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Abstract. Fully 3-D numerical simulations of thermal con-
vection in a spherical shell have become a standard for study-
ing the dynamics of pattern formation and its stability un-
der perturbations to various parameter values. The question
arises as to how the discretization of the governing equa-
tions affects the outcome and thus any physical interpreta-
tion. This work demonstrates the impact of numerical dis-
cretization on the observed patterns, the value at which sym-
metry is broken, and how stability and stationary behav-
ior is dependent upon it. Motivated by numerical simula-
tions of convection in the Earth’s mantle, we consider iso-
viscous Rayleigh–Bénard convection at infinite Prandtl num-
ber, where the aspect ratio between the inner and outer shell
is 0.55. We show that the subtleties involved in develop-
ing mantle convection models are considerably more deli-
cate than has been previously appreciated, due to the rich dy-
namical behavior of the system. Two codes with different nu-
merical discretization schemes – an established, community-
developed, and benchmarked finite-element code (CitcomS)
and a novel spectral method that combines Chebyshev poly-
nomials with radial basis functions (RBFs) – are compared.
A full numerical study is investigated for the following three
cases. The first case is based on the cubic (or octahedral)
initial condition (spherical harmonics of degree` = 4). How
this pattern varies to perturbations in the initial condition and
Rayleigh number is studied. The second case investigates the
stability of the dodecahedral (or icosahedral) initial condition
(spherical harmonics of degree` = 6). Although both meth-
ods first converge to the same pattern, this structure is ulti-
mately unstable and systematically degenerates to cubic or
tetrahedral symmetries, depending on the code used. Lastly,

a new steady-state pattern is presented as a combination of
third- and fourth-order spherical harmonics leading to a five-
cell or hexahedral pattern and stable up to 70 times the crit-
ical Rayleigh number. This pattern can provide the basis for
a new accuracy benchmark for 3-D spherical mantle convec-
tion codes.

1 Introduction

For 3-D Rayleigh–Bénard convection in a spherical shell at
infinite Prandtl number, analytical studies byBusse(1975)
andBusse and Riahi(1988, 1982), using weakly nonlinear
perturbation theory, predicted a set of solutions that exhibited
steady-state polyhedral pattern formations that would also
persist into stronger nonlinear regimes. Later, these solutions
were numerically verified byBercovici et al.(1989, 1991),
Ratcliff and Schubert(1996), andMachetel et al.(1986) for
up to 100 times the critical Rayleigh number (Ra = 712)
(such as the cubic symmetry test case – which forms the
corner structure of an octahedron). Some studies, such as
Bercovici et al.(1991), have questioned the properties of
these steady-state solutions by considering the influence of
the nondominant spherical harmonic modes on modifying
boundary layer thickness as the Rayleigh number increased.
However, the stability of these polyhedral patterns to pertur-
bations in the initial conditions, i.e thedominantspherical
harmonic modes that actually define them remains unclear.
Furthermore, the dynamical behavior of steady-state solu-
tions with higher orders of polyhedral symmetry predicted
by Busse(1975) (e.g., dodecahedral symmetry) has not been
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examined. From a computational standpoint, each numerical
scheme will handle unstable steady states, nonuniqueness in
the solution, and bifurcations differently, depending on how
the continuous eigenvalue spectrum has been discretely rep-
resented when linearized around the steady state.

In this light, the goal of this paper is to illustrate that the
subtleties involved in the development of numerical mantle
convection models are considerably more delicate than has
been previously appreciated, due to the rich dynamical be-
havior of the system. For fully nonlinear large-scale systems
with millions of unknowns, as considered in this paper, using
classical eigenvalue stability analysis to understand the influ-
ence of numerical discretization is not an option as (1) the
analytical solution and thus the continuous eigenvalue spec-
trum is not available and (2) calculating the eigenvalues for
such systems is computationally not feasible. Although re-
cent advancements have been made in developing iterative
schemes to detect Hopf bifurcations in large-scale systems
(Meerbergen and Spence, 2010; Elman et al., 2012), the fol-
lowing study exhibits a much richer pattern of dynamical in-
stability and transitional behavior, leading to a variety of end
states. Therefore, we will perform an intensive computational
investigation of the stationary behavior and stability of three
different types of symmetries with regard to perturbations on
the initial condition and as a function ofRa, observing how
both transitional and end states are strongly dependent on nu-
merical discretization.

The numerical studies are done using two state-of-
the-art models, CitcomS-3.1.1 (http://www.geodynamics.
org/cig/software/citcoms) and a pseudospectral radial basis
function–Chebyshev model (Wright et al., 2010) (RBF-PS),
with the former funded on a ongoing basis by the USA Na-
tional Science Foundation. Section2 provides an overview
of the system of partial differential equations (PDEs) to be
solved and the computational methods used. Section3 nu-
merically studies the sensitivity of the steady-state solution
to perturbations in the cubic initial condition for both low and
higherRa number. Section4 explores the stability regimes of
a higher order initial spherical symmetry, studying the tran-
sition between steady states as a function ofRa. Section5
introduces a new initial condition mode, leading to the obser-
vation of a novel steady-state pattern and future benchmark
for assessing model performance.

2 Governing equations and computational models

The governing equations describe a Boussinesq fluid at in-
finite Prandtl number in a 3-D spherical shell that is heated
from below and cooled from above:

∇ ·u = 0 (continuity), (1)

∇ ·

[
η
(
∇u + {∇u}

T
)]

+ RaT r̂ = ∇p (momentum), (2)

∂T

∂t
+ u · ∇T = ∇

2T (energy), (3)

whereu = (ur ,uθ ,uλ) is the velocity field in spherical co-
ordinates (θ : latitude;λ: longitude),p is pressure,T is tem-
perature,̂r is the unit vector in the radial direction,η is the
viscosity, andRa is the Rayleigh number defined below. The
boundary conditions on the fluid velocity at the inner and
outer surfaces of the spherical shell are

ur |r=Ri ,Ro = 0︸ ︷︷ ︸
impermeable

(4)

and

r
∂

∂r

(uθ

r

)∣∣∣∣
r=Ri ,Ro

= r
∂

∂r

(uλ

r

)∣∣∣∣
r=Ri ,Ro

= 0︸ ︷︷ ︸
shear-stress-free

, (5)

whereRi = 11/9 is the radius of the inner surface of the 3-
D spherical shell andRo = 20/9 is the radius of the outer
surface as measured fromr = 0. The boundary conditions
on the temperature are

T (Ri,θ,λ) = 1 and T (Ro,θ,λ) = 0.

Equations (1)–(3) are nondimensionalized with the length
scale chosen as the approximate thickness of the mantle,
1R = Ro−Ri = 1; the timescale chosen as the thermal diffu-
sion time of mantle minerals,t = (1R)2/κ (noting a nondi-
mensional timet = 1 corresponds to 265 billion years, i.e.,
58 times the age of the Earth); and the temperature scale cho-
sen as the difference between the temperature at the inner and
outer boundaries,1T = 1. The fluid is treated as isoviscous:
η = constant. Thus, the dynamics of the fluid are governed
entirely by theRa, which can be interpreted as a ratio of the
destabilizing force due to the buoyancy of the heated fluid to
the stabilizing force due to the viscosity of the fluid and heat
transfer by conduction. It takes the specific form of

Ra =
ρ0gα1T (1R)3

κη
,

whereρ0 is a reference density of the fluid,g is the accelera-
tion due to gravity, andα is the coefficient of thermal expan-
sion.

The initial condition for the temperature is specified as

T (r,θ,λ) =

Ri(r − Ro)

r(Ri − Ro)
+ 0.01TP(θ,λ)sin

(
π

r − Ri

Ro − Ri

)
, (6)

with TP(θ,λ) =

Ym=0
` (θ,λ)︸ ︷︷ ︸

axisymmetric

+ εY
m 6=0
` (θ,λ)︸ ︷︷ ︸

nonaxisymmetric

 . (7)
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The first term in Eq. (6) represents a purely conductive
temperature profile, while the second termTP is a pertur-
bation to this profile, determining the final patterns of poly-
hedral symmetry.Ym

` denotes the normalized spherical har-
monic of degreè and orderm (Eq. 8) and the nonaxisym-
metric perturbationε will play an important role in studying
transitional pattern formations in the cubic case.

Ym
` (θ,λ) =

√
(2` + 1)(` − m)!

2π(1+ δm0)(` + m)!
P m

` (cosθ)cos(mλ), (8)

whereP m
` are the (unnormalized) associated Legendre func-

tions andδm0 is the Kronecker delta. It should be noted that
the stability of preferred patterns in purely axisymmetric con-
vective flows has been studied byZebib et al.(1980, 1983).

2.1 CitComS

CitcomS is a second-order finite-element code written in C.
Its purpose is to explore mantle convection problems in 3-
D spherical geometry (Zhong et al., 2000; Tan et al., 2006).
Developed from the software Citcom (Moresi and Soloma-
tov, 1995; Moresi et al., 1996), a code structured for 3-D
Cartesian geometry, CitcomS employs an Uzawa algorithm
to solve the momentum equation coupled with the incom-
pressibility constraints (Ramage and Wathen, 1994). The en-
ergy equation is solved with a streamline upwind Petrov–
Galerkin method (Brooks, 1981). We used version 3.1.1,
available from the Computational Infrastructure for Geody-
namics (http://www.geodynamics.org/cig/software/citcoms).

The global mesh is obtained by first dividing the spher-
ical shell into 12 caps of approximatively equal size. Then
each cap is divided intoN × N elements in the angular di-
rections andM elements in the vertical direction, forming
a layered brick-like structure. For each 3-D element, eight
velocity nodes with trilinear interpolation functions and one
constant pressure node are used. Per cap, we will be using 48
elements in each dimension, resulting in 12× 48× 48× 48
total elements.

2.2 RBF-PS

Here, an overview of the spectral RBF-PS model is given; for
a detailed description of the numerical method, seeWright
et al.(2010). To spatially discretize the 3-D spherical shell, a
“2(θ,λ) + 1(r)” layered approach is used. In the radial di-
rection, M + 2 Chebyshev nodes (corresponding toM in-
terior points and two boundary points) andN “scattered”
nodes (for example, seeWomersley and Sloan, 2003/2007)
are placed on each of the resultingM spherical surfaces. This
gives a tensor product structure between the radial and lateral
directions, which allows the spatial operators to be computed
in O(M2N) + O(MN2) operations instead ofO(M2N2).
While all radial derivatives are discretized using Cheby-
shev polynomials, differential operators in the latitudinal di-
rection (θ ) and longitudinal direction (λ) are approximated

discretely on each spherical surface using radial basis func-
tions (RBFs). Within a given limit, RBFs reproduce spher-
ical harmonics (Fornberg and Piret, 2007, 2008). However,
they generally give higher accuracy than spherical harmon-
ics for nonlinear systems of PDEs (Wright et al., 2010; Flyer
and Wright, 2007, 2009; Flyer and Fornberg, 2011; Flyer
et al., 2012) (for examples of how to implement RBFs on
spherical surfaces, seeFlyer and Wright, 2007, 2009). For
all cases in the paper,N = 4096 nodes are used on each
sphere, withM = 43 Chebyshev nodes used in the radial di-
rection. The time discretization of the energy equation uses
a semi-implicit method. All terms that involve radial deriva-
tives are time-stepped with a Crank–Nicolson method, while
terms involving latitudinal and longitudinal derivatives are
time-stepped with a third-order Adams–Bashforth method.

3 Stability of cubic steady state with regard to
perturbations in the initial condition at varying Ra

The cubic initial condition temperature profile used in many
3-D spherical convection studies – such asRatcliff and Schu-
bert (1996), Kameyama et al.(2008), Zhong et al.(2000),
Yoshida and Kageyama(2004), Stemmer et al.(2006),
Choblet et al.(2007), Zhong et al.(2008), andKameyama
et al.(2008) – is specified by lettingTP in Eq. (7) be equal to

TP(θ,λ) =

Y 0
4 (θ,λ) +

5

7
(1− δ)︸ ︷︷ ︸

ε

Y 4
4 (θ,λ)

 , (9)

whereδ = 0. A perturbation parameterδ has been introduced
to allow us to slowly perturb the amplitude of the nonaxisym-
metric mode. Theθ−λ temperature dependence of Eq. (9) on
a spherical shell surface can be seen in Fig.1a forδ = 0. Asδ

increases the initial condition slowly tends to a pureY 0
4 initial

condition, with the amplitude of the four plumes along the
equatorial region decreasing and progressively merging to-
gether as seen in Fig.1b for δ = 0.30. It should be noted here
that δ = 0 does not correspond to perfect cubic symmetry
but has, however, become the standard in modern geophysi-
cal and astrophysical simulations such as those cited above.
Indeed, the maximum amplitude of the plumes in Fig.1a
varies slightly between the poles and the equator. Perfect cu-
bic symmetry, as predicted byBusse(1975), numerically dis-
covered byYoung(1974), and with early simulations byMa-
chetel et al.(1986) andBercovici et al.(1989), is obtained

with ε =

√
5
7 instead of57.

In the next two subsections, we examine how transitions
from the cubic steady state to axisymmetric patterns of lower
order occur as a function of perturbing the nonaxisymmet-
ric mode of the initial condition, and more interestingly
how these transitions differ depending on the numerical dis-
cretization of the governing equations.
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b)
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TP
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Figure 1. θ − λ temperature dependence of the cubic initial condi-
tion (Eq.9) for δ = 0 (a) andδ = 0.30 (b).

3.1 Sensitivity to amplitude perturbations in the initial
condition at low Ra

At low Rayleigh number, 5000≤ Ra ≤ 10 000, the cubic
steady-state pattern is stable for both models up toδ = 0.30.
In other words, the cubic pattern is maintained if the ratio of
the spectral coefficient ofY 4

4 to Y 0
4 is at least 1/2. This can be

seen in Fig.2, where the isosurfaces of residual temperature
(see caption for further details, as this is how 3-D convection
will be illustrated in the paper) are plotted as a function ofδ.

Incrementingδ by 0.01, the RBF-PS model displays a
clear transition between the cubic steady state and an order
` = 4 axisymmetric pattern. In contrast, CitcomS converges
to a transitional steady-state pattern for 0.31≤ δ ≤ 0.32, in
which the four plumes along the equator grow and merge to-
gether two by two, but the process is not completed. This is
never observed with the RBF-PS discretization (see Fig.2).
At higher values ofδ, CitcomS and the RBF-PS method con-
verge to the same pattern. Thus, at the parameter value of
destabilization (δ = 0.30), the numerical discretization plays
an important role in what pattern emerges. Also, the transi-
tion point at which theY 0

4 spherical harmonic mode com-
pletely dominates and theY 4

4 part of the initial condition no
longer influences the final pattern of convection differs be-
tween the two models.

Figure3 shows the evolution of the volume-averaged tem-
perature (< T >) for both models atRa = 7000. As just
discussed, the figure illustrates that CitcomS converges to
three different steady states, depending on the value ofδ. In

contrast, forδ > 0.30, the figure shows that the RBF-PS so-
lution is attracted to thè = 4 axisymmetric mode. In either
case, the solution, once destabilized, transitions to patterns
characterized by a higher< T >.

3.2 Sensitivity to amplitude perturbations in the initial
condition at high Ra

As would be expected, at higherRa, the cubic steady state is
much more sensitive to small perturbations in the initial con-
dition. ForRa = 70 000, theY 4

4 mode of the initial condition
was very slowly perturbed in increments ofδ = 5× 10−3,
as shown in Fig.4. The cubic steady state is destabilized
at δ ≥ 0.065 for CitcomS andδ ≥ 0.070 for the RBF-PS
method with different transitional patterns.

With CitcomS, the destabilization shows a transitional pat-
tern between a cubic steady state to an unsteady axisymmet-
ric pattern atδ = 0.065 andδ = 0.007, characterized by two
diametrically opposed upwelling plumes in the equatorial re-
gion with a great circle of downwelling that encompasses the
polar regions. It develops via a two-by-two merging of up-
welling plumes on the equator; initial upwelling plumes at
the poles are destabilized and migrate to the equatorial re-
gion. The end state for perturbations ofδ ≥ 0.75 is also an
unsteady axisymmetric pattern. However, the pattern of con-
vection has been completely rearranged, with upwelling now
occurring in the polar regions and downwelling in the equa-
torial region, yielding a strong dominance of an oscillating
` = 2 mode. The quasi-uniform oscillation of this end state
can be seen in the time traces of the outerNu and volume-
averaged root-mean-square (rms) velocity in Fig.5, where
the region fort ≥ 0.2 has been enlarged for better viewing.

With the RBF-PS model, the cubic steady state also even-
tually evolves into an unsteady axisymmetric pattern for
δ ≥ 0.085, similar to that of the CitcomS as shown in Fig.4.
However, the transition between these two states is very dif-
ferent than what was observed with the CitcomS model. For
δ = 0.07, the cubic pattern is only partially destabilized. Two
plumes on one side merge and begin to pulsate. Although this
structure is unsteady, it stays stable with no other changes in
the general pattern of convection observed. Atδ > 0.075, the
cubic geometry is fully destabilized and the model begins
to converge to the unsteady axisymmetric pattern, seen for
δ >= 0.09.

For the two methods, the stability of the cubic symmetry
pattern as a function of the Rayleigh number and the amount
of perturbationδ to the initial condition is summarized in
Fig. 6. The amount of perturbation needed to destabilize
the steady-state cubic symmetry pattern begins to decrease
rapidly afterRa ≈ 20 000. The shaded blue and pink regions
depict where transition states are observed for the CitcomS
model and RBF-PS model, respectively. Generally, the evo-
lution of the transition is well defined using both methods.
CitcomS shows a transitional pattern for all Rayleigh num-
bers. A transitional pattern appears with RBF-PS only for
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[!t]

Figure 2. Final convection patterns resulting from perturbations,δ, to the cubic initial condition as obtained with CitcomS (top row) and the
RBF-PS method (bottom row). Diagram is valid for 5000≤ Ra ≤ 10 000. The isosurfaces show the residual temperatureδT = T (r,θ,λ) −

〈T (r)〉, where〈T (r)〉 is the horizontally average temperature. Blue (downwelling – descending motion) and yellow (upwelling – ascending
motion) isosurfaces are forδT equal to−0.15 and 0.15, respectively. The red solid sphere is the inner boundary.
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Figure 3. Time trace of the volume-averaged temperature for the
cubic initial conditions atRa = 7000 for 0≤ δ ≤ 0.33. CitcomS
shows transition to three steady states, while RBF-PS shows only
two. See Fig.2 for the final pattern of convection associated with
each model.

Ra > 30 000. In all cases, using RBF-PS, the transition is not
characterized by a single pattern, as in CitcomS, but by a pro-
gressive transition as a function of the perturbation (δ). Sur-
prisingly, this transitional regime broadens for large Rayleigh
numbers (see red shaded area withRa ≥ 50 000), implying
larger perturbations are required to fully diminish the influ-
ence of thè = 4 modes. These results clearly demonstrate
how numerical discretization impacts pattern formation and
its interpretation in simulations of 3-D convective flow.

4 Stability at higher orders of symmetry:
a dodecahedral initial condition

In Busse(1975), a steady-state higher-order convection pat-
tern corresponding to dodecahedral symmetry is predicted.
Here, for the first time (to the authors’ knowledge), the sta-
bility of this pattern for lowRa is studied, with surprising
results on how the numerical discretization scheme severely
affects the interpretation of steady-state stability ranges. The
initial condition is given by Eq. (6) with

TP(θ,λ) =

[
Y 0

6 (θ,λ) +

√
14

11
Y 5

6 (θ,λ)

]
. (10)

The θ − λ temperature dependence on a sphere is shown
in Fig. 7. It has 12 initial plumes of upwelling, forming the
faces of a dodecahedron, where the strongest downwelling
(in dark blue) occurs at the vertices of the pentagons.

The evolution of convection with a dodecahedral initial
condition at aRa = 7000 is presented in Fig.8. Both meth-
ods first converge to a steady-state dodecahedral pattern;
however, this convection pattern is unstable. The symmetry
is broken at different times for RBF-PS and CitcomS mod-
els. Plumes begin to merge aftert = 0.7 with CitcomS, while
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Figure 4. Stability of the cubic steady state atRa = 70 000 with CitcomS (up row) and the RBF-PS method (bottom row). The cubic steady-
state pattern is destabilized forδ ≥ 0.065 with CitcomS andδ ≥ 0.07 with RBF-PS. The figure highlights transitional patterns between the
two main geometries.
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Figure 5. Time trace of(a) the outer Nusselt number and(b) the rms velocity for both models atRa = 70 000 forRa = 70 000 andδ = 0.08
with CitcomS andδ = 0.09 with RBF. Both methods converge to an unsteady oscillating axisymmetric pattern dominated by the` = 2 mode
(see Fig.4).

for the RBF-PS model, plumes do not merge untilt = 2.7.
Surprisingly, the final stable stationary state differs between
the two numerical discretizations: RBF-PS converges to a
tetrahedral pattern, dominated by a` = 3 mode, while Cit-
comS reaches the cubic pattern studied in the previous sec-
tion. In order to reduce the possible effect of spatial dis-
cretization error, mesh resolution in CitcomS was increased
by a factor of 8 to 12× 963 and doubled in the RBF-PS to
51(r) × 6561(θ,λ). The results are displayed in Fig.8. The

same final patterns are observed, with the only difference be-
ing that the dodecahedral pattern is maintained for a longer
period. These results imply that there are at least two sta-
ble branches of solutions that correspond to these patterns;
however, which branch manifests itself in simulations is de-
pendent on the numerical discretization. We will see more
evidence of this later in the discussion.
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value for which it converges to the cubic steady state, while the top
curve is the minimumδ value which converges to an axisymmetric
pattern (steady or unsteady). The black dotted line is the value of
the Rayleigh number that marks the transition between the` = 4
steady state and the unsteady state.
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Figure 7. θ −λ temperature dependence of the dodecahedral initial
condition (Eq.10).

For CitcomS, the mesh discretization shows a symmetri-
cal effect. The shell is initially divided in 12 caps. Each cap
is diametrically opposite to another one (Zhong et al., 2000).
Thus during the transition, we can observe that destabiliza-
tion occurs in symmetrical pairs with respect to the caps. As
a result it is reasonable to presume that mesh discretization
and the cap divisions influence the distribution of numer-
ical errors and favor even modes. Under these conditions,
CitcomS will not reproduce the tetrahedral or the five-cell
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Figure 8. Time trace of the rms velocity for both models atRa =

7000 for two different spatial resolutions.

pattern observed with the RBF method without adding an ad-
ditional initial perturbation representing these odd modes.

The stability of the dodecahedral steady-state solution for
2000≤ Ra ≤ 10 000 can also be seen in the time evolution
of the volume-averaged rms velocity and the inner and outer
Nusselt numbers as given in Fig.9. In all cases of theRa,
the dodecahedral convection pattern is initially observed and
stationary. This pattern is identical in both methods, whether
one considers its geometry, the convergence of rms veloc-
ity, average temperature, or Nusselt numbers before the tran-
sition (Table1). However, weakly unstable modes of lower
spherical harmonic degree become excited and cause the so-
lution to transition to a second steady state. When this transi-
tion occurs in the time evolution is clearly dependent on the
model. For instance att = 2, CitcomS has already reached a
steady-state cubic pattern while RBF-PS is still in the weakly
unstable steady-state dodecahedral pattern.

As the Rayleigh number increases from 2000, the final
stationary pattern observed varies greatly between the two
models, also showing how preferred patterns of convection
in numerical simulations are dependent on the spatial dis-
cretization scheme. Figure10 illustrates these end states for
both numerical methods, starting from the dodecahedral ini-
tial condition for 2000≤ Ra ≤ 70000 for each of the mod-
els. The RBF-PS model shows a clear transition from the do-
decahedral pattern to a variety of steady states, depending
on the Rayleigh number. For 3000≤ Ra ≤ 5750, end-state
convection is dominated by the cubic steady-state pattern
discussed in the previous section. In CitcomS, this pattern
is not seen untilRa = 5000, and persists toRa = 7000. In
fact, the regime within 5000≤ Ra ≤ 5750 is the only range
where both the CitcomS and RBF-PS transition to the same
final steady-state convection pattern. At 5775≤ Ra ≤ 6025,
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Figure 9. Transition between steady states, as evidenced by both the RBF-PS and CitComS models, in the〈Vrms〉 (top panels),Nui (middle
panels), andNuo (bottom panels) for the dodecahedral initial condition.

Table 1.Comparison between computational methods RBF and CitcomS for the dodecahedral stationary pattern at various Rayleigh number.
For CitcomS and aRa = 2000, the dodecahedral pattern does not satisfy stationarity to estimate parameters value.

〈T 〉 〈Vrms〉 Nut Nub

Ra RBF CitS RBF CitS RBF CitS RBF CitS

2000 0.2723 – 8.45 – 1.889 – 1.889 –
3000 0.2521 0.2535 12.97 13.07 2.411 2.413 2.411 2.422
4000 0.2403 0.2414 16.67 16.76 2.768 2.768 2.768 2.777
5000 0.2322 0.2331 19.93 20.01 3.043 3.042 3.043 3.052
6000 0.2261 0.2271 22.89 22.98 3.270 3.269 3.270 3.280
7000 0.2213 0.2223 25.62 25.65 3.465 3.465 3.465 3.476
8000 0.2174 0.2183 28.19 28.31 3.638 3.638 3.638 3.650
9000 0.2141 0.2151 30.62 30.74 3.794 3.793 3.794 3.807
10 000 0.2112 0.2123 32.93 33.07 3.937 3.935 3.937 3.951

a newly observed five-cell pattern emerges as the end station-
ary state in the RBF-PS model. It results from a mixed-mode
interaction between thè= 3 and` = 4 modes, as will be
discussed in the next section. For 6000≤ Ra ≤ 10 000, the
final pattern of convection for RBF-PS is the tetrahedral pat-
tern observed in Fig.8. In contrast, CitcomS transitions to

a stable steady-state axisymmetric` = 2 pattern. ForRa >

10 000, the final patterns become unsteady, yet maintain a re-
semblance to the axisymmetric and tetrahedral patterns seen
in CitcomS and RBF-PS, respectively.
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Figure 10.Transition of dodecahedral plume formation to different
steady states for 2000≤ Ra ≤ 10 000 and to an unsteady state for
10 000< Ra ≤ 70 000 with the RBF-PS method (right column) and
CitcomS (left column).

5 A new convection mode: five cells

At 5750≤ Ra ≤ 6050 with RBF-PS method, the weakly un-
stable dodecahedral pattern relaxed into a steady-state five-
cell convection pattern. This structure is characterized by five
upwelling plumes: two at the poles, each surrounded by a
triangular region of downwelling, and three along the equa-
tor, each surrounded by a square region of downwelling. The
pattern appeared for a narrow range of Rayleigh numbers,
between the cubic pattern at lower Rayleigh number and the
tetrahedral pattern at higher Rayleigh number. This observa-
tion along with the fact that the convective regions of de-
scending motion are defined by both the vertices of a tri-
angle in the polar regions (the case for the tetrahedral pat-
tern) and those of a square in the equatorial regions (the case
for the cubic pattern) leads us consider a mixed-mode inter-
action between thè = 3 and aǹ = 4 modes for an initial
condition. Previous studies of mixed-mode patterns bifurcat-
ing from spherically symmetric ones have been predicted in
Busse and Riahi(1988) and numerically observed inFeudel
et al. (2011). However, these studied reported a seven cell
pattern resulting from an interaction of à= 4 and` = 5

-0.4 -0.2 0 0.2 0.4 0.6

-0.4 -0.2 0 0.2 0.4 0.6

a)

b)

TP

TP

Figure 11. θ − λ temperature dependence of the five cells’ initial
condition (Eq.11) with (a) γ =

1
2 and(b) γ =

11
10.

modes. InChossat and Beltrame(2014), the authors investi-
gated̀ = 3,4 mode interactions in a context compatible with
Rayleigh–Bénard convection without having highlighted the
occurrence of a five-cell structure. Here, we focus on the for-
mation of a steady-state five-cell pattern that is stable at large
Rayleigh number,Ra = 50 000, approximately 70 times the
critical Rayleigh number (Rac = 712, the onset of convec-
tion).

Through numerical experimentation, we discovered that a
combination ofY 3

3 andY 0
4 spherical harmonics will yield a

five-cell pattern. However, in order to determine the volume-
averaged spectral energies or variances between the two
modes that yield the fastest stabilization in a five-cell steady-
state pattern, a parameterγ on theY 0

4 mode is introduced. It
will be varied slowly fromγ equals 0 to 1, in increments of
10−2. The initial condition is now given by Eq. (6) with

TP(θ,λ) =

[
Y 3

3 (θ,λ) + γ Y 0
4 (θ,λ)

]
. (11)

Figure11 displays the initial conditions for two different
values ofγ that will lead to two different steady states.

We begin at a low Rayleigh number, such asRa = 7000.
However, the results hold for even lower Rayleigh num-
bers, down toRa = 1000, just above the onset of convec-
tion. Figure12 shows the evolution of the volume-averaged
temperature and the final convection patterns (isosurfaces
of δT = ±0.15; yellow: ascending motion; blue: descend-
ing motion) asγ is varied. As can be seen, depending on
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the value ofγ , the model converges to three distinct steady
states. Forγ ≤ 0.20, thè = 4 mode has no influence and the
models converge to a steady state defined by theY 3

3 spheri-
cal harmonic mode. This pattern is similar to that found in
Busse and Riahi(1988), except that there is a merging of
the ascending motion in the polar regions. The steady-state
five-cell pattern shown in Fig.12d manifests itself in both
models for 0.2 ≤ γ < 0.3, with the fastest stabilization to this
state forγ = 0.5. As a result, this is what will be used when

a) Ra=7000 b) Ra=10000 c) Ra=20000

d) Ra=30000 e) Ra=40000 f) Ra=50000

Figure 13. Stability of steady-state five-cell convection pattern as
a function of the Rayleigh, displayed by the residual temperature
for γ = 0.5 (a) Ra = 7× 103, (b) 104, (c) 2×104, (d) 3×104,
(e)4×104 and(f) 5×104.

observing the stability of the five-cell pattern as a function of
Rayleigh number. With the RBF-PS model, once the volume-
averaged spectral energies between the two modes are equal
(i.e.,γ = 1), the flow reverts to an axisymmetric steady state,
dominated by thè = 4 mode. With the CitcomS model, the
ratio of the modes only have to be within 10 % of one another
(i.e.,γ = 0.9) for this to occur. Lastly, Fig.13shows that this
convection pattern is not only steady but stable with respect
to perturbing the Rayleigh number for values at least up to
Ra = 50 000, 70 times the critical Rayleigh number. Both
models obtained this result. Also, as the Rayleigh number
increases, the boundary layer thickness decreases, as would
be expected with increased convection.

6 Conclusions

In time-dependent fully nonlinear systems, when numerical
simulations are performed, a great variety of complex spa-
tiotemporal regimes can be observed depending on parameter
values. However, what this paper has illustrated is that what
patterns are actually observed and at which parameter values
they manifest themselves is definitely impacted by the nu-
merical discretization used. Since computation has become a
third arm of physical understanding, along with experimenta-
tion and analysis, it is important to highlight this fact so that
a discretization scheme is not blindly applied just because it
is commonly used, as in the case of spherical harmonics.

Here, we have compared an RBF-Chebyshev discretiza-
tion (RBF-PS) to a finite-element discretization. The latter
is a community-based model called CitcomS, specially de-
signed for studying thermal convection in a 3-D spherical
shell. For simpler spherical symmetries as the cubic pattern
(sometimes referred to as the octahedral pattern), the results
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at low Rayleigh number were more similar between the mod-
els, both destabilizing when the contribution of the nonax-
isymmetric` = 4 spherical harmonic mode in the initial con-
dition fell below 50 %. However, CitcomS showed a transi-
tion to three steady states as this mode was perturbed, while
RBF-PS went directly to thè = 4 axisymmetric mode. At
higher Rayleigh number, the difference in the transitional
states manifested between the two models was more drastic.

The effect of the numerical discretization on pattern for-
mation at higher orders of symmetry, such as dodecahedral
symmetry where the initial condition is defined by a com-
bination of ` = 6 spherical harmonic modes, was of even
greater interest. Although deemed a stable state byBusse
(1975) for Rayleigh numbers near the onset of convection
(Rac = 712), it was shown to be unstable (after a long com-
putational period – equivalent to 25 times the age of the
Earth) for a Rayleigh number of just 2.5 timesRac at ex-
tremely high resolutions for both models. However, regard-
less of the Rayleigh number, the convection evolved com-
pletely differently for each model, with the end steady state
also being very different. For example, atRa = 7000, the
RBF-PS model evolved into a tetrahedral symmetry, and Cit-
comS into a cubic symmetry.

Another outcome of differences in numerical discretiza-
tion can be the discovery of a stable convection pattern (with
regard to perturbations in the Rayleigh number) that does
not seem to have been highlighted in the literature. In study-
ing the dodecahedral convection pattern, in a narrow range
of the Rayleigh number, the RBF-PS model stabilized to a
five-cell steady-state pattern that was never seen in the Cit-
comS model regardless of the Rayleigh number. This led
the authors to investigate its formation, discovering that it
is a strongly stable steady-state pattern of convection up to
Ra = 50 000. Both models agreed that it forms by the inter-
action of theY 3

3 andY 0
4 modes.

As a general observation, both methods show a good
match in the cubic and five-cell steady-state patterns, and
even for the stationary dodecahedral pattern before the tran-
sition. However, the above in-depth computational study
strongly illustrates how numerical discretization can impact
both the resulting patterns of convection and the transitional
states that occur. This is particularly true when scientists
have to rely on such simulations in cases of strongly non-
linear systems with over a million unknowns. In such cases,
eigenvalue stability analysis is simply not an option. Further-
more, we hope to have shed some light on cases of higher-
order symmetry (such as the dodecahedral case), as well as
nonsymmetric cases such as the five-cell pattern discussed.
Although these patterns of convection are not expected to
be found in the Earth, they can further aid the verification,
validation and comparison of new numerical methods, al-
gorithms, and codes, as applied to mantle convection in the
Earth and other terrestrial planets. We also hope that this pa-
per will stimulate further investigation into how the type and

order of numerical discretization affects pattern formation in
the context of benchmarking community codes.
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