Articles | Volume 7, issue 5
https://doi.org/10.5194/gmd-7-2065-2014
https://doi.org/10.5194/gmd-7-2065-2014
Model description paper
 | 
15 Sep 2014
Model description paper |  | 15 Sep 2014

On the sensitivity of 3-D thermal convection codes to numerical discretization: a model intercomparison

P.-A Arrial, N. Flyer, G. B. Wright, and L. H. Kellogg

Related authors

A 3-D RBF-FD solver for modeling the atmospheric global electric circuit with topography (GEC-RBFFD v1.0)
V. Bayona, N. Flyer, G. M. Lucas, and A. J. G. Baumgaertner
Geosci. Model Dev., 8, 3007–3020, https://doi.org/10.5194/gmd-8-3007-2015,https://doi.org/10.5194/gmd-8-3007-2015, 2015

Related subject area

Solid Earth
ShellSet v1.1.0 parallel dynamic neotectonic modelling: a case study using Earth5-049
Jon B. May, Peter Bird, and Michele M. C. Carafa
Geosci. Model Dev., 17, 6153–6171, https://doi.org/10.5194/gmd-17-6153-2024,https://doi.org/10.5194/gmd-17-6153-2024, 2024
Short summary
FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth
Jan Swierczek-Jereczek, Marisa Montoya, Konstantin Latychev, Alexander Robinson, Jorge Alvarez-Solas, and Jerry Mitrovica
Geosci. Model Dev., 17, 5263–5290, https://doi.org/10.5194/gmd-17-5263-2024,https://doi.org/10.5194/gmd-17-5263-2024, 2024
Short summary
Automatic adjoint-based inversion schemes for geodynamics: reconstructing the evolution of Earth's mantle in space and time
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024,https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Benchmarking the accuracy of higher-order particle methods in geodynamic models of transient flow
Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Elbridge Gerry Puckett, and Cedric Thieulot
Geosci. Model Dev., 17, 4115–4134, https://doi.org/10.5194/gmd-17-4115-2024,https://doi.org/10.5194/gmd-17-4115-2024, 2024
Short summary
REHEATFUNQ (REgional HEAT-Flow Uncertainty and aNomaly Quantification) 2.0.1: a model for regional aggregate heat flow distributions and anomaly quantification
Malte Jörn Ziebarth and Sebastian von Specht
Geosci. Model Dev., 17, 2783–2828, https://doi.org/10.5194/gmd-17-2783-2024,https://doi.org/10.5194/gmd-17-2783-2024, 2024
Short summary

Cited articles

Bercovici, D., Schubert, G., Glatzmaier, G. A., and Zebib, A.: Three-dimensional thermal convection in a spherical shell, J. Fluid Mech., 206, 75–104, https://doi.org/10.1017/S0022112089002235, 1989.
Bercovici, D., Schubert, G., and Glatzmaier, G. A.: Modal growth and coupling in 3-Dimensional spherical convection, Geophys. Astrophys. Fluid Dyn., 61, 149–159, https://doi.org/10.1080/03091929108229041, 1991.
Brooks, A. N.: A Petrov-Galerkin Finite Element Formulation for Convection Dominated Flows, Ph.D. thesis, Cali. Inst. of Technol., Pasadena, 1981.
Busse, F. H.: Patterns of Convection in Spherical Shells, J. Fluid Mech., 72, 67–85, https://doi.org/10.1017/S0022112075002947, 1975.
Busse, F. H. and Riahi, N.: Patterns of Convection in Spherical Shells 2., J. Fluid Mech., 123, 283–301, https://doi.org/10.1017/S0022112082003061, 1982.
Download