Articles | Volume 10, issue 6
https://doi.org/10.5194/gmd-10-2117-2017
https://doi.org/10.5194/gmd-10-2117-2017
Development and technical paper
 | 
06 Jun 2017
Development and technical paper |  | 06 Jun 2017

JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere

Darren Engwirda

Related subject area

Numerical methods
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary
Assessing the benefits of approximately exact step sizes for Picard and Newton solver in simulating ice flow (FEniCS-full-Stokes v.1.3.2)
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024,https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary

Cited articles

Adcroft, A., Campin, J.-M., Hill, C., and Marshall, J.: Implementation of an atmosphere-ocean general circulation model on the expanded spherical cube, Mon. Weather Rev., 132, 2845–2863, 2004.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA technical memorandum, NESDIS NGDC-24, https://doi.org/10.7289/V5C8276M , 2009.
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, Methods in computational physics, 17, 173–265, 1977.
Bernard, P.-E., Chevaugeon, N., Legat, V., Deleersnijder, E., and Remacle, J.-F.: High-order h-adaptive discontinuous Galerkin methods for ocean modelling, Ocean Dynam., 57, 109–121, 2007.
Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates, Ocean Model., 4, 55–88, 2002.
Download
Short summary
A new algorithm for the generation of very high-quality staggered unstructured grids for multi-resolution ocean and atmospheric modelling is described. Through use of unstructured triangulation and grid-optimisation techniques, it is shown that meshes satisfying a number of important a priori grid-quality constraints can be constructed. This new algorithm is expected to be of interest to both developers and users of unstructured general circulation models.