2014WR015595, 2014a.
Döll, P., Fritsche, M., Eicker, A., and Müller Schmied, H.: Seasonal
water storage variations as impacted by water abstractions: Comparing the
output of a global hydrological model with GRACE and GPS observations,
Surv. Geophys., 35, 1311—1331, https://doi.org/10.1007/s10712-014-9282-2,
2014b.
Döll, P., Hoffmann-Dobrev, H., Portmann, F. T., Siebert, S., Eicker, A.,
Rodell, M., Strassberg, G., and Scanlon, B.: Impact of water withdrawals from
groundwater and surface water on continental water storage variations, J.
Geodyn., 59–60, 143–156, https://doi.org/10.1016/j.jog.2011.05.001, 2012.
Duan Q., Schaake, J., Andreassian, V., Franks, S., Gupta, H. V., Gusev, Y. M., Habets, F., Hall, A., Hay, L., Hogue, T. S., Huang, M., Leavesley, G., Liang, X., Nasonova, O. N., Noilhan, J., Oudin, L., Sorooshian, S., Wagener, T., and Wood, E. F.: Model Parameter Estimation Experiment (MOPEX): Overview and Summary of the Second and Third Workshop Results, J. Hydrol., 320, 3–17, 2006.
Enemark, T., Peeters, L. J. M., Mallants, D., and Batelaan, O.:
Hydrogeological conceptual model building and testing: A review, J. Hydrol., 569, 310–329, https://doi.org/10.1016/j.jhydrol.2018.12.007, 2019.
Erban, L. E., Gorelick, S. M., and Zebker, H. A.: Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam, Environ. Res. Lett., 9, 084010, https://doi.org/10.1088/1748-9326/9/8/084010, 2014.
Famiglietti, J. S. and Wood, E. F.: Multiscale modeling of spatially
variable water and energy balance processes, Water Resour. Res., 30,
3061–3078, https://doi.org/10.1029/94WR01498, 1994.
Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S.
L., Brooks, P. D., Bitrich, W. E., Flores, A., Grant, G., Kirchner, J. W.,
Mackay, D.S., McDonnel J. J., Milly, P. C. D., Sulivan, P. L., Tague, C.,
Ajmai, H., Chaney, N., Harmann, A., Hazenberg, P., McNamara, J., Ppelletier,
J., Perket, J., Rouholahnejad-Freund, E., Wagner, T., Zeng, X., Beighley,
E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B., Safeeq,
M., Shen, C., Van Verseveld, W., Volk, J., and Yamazaki, D.: Hillslope hydrology in global change research and Earth System modeling, Water Resour. Res., 55, 1737–1772, https://doi.org/10.1029/2018WR023903, 2019.
Fan, Y.: Groundwater in the Earth's critical zone: Relevance to large-scale
patterns and processes, Water Resour. Res., 51, 3052–3069, https://doi.org/10.1002/2015WR017037, 2015.
Fan, Y., Li, H., and Miguez-Macho, G.: Global patterns of groundwater table
depth, Science, 339, 940–943, 2013.
Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a flexible
approach for conceptual hydrological modeling: 1. Motivation and theoretical
development, Water Resour. Res., 47, W11510, https://doi.org/10.1029/2010wr010174,
2011.
Forrester, M. M. and Maxwell, R. M.: Impact of lateral groundwater flow and
subsurface lower boundary conditions on atmospheric boundary layer
development over complex terrain, J. Hydrometeorol., 21, 1133–1160,
https://doi.org/10.1175/JHM-D-19-0029.1, 2020.
Forrester, M. M., Maxwell, R. M., Bearup, L. A., and Gochis, D. J.: Forest
Disturbance Feedbacks from Bedrock to Atmosphere Using Coupled
Hydro-Meteorological Simulations Over the Rocky Mountain Headwaters, J. Geophys. Res.-Atmos., 123, 9026–9046, https://doi.org/10.1029/2018JD028380, 2018.
Foster, S., Chilton, J., Nijsten, G.-J., and Richts, A.: Groundwater – a
global focus on the 'local resource', Curr. Opin. Env. Sust., 5, 685–695,
https://doi.org/10.1016/j.cosust.2013.10.010, 2013.
Gascoin, S., Ducharne, A., Ribstein, P., Carli, M., and Habets, F.: Adaptation of a catchment-based land surface model to the hydrogeological setting of the Somme River basin (France), J. Hydrol., 368, 105–116, https://doi.org/10.1016/j.jhydrol.2009.01.039, 2009.
Gilbert, J. M., Maxwell, R. M., and Gochis, D. J.: Effects of water table
configuration on the planetary boundary layer over the San Joaquin River
watershed, California, J. Hydrometeorol., 18, 1471–1488,
https://doi.org/10.1175/JHM-D-16-0134.1, 2017.
Gleeson, T., Wagener, T., Döll, P., Zipper, S. C., West, C., Wada, Y., Taylor, R., Scanlon, B., Rosolem, R., Rahman, S., Oshinlaja, N., Maxwell, R., Lo, M.-H., Kim, H., Hill, M., Hartmann, A., Fogg, G., Famiglietti, J. S., Ducharne, A., de Graaf, I., Cuthbert, M., Condon, L., Bresciani, E., and Bierkens, M. F. P.: HESS Opinions: Improving the evaluation of groundwater representation in continental to global scale models, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2020-378, 2020.
Gleeson, T. and Manning, A. H.: Regional groundwater flow in mountainous
terrain: Three-dimensional simulations of topographic and hydrogeologic
controls, Water Resour. Res., 44, W10403, https://doi.org/10.1029/2008WR006848, 2008.
Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., and Cardenas, M.
B.: The global volume and distribution of modern groundwater, Nat. Geosci., 9, 161–167, 2016.
de Graaf, I. E. M., van Beek, L. P. H., Wada, Y., and Bierkens, M. F. P.:
Dynamic attribution of global water demand to surface water and groundwater
resources: Effects of abstractions and return flows on river discharges, Adv. Water Resour., 64, 21–33 https://doi.org/10.1016/j.advwatres.2013.12.002, 2014.
de Graaf, I. E. M., Sutanudjaja, E. H., van Beek, L. P. H., and Bierkens, M. F. P.: A high-resolution global-scale groundwater model, Hydrol. Earth Syst. Sci., 19, 823–837, https://doi.org/10.5194/hess-19-823-2015, 2015.
de Graaf, I. E. M., van Beek, L. P. H., Gleeson, T., Moosdorf, N., Schmitz,
O., Sutanudjaja, E. H., and Bierkens, M. F. P.: A global-scale two-layer
transient groundwater model: Development and application to groundwater
depletion, Adv. Water Resour., 102, 53–67, https://doi.org/10.1016/j.advwatres.2017.01.011, 2017.
de Graaf, I. E. M., Gleeson, T., Beek, L. P. H. (Rens) van, Sutanudjaja, E.
H., and Bierkens, M. F. P.: Environmental flow limits to global groundwater
pumping, Nature, 574, 90–94, https://doi.org/10.1038/s41586-019-1594-4, 2019.
Gnann, S. J., Woods, R. A., and Howden, N. J.: Is there a baseflow Budyko
curve?, Water Resour. Res., 55, 2838–2855, 2019.
Goderniaux, P., Davy, P., Bresciani, E., de Dreuzy, J.-R., and Le Borgne, T.: Partitioning a regional groundwater flow system into shallow local and deep
regional flow compartments, Water Resour. Res., 49, 2274—2286, 2013.
Guimberteau, M., Ducharne, A., Ciais, P., Boisier, J. P., Peng, S., De Weirdt, M., and Verbeeck, H.: Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin, Geosci. Model Dev., 7, 1115–1136, https://doi.org/10.5194/gmd-7-1115-2014,
2014.
Habets, F., Boé, J., Déqué, M., Ducharne, A., Gascoin, S.,
Hachour, A., Martin, E., Pagé, C., Sauquet, E., Terray, L., Thiéry,
D., Oudin, L., and Viennot, P.: Impact of climate change on surface water
and ground water of two basins in Northern France: analysis of the
uncertainties associated with climate and hydrological models, emission
scenarios and downscaling methods, Climatic Change, 121, 771–785, https://doi.org/10.1007/s10584-013-0934-x, 2013.
Hartmann, A., Gleeson, T., Rosolem, R., Pianosi, F., Wada, Y., and Wagener, T.: A large-scale simulation model to assess karstic groundwater recharge over Europe and the Mediterranean, Geosci. Model Dev., 8, 1729–1746, https://doi.org/10.5194/gmd-8-1729-2015, 2015.
Hartmann, Andreas, Gleeson, T., Wada, Y., and Wagener, T.: Enhanced
groundwater recharge rates and altered recharge sensitivity to climate
variability through subsurface heterogeneity, P. Natl. Acad. Sci. USA, 114, 2842–2847, https://doi.org/10.1073/pnas.1614941114, 2017.
Hattermann, F. F., Krysanova, V., Gosling, S. N., Dankers, R., Daggupati,
P., Donnelly, C., Florke, M., Huang, S., Motovilov, Y., Buda, S., Yang, T.,
Muller, C., Leng, G., Tang, Q., Portman, F. T., Hanemann, S,. Gerten, D.,
Wada, Y., Masaki, Y., Alemayehu, T., Satoh, Y., and Samaniego, L.: Cross-scale
intercomparison of climate change impacts simulated by regional and global
hydrological models in eleven large river basins, Climatic Change, 141, 561–576, https://doi.org/10.1007/s10584-016-1829-4, 2017.
Hawker, L. P., Rougier, J., Neal, J. C., Bates, P. D., Archer, L., and Yamazaki, D.: Implications of simulating global digital elevation models for flood inundation studies, Water Resour. Res., 54, 7910–7928, 2018.
Hay, L., Norton, P., Viger, R., Markstrom, S., Regan, R. S., and
Vanderhoof, M.: Modelling surface-water depression storage in a Prairie
Pothole Region, Hydrol. Process., 32, 462–479, https://doi.org/10.1002/hyp.11416, 2018.
Henderson-Sellers, A., Yang, Z. L., and Dickinson, R. E.: The Project for
Intercomparison of Land-Surface Schemes (PILPS), B. Am. Meteorol. Soc., 74, 1335–1349, 1993.
Herbert, C. and Döll, P.: Global assessment of current and future
groundwater stress with a focus on transboundary aquifers, Water Resour. Res., 55, 4760–4784, https://doi.org/10.1029/2018WR023321, 2019.
Heudorfer, B., Haaf, E., Stahl, K., and Barthel, R.: Index-based
characterization and quantification of groundwater dynamics, Water Resour. Res., 55, 5575–5592, https://doi.org/10.1029/2018WR024418, 2019.
Hill, M. C.: The practical use of simplicity in developing ground water
models, Ground Water, 44, 775–781, https://doi.org/10.1111/j.1745-6584.2006.00227.x,
2006.
Hill, M. C. and Tiedeman, C. R.: Effective groundwater model calibration, Wiley, USA, ISBN: 978-0-471-77636-9, 2007.
Hill, M.C., Kavetski, D., Clark, M., Ye, M., Arabi, M., Lu, D., Foglia, L. and Mehl, S.: Practical use of computationally frugal model analysis methods, Groundwater, 54, 159–170, https://doi.org/10.1111/gwat.12330, 2016.
Hiscock, K. M. and Bense, V. F.: Hydrogeology – principles and practice, 2nd edn., Wiley-Blackwell, USA, ISBN: 978-0-470-65662-4, 2014.
Huang, S., Kumar, R., Flörke, M., Yang, T., Hundecha , Y., Kraft, P.,
Gao, C., Gelfan, A., Liersch, S., Lobanova, A., Strauch, M., Van Ogtrop, F.,
Reinhardt, J., Haberlandt, U., Krysanova, V.: Evaluation of an ensemble of
regional hydrological models in 12 large-scale river basins worldwide, Climatic Change, 141, 381–397, https://doi.org/10.1007/s10584-016-1841-8, 2017.
Hrachowitz, M., Fovet, O., Ruiz, L., Euser, T., Gharari, S., Nijzink, R.,
Freer, J., Savenije, H. H. G., and Gascuel-Odoux, C.: Process Consistency in
Models: the Importance of System Signatures, Expert Knowledge and Process
Complexity, Water Resour. Res., 50, 7445–7469, 2014.
Hunt, R. J., Walker, J. F., Selbig, W. R., Westenbroek, S. M., and Regan,
R. S.: Simulation of climate-change effects on streamflow, lake water
budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake
Watershed, Wisconsin, Geological Survey, Reston, VA, U.S., USGS Scientific Investigations Report No. 2013–5159, 2013.
Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., and Arheimer, B.:
Most computational hydrology is not reproducible, so is it really science?, Water Resour. Res., 52, 7548–7555, https://doi.org/10.1002/2016WR019285, 2016.
Jasechko, S., Birks, S. J., Gleeson, T., Wada, Y., Sharp, Z. D., Fawcett,
P. J., McDonnell, J. J., and Welker, J. M.: Pronounced seasonality in the global groundwater recharge, Water Resour. Res., 50, 8845–8867, https://doi.org/10.1002/2014WR015809, 2014.
Jasechko, S., Perrone, D., Befus, K. M., Bayani Cardenas, M., Ferguson, G.,
Gleeson, T., Luijendijk, E., McDonnell, J. J., Taylor, R. G., Wada, Y., and
Kirchner, J. W.: Global aquifers dominated by fossil groundwaters but wells
vulnerable to modern contamination, Nat. Geosci., 10, 425–429, https://doi.org/10.1038/ngeo2943, 2017.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D.,
Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gainelle, D.,
Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A.,
Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M.,
Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of
carbon dioxide, latent heat, and sensible heatderived from eddy covariance,
satellite, and meteorological observations, J. Geophys. Res., 116,
G00J07, https://doi.org/10.1029/2010JG001566, 2011.
Keune, J., Sulis, M., Kollet, S., Siebert, S., and Wada, Y.: Human Water
Use Impacts on the Strength of the Continental Sink for Atmospheric Water, Geophys. Res. Lett., 45, 4068–4076, https://doi.org/10.1029/2018GL077621, 2018.
Knowling, M. J. and Werner, A. D.: Estimability of recharge through
groundwater model calibration: Insights from a field-scale steady-state
example, J. Hydrol., 540, 973–987, 2016.
Koirala, S., Yeh, P. J. F., Hirabayashi, Y., Kanae, S., and Oki, T.:
Global-scale land surface hydrologic modeling with the representation of
water table dynamics, dynamics, J. Geophys. Res.-Atmos., 119, 75–89, https://doi.org/10.1002/2013JD020398, 2014.
Kollet, S. J. and Maxwell, R. M.: Capturing the influence of groundwater
dynamics on land surface processes using an integrated, distributed
watershed model, Water Resour. Res., 44, W02402, https://doi.org/10.1029/2007WR006004, 2008.
Kollet, S., Sulis, M., Maxwell, R. M., Paniconi, C., Putti, M., Bertoldi,
G., Coon, E. T., Cordano, E., Endrizzi, S., Kikinzon, E., Mouche, E.,
Mugler, C., Park, Y., Refsgaard, J. C., Stisen, S., and Sudicky, E.: The
integrated hydrologic model intercomparison project, IH-MIP2: A second set
of benchmark results to diagnose integrated hydrology and feedbacks, Water Resour. Res., 53, 867–890, 2017.
Konikow, L. F.: Contribution of global groundwater depletion since 1900 to
sea-level rise, Geophys. Res. Lett., 38, L17401, https://doi.org/10.1029/2011GL048604,
2011.
Koster, R. D., Suarez, M. J., Ducharne, A., Praveen, K., and Stieglitz, M.: A
catchment-based approach to modeling land surface processes in a GCM – Part 1: Model structure, J. Geophys. Res., 105, 24809–24822, 2000.
Krakauer, N. Y., Li, H., and Fan, Y.: Groundwater flow across spatial
scales: importance for climate modeling, Environ. Res. Lett., 9, 034003, https://doi.org/10.1088/1748-9326/9/3/034003, 2014.
Kresic, N.: Groundwater resources: sustainability, management and restoration, McGraw-Hill, ISBN: 9780071492737, 2009.
Krueger, T., Page, T., Hubacek, K., Smith, L., and Hiscock, K.: The role of
expert opinion in environmental modelling, Environ. Modell. Softw., 36, 4–18, 2012.
Kustu, M. D., Fan, Y., and Rodell, M.: Possible link between irrigation in
the US High Plains and increased summer streamflow in the Midwest, Water Resour. Res., 47, W03522, https://doi.org/10.1029/2010WR010046, 2011.
Lamb, R., Aspinall, W., Odbert, H., and Wagener, T.: Vulnerability of bridges to scour: insights from an international expert elicitation workshop, Nat. Hazards Earth Syst. Sci., 17, 1393–1409, https://doi.org/10.5194/nhess-17-1393-2017, 2017.
Lawrence, D., Fisher, R., Koven, C., Oleson, K., Swenson, S., Vertenstein,
M., Andre, B., Bonan, G., Ghimire, B., van Kampenhout, L., Kennedy, D.,
Kluzek, E., Knox, R., Lawrence, P., Li, F., Li, H., Lombardozzi, D., Lu, Y.,
Perket, J., Riley, W., Sacks, W., Shi, M., Wieder, W., Xu, C., Ali, A.,
Badger, A., Bisht, G., Broxton, P., Brunke, M., Buzan, J., Clark, M., Craig,
T., Dahlin, K., Drewniak, B., Emmons, L., Fisher, J., Flanner, M., Gentine,
P., Lenaerts, J., Levis, S., Leung, L. R., Lipscomb, W., Pelletier, J.,
Ricciuto, D. M., Sanderson, B., Shuman, J., Slater, A., Subin, Z., Tang, J.,
Tawfik, A., Thomas, Q., Tilmes, S., Vitt, F., and Zeng, X.: Technical
Description of version 5.0 of the Community Land Model (CLM), 329 pp., available at: http://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf (last access: 5 October 2021), 2018.
Leaf, A. T., Fienen, M. N., Hunt, R. J., and Buchwald, C. A.: Groundwater/surface-water interactions in the Bad River Watershed, Wisconsin, USGS Numbered Series No. 2015–5162, Geological Survey, Reston, VA, U.S., 2015.
Leavesley, G. H., Markstrom, S. L., Restrepo, P. J., and Viger, R. J.: A
modular approach for addressing model design, scale, and parameter
estimation issues in distributed hydrological modeling, Hydrol. Processes,
16, 173–187, https://doi.org/10.1002/hyp.344, 2002.
Lemieux, J. M., Sudicky, E. A., Peltier, W. R., and Tarasov, L.: Dynamics
of groundwater recharge and seepage over the Canadian landscape during the
Wisconsinian glaciation, J. Geophys. Res., 113, F01011, https://doi.org/10.1029/2007JF000838, 2008.
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the Earth's climate system, P. Natl. Acad. Sci. USA, 105, 1786–1793, 2008.
Liang, X., Xie, Z., and Huang, M.: A new parameterization for surface and
groundwater interactions and its impact on water budgets with the variable
infiltration capacity (VIC) land surface model, J. Geophys. Res., 108, 8613, https://doi.org/10.1029/2002JD003090, 2003.
Lo, M.-H., Famiglietti, J. S., Reager, J. T., Rodell, M., Swenson, S., and
Wu, W.-Y.: GRACE-Based Estimates of Global Groundwater Depletion, in:
Terrestrial Water Cycle and Climate Change, edited bY: Tang, Q. and Oki, T., John Wiley and Sons, Inc., 135–146, https://doi.org/10.1002/9781118971772.ch7, 2016.
Lo, M.-H., Yeh, P. J.-F., and Famiglietti, J. S.: Constraining water table
depth simulations in a land surface model using estimated baseflow, Adv. Water Resour., 31, 1552–1564, 2008.
Lo, M.-H., J. S. Famiglietti, P. J.-F. Yeh, and T. H. Syed.: Improving
Parameter Estimation and Water Table Depth Simulation in a Land Surface
Model Using GRACE Water Storage and Estimated Baseflow Data, Water Resour.
Res., 46, W05517, https://doi.org/10.1029/2009WR007855, 2010.
Luijendijk, E., Gleeson, T., and Moosdorf, N.: Fresh groundwater discharge
insignificant for the world's oceans but important for coastal ecosystems.
Nat. Commun., 11, 1260, https://doi.org/10.1038/s41467-020-15064-8, 2020.
Maples, S. R., Foglia, L., Fogg, G. E., and Maxwell, R. M.: Sensitivity of hydrologic and geologic parameters on recharge processes in a highly heterogeneous, semi-confined aquifer system, Hydrol. Earth Syst. Sci., 24, 2437–2456, https://doi.org/10.5194/hess-24-2437-2020, 2020.
Margat, J. and Van der Gun, J.: Groundwater around the world: a geographic synopsis, CRC Press, London, ISBN 9780367576509, 2013.
Markovich, K. H., Manning, A. H., Condon, L. E., and McIntosh, J. C.: Mountain-block Recharge: A Review of Current Understanding, Water Resour. Res., 55, 8278–8304, https://doi.org/10.1029/2019WR025676, 2019.
Maxwell, R. M. and Condon, L. E.: Connections between groundwater flow and
transpiration partitioning, Science, 353, 377–380, 2016.
Maxwell, R. M., Chow, F. K., and Kollet, S. J.: The
groundwater-land-surface-atmosphere connection: soil moisture effects on the
atmospheric boundary layer in fully-coupled simulations, Adv. Water Resour., 30, 2447–2466, https://doi.org/10.1016/j.advwatres.2007.05.018, 2007.
Maxwell, R. M., Condon, L. E., and Kollet, S. J.: A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3, Geosci. Model Dev., 8, 923–937, https://doi.org/10.5194/gmd-8-923-2015, 2015.
Maxwell, R. M., Condon, L. E., Kollet, S. J., Maher, K., Haggerty, R., and
Forrester, M. M.: The imprint of climate and geology on the residence times
of groundwater, Geophys. Res. Lett., 43, 701–708, https://doi.org/10.1002/2015GL066916, 2016.
McMilan, H.: Linking hydrologic signatures to hydrologic processes: A
review, Hydrol. Process., 34, 1393–1409, 2020.
Meixner, T., Manning, A. H., Stonestrom, D. A., Allen, D. M., Ajami, H.,
Blasch, K. W., Brookfield, A. E., Castro, C. L., Clark, J. F., Gochis, D.
J., Flint, A. L., Neff, K. L., Niraula, R., Rodell, M., Scanlon, B. R.,
Singha, K., and Walvoord, M. A.: Implications of projected climate change for
groundwater recharge in the western United States, J. Hydrol., 534, 124–138, 2016.
Melsen, L. A., Teuling, A. J., Torfs, P. J. J. F., Uijlenhoet, R., Mizukami, N., and Clark, M. P.: HESS Opinions: The need for process-based evaluation of large-domain hyper-resolution models, Hydrol. Earth Syst. Sci., 20, 1069–1079, https://doi.org/10.5194/hess-20-1069-2016, 2016.
Meriano, M. and Eyles, N.: Groundwater flow through Pleistocene glacial
deposits in the rapidly urbanizing Rouge River-Highland Creek watershed,
City of Scarborough, southern Ontario, Canada, Hydrogeol. J., 11,
288–303, https://doi.org/10.1007/s10040-002-0226-4, 2003.
Milly, P. C. D., Malyshev, S. L., Shevliakova, E., Dunne, K. A., Findell, K. L., Gleeson, T., Liang, Z., Phillipps, P., Stouffer, R. J., and Swenson, S.: An Enhanced Model of Land Water and Energy for Global Hydrologic and
Earth-System Studies, J. Hydrometeorol., 15, 1739–1761, https://doi.org/10.1175/JHM-D-13-0162.1, 2014.
Minderhoud, P. S. J., Erkens, G., Pham, V. H., Bui, T. V., Erban, L. E., Kooi, H., and Stouthamer, E.: Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam, Environ. Res. Lett., 12, 064006, https://doi.org/10.1088/1748-9326/aa7146, 2017.
Minderhoud, P. S. J., Coumou, L., Erkens, G., Middelkoop, H., and Stouthamer,
E.: Mekong delta much lower than previously assumed in sea-level rise impact
assessments, Nat. Commun., 10, 3847, https://doi.org/10.1038/s41467-019-11602-1, 2019.
Minderhoud, P. S. J., Middelkoop, H., Erkens, G., and Stouthamer, E.:
Groundwater extraction may drown mega-delta: projections of
extraction-induced subsidence and elevation of the Mekong delta for the 21st
century, Environ. Res. Commun., 2, 011005, https://doi.org/10.1088/2515-7620/ab5e21, 2020.
Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F., and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016, 2016.
Moeck, C., Grech-Cumbo, N., Podgorski, J., Bretzler, A., Gurdak, J. J., Berg, M., and Schirmer, M.: A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and relationships, Sci. Total Environ., 717, 137042, https://doi.org/10.1016/j.scitotenv.2020.137042, 2020.
Mohan, C., Western, A. W., Wei, Y., and Saft, M.: Predicting groundwater recharge for varying land cover and climate conditions – a global meta-study, Hydrol. Earth Syst. Sci., 22, 2689–2703, https://doi.org/10.5194/hess-22-2689-2018, 2018.
Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren,
L. L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Bloschl, G.,
Sivapalam, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B.,
Boegh, E., Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P., Huang,
Y., Schumann, A., Post, D. A., Srinivasan, V., Harman, C., Thompson, S.,
Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V.: “Panta Rhei—Everything Flows”: Change in hydrology and society–The IAHS Scientific Decade 2013–2022, Hydrolog. Sci. J., 58, 1256–1275, 2013.
Moore, W. S.: The effect of submarine groundwater discharge on the ocean, Annu. Rev. Mar. Sci., 2, 59–88, 2010.
Morris, M. D.: Factorial sampling plans for preliminary computational
experiments, Technometrics, 33, 161–174, 1991.
Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F. T., Flörke, M., and Döll, P.: Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration, Hydrol. Earth Syst. Sci., 18, 3511–3538, https://doi.org/10.5194/hess-18-3511-2014, 2014.
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., and Gulden, L. E.: A simple
TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate
models, J. Geophys. Res., 110, D21106, https://doi.org/10.1029/2005JD006111, 2005.
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., Gulden, L. E., and Su, H.: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data, J. Geophys. Res., 112, D07103, https://doi.org/10.1029/2006JD007522, 2007.
Ngo-Duc, T., Laval, K., Ramillien, G., Polcher, J., and Cazenave, A.:
Validation of the land water storage simulated by Organising Carbon and
Hydrology in Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and Climate
Experiment (GRACE) data, Water Resour. Res., 43, W04427, https://doi.org/10.1029/2006WR004941, 2007.
O'Hagan, A.: Expert Knowledge Elicitation: Subjective but Scientific, Am. Stat., 73, 69–81, https://doi.org/10.1080/00031305.2018.1518265, 2019.
Olarinoye, T., Gleeson, T., Marx, V., Seeger, S., Adinehvand, R., Allocca,
V., Andreo, B., Apaestegui, J., Apolit, C., Arfib, B., Auler, A.,
Bailly-Comte, V., Barbera, J. A., Batiot-Guilhe, C., Bechtel, T., Binet, S.,
Bittner, D., Blatnik, M., Bolger, T., Brunet, P., Charlier, J., Chen, Z.,
Chiogna, G., Coxon, G., De Vita, P., Doummar, J., Epting, J., Fleury, P.,
Fournier, M., Goldscheider, N., Gunn, J., Guo, F., Guyot, J. L., Howden, N.,
Huggenberger, P., Hunt, B., Jeannin, P., Jiang, G., Jones, G., Jourde H.,
Karmann, I., Koit, O., Kordilla, J., Labat, D., Ladouch, B., Liso, I. S.,
Liu, Z., Marechal, J., Massei, N., Mazzilli, N., Mudarra, M., Parise, M.,
Pu, J., Ravbar, N., Sanchez, L. H., Santo, A., Sauter, M., Seidel, J.,
Sivelle, V., Skoglund, R. O., Stevanovic, Z., Wood, Cameron., Worthington,
S., and Hartmann, A.: Global karst springs hydrograph dataset for research and management of the world's fastest-flowing groundwater, Scientific Data, 7, 59, https://doi.org/10.1038/s41597-019-0346-5, 2020.
Opie, S., Taylor, R. G., Brierley, C. M., Shamsudduha, M., and Cuthbert, M. O.: Climate–groundwater dynamics inferred from GRACE and the role of hydraulic memory, Earth Syst. Dynam., 11, 775–791, https://doi.org/10.5194/esd-11-775-2020, 2020.
Ortega-Guerrero, A., Rudolph, D. L., and Cherry, J. A.: Analysis of long-term land subsidence near Mexico City: field investigations and predictive modeling, Water Resour. Res., 35, 3327–3341, https://doi.org/10.1029/1999WR900148, 1999.
Pappenberger, F., Ghelli, A., Buizza, R., and Bódis, K.: The Skill of
Probabilistic Precipitation Forecasts under Observational Uncertainties
within the Generalized Likelihood Uncertainty Estimation Framework for
Hydrological Applications, J. Hydrometeorol., 10, 807–819, https://doi.org/10.1175/2008JHM956.1, 2009.
Perrone, D. and Jasechko, S.: Deeper well drilling an unsustainable stopgap to groundwater depletion, Nature Sustainability, 2, 773–782, 2019.
Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D.
B., and Wagener, T.: Sensitivity analysis of environmental models: A
systematic review with practical workflow, Environ. Modell. Softw., 79, 214–232, 2016.
Post, V. E. and von Asmuth, J. R.: Hydraulic head measurements–new
technologies, classic pitfalls, Hydrogeol. J., 21, 737–750, 2013.
Qiu, J. Q., Zipper, S. C., Motew, M., Booth, E. G., Kucharik, C. J., and
Loheide, S. P.: Nonlinear groundwater influence on biophysical indicators of
ecosystem services, Nature Sustainability, 2, 475–483, https://doi.org/10.1038/s41893-019-0278-2, 2019.
Rahman, A. S. M. M., Sulis, M., and Kollet, S. J.: The subsurface–land surface–atmosphere connection under convective conditions, Adv. Water Resour., 83, 240–249, https://doi.org/10.1016/j.advwatres.2015.06.003, 2015.
Rajabi, M. M. and Ataie-Ashtiani, B.: Efficient fuzzy Bayesian inference
algorithms for incorporating expert knowledge in parameter estimation, J. Hydrol., 536, 255–272, 2016.
Rajabi, M. M., Ataie-Ashtiani, B., and Simmons, C. T.: Model-data interaction
in groundwater studies: Review of methods, applications and future
directions, J. Hydrol., 567, 457–477, 2018.
Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L., and Vanrolleghem,
P. A.: Uncertainty in the environmental modelling process–a framework and
guidance, Environ. Modell. Softw., 22, 1543–1556, 2007.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J.,
Carvalhais, N., and Prabhat: Deep learning and process understanding for
data-driven Earth system science, Nature, 566, 195–204, 2019.
Reinecke, R., Foglia, L., Mehl, S., Trautmann, T., Cáceres, D., and Döll, P.: Challenges in developing a global gradient-based groundwater model (G3M v1.0) for the integration into a global hydrological model, Geosci. Model Dev., 12, 2401–2418, https://doi.org/10.5194/gmd-12-2401-2019, 2019a.
Reinecke, R., Foglia, L., Mehl, S., Herman, J. D., Wachholz, A., Trautmann, T., and Döll, P.: Spatially distributed sensitivity of simulated global groundwater heads and flows to hydraulic conductivity, groundwater recharge, and surface water body parameterization, Hydrol. Earth Syst. Sci., 23, 4561–4582, https://doi.org/10.5194/hess-23-4561-2019, 2019b.
Reinecke, R., Wachholz, A., Mehl, S., Foglia, L., Niemann, C., and Döll, P.: Importance of spatial resolution in global groundwater modeling,
Groundwater, 58, 363–376, https://doi.org/10.1111/gwat.12996, 2020.
Rodell, M., Velicogna, I., and Famiglietti, J. S.: Satellite-based
estimates of groundwater depletion in India, Nature, 460, 999–1002, 2009.
Ross, J. L., Ozbek, M. M., and Pinder, G. F.: Aleatoric and epistemic
uncertainty in groundwater flow and transport simulation, Water Resour. Res., 45, W00B15, https://doi.org/10.1029/2007WR006799, 2009.
Rossman, N. and Zlotnik, V.: Review: Regional groundwater flow modeling in
heavily irrigated basins of selected states in the western United States, Hydrogeol. J., 21, 1173–1192, https://doi.org/10.1007/s10040-013-1010-3, 2013.
RRCA (Republican River Compact Administration Ground Water Model): http://www.republicanrivercompact.org/ (last access: 15 November 2021), 2003.
Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, Wiley, USA, ISBN: 978-0-470-87093-8, 2004.
Salvucci, G. D. and Entekhabi, D.: Hillslope and climatic controls on
hydrologic fluxes, Water Resour. Res., 31, 1725–1739, 1995.
Sanford, W., Calibration of models using groundwater age, Hydrogeol. J., 19,
13–16, https://doi.org/10.1007/s10040-010-0637-6, 2011.
Sawyer, A. H., David, C. H., and Famiglietti, J. S.: Continental patterns
of submarine groundwater discharge reveal coastal vulnerabilities, Science, 353, 705–707, 2016.
Scanlon, B., Healy, R., and Cook, P.: Choosing appropriate techniques for
quantifying groundwater recharge, Hydrogeol. J., 10, 18–39, 2002.
Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M.,
McGuire, V. L., and McMahon, P. B.: Groundwater depletion and
sustainability of irrigation in the US High Plains and Central Valley, P. Natl. Acad. Sci. USA, 109, 9320–9325, https://doi.org/10.1073/pnas.1200311109, 2012.
Scanlon, B. R., Zhang, Z., Save, H., Wiese, D. N., Landerer, F. W., Long,
D., Longuevergne, L., and Chen, J.: Global evaluation of new GRACE mascon
products for hydrologic applications, Water Resour. Res., 52, 9412–9429, 2016.
Schaller, M. and Fan, Y.: River basins as groundwater exporters and
importers: Implications for water cycle and climate modeling, J. Geophys. Res., 114, D04103, https://doi.org/10.1029/2008JD010636, 2009.
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D.
B., Dankers, R., Eisner, S., Fekete, B. M., Colon-Gonzalez, F. J., Gosling,
S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. T., Satoh, Y., Stacke, T.,
Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F.,
Warszawski, L., and Kabat, P.: Multimodel assessment of water scarcity under
climate change, P. Natl. Acad. Sci. USA, 111, 3245–3250, https://doi.org/10.1073/pnas.1222460110, 2014.
Schilling, O. S., Doherty, J., Kinzelbach, W., Wang, H., Yang, P. N., and
Brunner, P.: Using tree ring data as a proxy for transpiration to reduce
predictive uncertainty of a model simulating groundwater–surface
water–vegetation interactions, J. Hydrol., 519, 2258–2271, https://doi.org/10.1016/j.jhydrol.2014.08.063, 2014.
Schilling, O. S., Cook, P. G., and Brunner, P.: Beyond classical observations in hydrogeology: The advantages of including exchange flux, temperature, tracer concentration, residence time, and soil moisture observations in groundwater model calibration, Rev. Geophys., 57, 146–182, 2019.
Schneider, A. S., Jost, A., Coulon, C., Silvestre, M., Théry, S., and
Ducharne, A.: Global scale river network extraction based on high-resolution
topography, constrained by lithology, climate, slope, and observed drainage
density, Geophys. Res. Lett., 44, 2773–2781, https://doi.org/10.1002/2016GL071844, 2017.
Shen, C.: A transdisciplinary review of deep learning research and its
relevance for water resources scientists, Water Resour. Res., 54, 8558–8593, 2018.
Shen, C., Laloy, E., Elshorbagy, A., Albert, A., Bales, J., Chang, F.-J., Ganguly, S., Hsu, K.-L., Kifer, D., Fang, Z., Fang, K., Li, D., Li, X., and Tsai, W.-P.: HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community, Hydrol. Earth Syst. Sci., 22, 5639–5656, https://doi.org/10.5194/hess-22-5639-2018, 2018.
Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C. A., Wescoat, J. L., and Rodríguez-Iturbe, I.: Socio-hydrology: Use-inspired water sustainability science for the Anthropocene, Earth’s Future, 2, 225–230, https://doi.org/10.1002/2013EF000164, 2014.
SKI. Intracoin – International Nuclide Transport Code Intercomparison Study
(No. SKI–84-3), Swedish Nuclear Power Inspectorate, available at:
https://inis.iaea.org/search/search.aspx?orig_q=RN:16046803 (last access: 16 November 2021), 1984.
Springer, A. and Stevens, L.: Spheres of discharge of springs, Hydrogeol. J., 17, 83–93, https://doi.org/10.1007/s10040-008-0341-y, 2009.
Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., and Ludwig, C.: The
trajectory of the Anthropocene: the great acceleration, The Anthropocene Review, 2, 81–98, 2015.
Takata, K., Emori, S., and Watanabe, T.: Development of the minimal advanced
treatments of surface interaction and runoff, Global Planet. Change, 38, 209–222, https://doi.org/10.1016/S0921-8181(03)00030-4, 2003.
Taylor, R. G., Scanlon, B., Doll, P., Rodell, M., van Beek, R., Wada, Y.,
Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L.,
Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A.,
Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M.,
Shamsudduha, M., Hiscock, K., Yeh, P. J. -F., Holman, I., and Treidel, H.:
Groundwater and climate change, Nat. Clim. Change, 3, 322–329, https://doi.org/10.1038/nclimate1744, 2013a.
Taylor, R. G., Todd, M. C., Kongola, L., Maurice, L., Nahozya, E., Sanga,
H., and MacDonald, A. M.: Evidence of the dependence of groundwater
resources on extreme rainfall in East Africa, Nat. Clim. Change, 3, 374–378, https://doi.org/10.1038/nclimate1731, 2013b.
Thatch, L. M., Gilbert, J. M., and Maxwell, R. M.: Integrated hydrologic
modeling to untangle the impacts of water management during drought, Groundwater, 58, 377–391, 2020.
Tolley, D., Foglia, L., and Harter, T.: Sensitivity Analysis and
Calibration of an Integrated Hydrologic Model in an Irrigated Agricultural
Basin with a Groundwater-Dependent Ecosystem, Water Resour. Res., 55, 7876–7901, https://doi.org/10.1029/2018WR024209, 2019.
Tran, H., Zhang, J., Cohard, J.-M., Condon, L. E., and Maxwell, R. M.:
Simulating g roundwater-Streamflow Connections in the Upper Colorado River
Basin, Groundwater, 58, 392–405, https://doi.org/10.1111/gwat.13000, 2020.
Tregoning, P., McClusky, S., van Dijk, A. I. J. M., and Crosbie, R. S.:
Assessment of GRACE satellites for groundwater estimation in Australia, National Water Commission, Canberra, Waterlines Report Series No 71, 2012.
Troldborg, L., Refsgaard, J. C., Jensen, K. H., and Engesgaard, P.: The
importance of alternative conceptual models for simulation of concentrations
in a multi-aquifer system, Hydrogeol. J., 15, 843–860, 2007.
Tustison, B., Harris, D., and Foufoula-Georgiou, E.: Scale issues in
verification of precipitation forecasts, J. Geophys. Res., 106, 11775–11784, 2001.
UNESCO: World water balance and water resources of the earth, Vol. USSR committee for the international hydrologic decade, UNESCO, Paris, 1978.
Van Vliet, M. T., Flörke, M., Harrison, J. A., Hofstra, N., Keller, V.,
Ludwig, F., Spanier, J. E., Strokal, M., Wada, Y., Wem, Y., and Williams, R. J.: Model inter-comparison design for large-scale water quality models, Curr.
Opin. Env. Sust., 36, 59–67, https://doi.org/10.1016/j.cosust.2018.10.013, 2019.
Van Werkhoven, K., Wagener, T., Tang, Y., and Reed, P.: Understanding
watershed model behavior across hydro-climatic gradients using global
sensitivity analysis, Water Resour. Res., 44, W01429,
https://doi.org/10.1029/2007WR006271, 2008.
Van Loon, A. F., Gleeson, T., Clark, J., Van Dijk, A. I. J. M., Stahl, K.,
Hannaford, J., Di Baldassarre, G., Teuling, A. J., Tallaksen, L. M.,
Uijlenhoet, R., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B.,
Wagener, T., Rangecroft, S., Wanders, N., and Van Lanen, H. A. J.: Drought in the Anthropocene, Nat. Geosci., 9, 89–91, https://doi.org/10.1038/ngeo2646, 2016.
Van Loon, A. F., Kumar, R., and Mishra, V.: Testing the use of standardised indices and GRACE satellite data to estimate the European 2015 groundwater drought in near-real time, Hydrol. Earth Syst. Sci., 21, 1947–1971, https://doi.org/10.5194/hess-21-1947-2017, 2017.
Vergnes, J.-P. and Decharme, B.: A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges, Hydrol. Earth Syst. Sci., 16, 3889–3908, https://doi.org/10.5194/hess-16-3889-2012, 2012.
Vergnes, J.-P., Decharme, B., and Habets, F.: Introduction of groundwater
capillary rises using subgrid spatial variability of topography into the
ISBA land surface model, J. Geophys. Res.-Atmos., 119, 11065–11086,
https://doi.org/10.1002/2014JD021573, 2014.
Vergnes, J.-P., Roux, N., Habets, F., Ackerer, P., Amraoui, N., Besson, F., Caballero, Y., Courtois, Q., de Dreuzy, J.-R., Etchevers, P., Gallois, N., Leroux, D. J., Longuevergne, L., Le Moigne, P., Morel, T., Munier, S., Regimbeau, F., Thiéry, D., and Viennot, P.: The AquiFR hydrometeorological modelling platform as a tool for improving groundwater resource monitoring over France: evaluation over a 60-year period, Hydrol. Earth Syst. Sci., 24, 633–654, https://doi.org/10.5194/hess-24-633-2020, 2020.
Visser, W. C.: Crop growth and availability of moisture, J. Sci. Food Agr., 10, 1–11, 1959.
Wada, Y., van Beek, L. P. H., van Kempen, C. M., Reckman, J. W. T. M., Vasak, S., and Bierkens, M. F. P.: Global depletion of groundwater resources.
Geophys. Res. Lett. 37, L20402, https://doi.org/10.1029/2010GL044571, 2010.
Wada, Y., Wisser, D., and Bierkens, M. F. P.: Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources, Earth Syst. Dynam., 5, 15–40, https://doi.org/10.5194/esd-5-15-2014, 2014.
Wada, Y.: Modeling Groundwater Depletion at Regional and Global Scales:
Present State and Future Prospects, Surv. Geophys., 37, 419–451, https://doi.org/10.1007/s10712-015-9347-x, 2016.
Wada, Y. and Bierkens, M. F. P.: Sustainability of global water use: past
reconstruction and future projections, Environ. Res. Lett., 9, 104003, https://doi.org/10.1088/1748-9326/9/10/104003, 2014.
Wada, Y. and Heinrich, L.: Assessment of transboundary aquifers of the
world–vulnerability arising from human water use, Environ. Res. Lett., 8, 024003, https://doi.org/10.1088/1748-9326/8/2/024003, 2013.
Wagener, T. and Gupta, H. V.: Model identification for hydrological
forecasting under uncertainty, Stoch. Env. Res. Risk A., 19, 378–387, 2005.
Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment
classification and hydrologic similarity, Geography Compass, 1, 901–931,
https://doi.org/10.1111/j.1749-8198.2007.00039.x, 2007.
Wagener, T. and Pianosi, F.: What has Global Sensitivity Analysis ever done
for us? A systematic review to support scientific advancement and to inform
policy-making in earth system modelling, Earth-Sci. Rev., 194, 1–18,
https://doi.org/10.1016/j.earscirev.2019.04.006, 2019.
Wagener, T., Boyle, D. P., Lees, M. J., Wheater, H. S., Gupta, H. V., and Sorooshian, S.: A framework for development and application of hydrological models, Hydrol. Earth Syst. Sci., 5, 13–26, https://doi.org/10.5194/hess-5-13-2001, 2001.
Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J.,
Gupta, H. V., Kumar, P., Rao, C. S., Basu, N. B., and Wilson, J. S.: The future of hydrology: An evolving science for a changing world, Water Resour. Res., 46, W05301, https://doi.org/10.1029/2009WR008906, 2010.
Wagener, T., Gleeson, T., Coxon, G., Hartmann, A., Howden, N., Pianosi, F.,
Rahman, M., Rosolem, R., Stein, L., and Woods, R.: On doing hydrology with
dragons: Realizing the value of perceptual models and knowledge
accumulation, Wiley Interdisciplinary Reviews: Water, 8, e1550, https://doi.org/10.1002/wat2.1550, 2021.
Wang, F., Ducharne, A., Cheruy, F., Lo, M. H., and Grandpeix, J. L.: Impact
of a shallow groundwater table on the global water cycle in the IPSL
land-atmosphere coupled model, Clim. Dynam., 50, 3505–3522,
https://doi.org/10.1007/s00382-017-3820-9, 2018.
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and
Schewe, J.: The Inter-Sectoral Impact Model Intercomparison Project
(ISI–MIP): Project framework, P. Natl. Acad. Sci. USA, 111, 3228–3232, https://doi.org/10.1073/pnas.1312330110, 2014.
Weiland, F. C. S., Vrugt, J. A., van Beek, R. (L.) P. H., Weerts, A. H., and Bierkens, M. F. P.: Significant uncertainty in global scale hydrological modeling from precipitation data errors, J. Hydrol., 529, 1095–1115, https://doi.org/10.1016/j.jhydrol.2015.08.061, 2015.
Winter, T. C., Harvey, J. W., Franke, O. L., and Alley, W. M.: Ground water and surface water: a single resource, U.S. Geological Survey, Circular, 1139, 79 pp., 1998.
Woolfenden, L. R. and Nishikawa, T.: Simulation of groundwater and
surface-water resources of the Santa Rosa Plain watershed, Sonoma County,
California, USGS Scientific Investigations Report 2014–5052,
U.S. Geological Survey, Reston, VA, 2014.
Yang, J., Griffiths, J., and Zammit, C.: National classification of
surface–groundwater interaction using random forest machine learning
technique, River Res. Appl., 35, 932–943, https://doi.org/10.1002/rra.3449, 2019.
Yilmaz, K., Gupta, H. V., and Wagener, T.: Towards improved distributed
modeling of watersheds: A process based diagnostic approach to model
evaluation, Water Resour. Res., 44, W09417, https://doi.org/10.1029/2007WR006716, 2009.
Zaherpour, J., Gosling, S. N., Mount, N., Schmied, H. M., Veldkamp, T. I. E.,
Dankers, R., Eisner, S., Gerten, D., Gudmundsson, L., Haddeland, I., Hanasaki, N., Kim, H., Leng, G., Liu, J., Masaki, Y., Oki, T., Pokhrel, Y., Satoh, Y., Schewe, J., and Wada, Y.: Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts, Environ. Res. Lett., 13, 065015, https://doi.org/10.1088/1748-9326/aac547, 2018.
Zell, W. O. and Sanford, W. E.: Calibrated Simulation of the Long-Term
Average Surficial Groundwater System and Derived Spatial Distributions of
its Characteristics for the Contiguous United States, Water Resour.
Res., 56, e2019WR026724, https://doi.org/10.1029/2019WR026724, 2020.
Zipper, S. C., Soylu, M. E., Booth, E. G., and Loheide, S. P.: Untangling
the effects of shallow groundwater and soil texture as drivers of
subfield-scale yield variability, Water Resour. Res., 51, 6338–6358, 2015.
Zipper, S. C., Soylu, M. E., Kucharik, C. J., and Loheide, S. P.:
Quantifying indirect groundwater-mediated effects of urbanization on
agroecosystem productivity using MODFLOW-AgroIBIS (MAGI), a complete
critical zone model, Ecol. Model., 359, 201–219, 2017.
Zhang, M. and Burbey, T. J.: Inverse modelling using PS-InSAR data for improved land subsidence simulation in Las Vegas Valley, Nevada, Hydrol. Process., 30, 4494–516, 2016.
Zhou, Y. and Li, W.: A review of regional groundwater flow modeling, Geosci. Front., 2, 205–214, 2011.
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Groundwater is increasingly being included in large-scale (continental to global) land surface...