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Abstract. Fully 3-D numerical simulations of thermal con- a new steady-state pattern is presented as a combination of
vection in a spherical shell have become a standard for studythird- and fourth-order spherical harmonics leading to a five-
ing the dynamics of pattern formation and its stability un- cell or hexahedral pattern and stable up to 70 times the crit-
der perturbations to various parameter values. The questioital Rayleigh number. This pattern can provide the basis for
arises as to how the discretization of the governing equaa new accuracy benchmark for 3-D spherical mantle convec-
tions affects the outcome and thus any physical interpretation codes.

tion. This work demonstrates the impact of numerical dis-
cretization on the observed patterns, the value at which sym-

metry is broken, and how stability and stationary behav-

ior is dependent upon it. Motivated by numerical simula- 1 Introduction

tions of convection in the Earth’'s mantle, we consider iso-

viscous Rayleigh—Bénard convection at infinite Prandtl num-For 3-D Rayleigh—-Bénard convection in a spherical shell at
ber, where the aspect ratio between the inner and outer shelffinite Prandtl number, analytical studies Bysse(1979

is 0.55. We show that the subtleties involved in develop-andBusse and Riah{1988 1982, using weakly nonlinear

ing mantle convection models are considerably more deli-perturbation theory, predicted a set of solutions that exhibited
cate than has been previously appreciated, due to the rich dyiteady-state polyhedral pattern formations that would also
namical behavior of the system. Two codes with different nu-persist into stronger nonlinear regimes. Later, these solutions
merical discretization schemes — an established, communitywere numerically verified bydercovici et al.(1989 1991),
developed, and benchmarked finite-element code (CitcomsiRatcliff and Schubert1996, andMachetel et al(1986 for

and a novel spectral method that combines Chebyshev polyP to 100 times the critical Rayleigh numbekd(=712)
nomials with radial basis functions (RBFs) — are compared (Such as the cubic symmetry test case — which forms the
A full numerical study is investigated for the following three COrner structure of an octahedron). Some studies, such as
cases. The first case is based on the cubic (or octahedraljercovici et al.(1991), have questioned the properties of
initial condition (spherical harmonics of degree- 4). How these steady-state solutions by considering the influence of
this pattern varies to perturbations in the initial condition andthe nondominant spherical harmonic modes on modifying
Rayleigh number is studied. The second case investigates tHeoundary layer thickness as the Rayleigh number increased.
stability of the dodecahedral (or icosahedral) initial condition However, the stability of these polyhedral patterns to pertur-
(spherical harmonics of degrée= 6). Although both meth- bations in the initial conditions, i.e thdominantspherical

ods first converge to the same pattern, this structure is ultitarmonic modes that actually define them remains unclear.
mately unstable and systematically degenerates to cubic drurthermore, the dynamical behavior of steady-state solu-

tetrahedral symmetries, depending on the code used. Lastl%?résug;glgigg‘a(; %rd3r03dg‘;;ﬁéﬁ?gﬁgiﬂsn%’:t@‘;tgsp;%‘:ig;dn
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examined. From a computational standpoint, each numerical
scheme will handle unstable steady states, nonuniqueness in
the solution, and bifurcations differently, depending on how
the continuous eigenvalue spectrum has been discretely rep/ - [;7 (Vu + {Vu}T)] + RaTFf=Vp (momentum), (2)
resented when linearized around the steady state. 9T

In this light, the goal of this paper is to illustrate that the — 4u-VT =V2T (energy), (3)
subtleties involved in the development of numerical mantle 3t . S )
convection models are considerably more delicate than ha@/nerex = (u,, ug, uy) is the velocity field in spherical co-
been previously appreciated, due to the rich dynamical be@rdinates ¢ latitude;A: longitude), p is pressure?" is tem-
havior of the system. For fully nonlinear large-scale systemdPerature/ is the unit vector in the radial direction,is the
with millions of unknowns, as considered in this paper, usingViScosity, andRa is the Rayleigh number defined below. The
classical eigenvalue stability analysis to understand the influPoundary conditions on the fluid velocity at the inner and
ence of numerical discretization is not an option as (1) thePuter surfaces of the spherical shell are
analytical solution and thus the continuous eigenvalue SPeCuy,|,_p g, =0 (4)
trum is not available and (2) calculating the eigenvalues for————
such systems is computationally not feasible. Although re- impermeable
cent advancements have been made in developing iterativend
schemes to detect Hopf bifurcations in large-scale systems 45 )
(Meerbergen and Spen@01Q Elman et al, 2012, the fol- "oy (7)
lowing study exhibits a much richer pattern of dynamical in-
stability and transitional behavior, leading to a variety of end shear-stress-free

states. Therefore, we will perform an intensive computational\,\,hereRi — 11/9 is the radius of the inner surface of the 3-
investigation of the stationary behavior and stability of three spherical shell an&, = 20/9 is the radius of the outer

different types of symmetries with regard to perturbations ong,face as measured from= 0. The boundary conditions
the initial condition and as a function &, observing how  ,, the temperature are

both transitional and end states are strongly dependent on nu-
merical discretization. T(Ri,0,»)=1 and T(Ro,0,2)=0.

The numerical studies are done using two state-of- Equations {)—(3) are nondimensionalized with the length
the-art models, CitcomS-3.1.1ht{p://www.geodynamics. scale chosen as the approximate thickness of the mantle,
org/cig/software/citcom)sand a pseudospectral radial basis AR = R,— R; = 1; the timescale chosen as the thermal diffu-
function—Chebyshev model\right et al, 2010 (RBF-PS),  sion time of mantle minerals,= (AR)2/x (noting a nondi-
with the former funded on a ongoing basis by the USA Na- mensional time = 1 corresponds to 265 billion years, i.e.,
tional Science Foundation. Secti@yprovides an overview 58 times the age of the Earth); and the temperature scale cho-
of the system of partial differential equations (PDEs) to besen as the difference between the temperature at the inner and
solved and the computational methods used. Se@ion-  outer boundariesA7T = 1. The fluid is treated as isoviscous:
merically studies the sensitivity of the steady-state solution; = constant. Thus, the dynamics of the fluid are governed
to perturbations in the cubic initial condition for both low and entirely by theRa, which can be interpreted as a ratio of the
higherRa number. Sectiod explores the stability regimes of ~ destabilizing force due to the buoyancy of the heated fluid to
a higher order initial spherical symmetry, studying the tran-the stabilizing force due to the viscosity of the fluid and heat
sition between steady states as a functiorRef Section5 transfer by conduction. It takes the specific form of
introduces a new initial condition mode, leading to the obser- 3
vation of a novel steady-state pattern and future benchmarlg, = Pog@ AT(AR)”
for assessing model performance. kn
wherepg is a reference density of the fluigljis the accelera-
tion due to gravity, and is the coefficient of thermal expan-
sion.

The initial condition for the temperature is specified as

V.u =0 (continuity), (1)

=0, (®)

0 U
=5 ()
"7 lr=Ri,Ro

r=Ri,Ro ar

)

2 Governing equations and computational models

The governing equations describe a Boussinesq fluid at in-
finite Prandtl number in a 3-D spherical shell that is heated? (,6,1) =

from below and cooled from above: R(r—R — R
R =Ro) 6 01700, 1) sin<n T ) . (6)
r(Ri — Ro) Ro — R;
i m=0 m##0
with Tp(0,2) = | Y"=20, )+ ¢Y¥,"7"@,2) |.  (7)

axisymmetric  nonaxisymmetrig
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The first term in Eq. §) represents a purely conductive discretely on each spherical surface using radial basis func-
temperature profile, while the second teffin is a pertur-  tions (RBFs). Within a given limit, RBFs reproduce spher-
bation to this profile, determining the final patterns of poly- ical harmonics Fornberg and Pire2007, 2008. However,
hedral symmetryY;" denotes the normalized spherical har- they generally give higher accuracy than spherical harmon-
monic of degre¢ and ordenn (Eg. 8) and the nonaxisym- ics for nonlinear systems of PDBE#/(ight et al, 201Q Flyer
metric perturbatiors will play an important role in studying and Wright 2007, 2009 Flyer and Fornberg2011; Flyer
transitional pattern formations in the cubic case. et al, 2012 (for examples of how to implement RBFs on
spherical surfaces, sddyer and Wright 2007, 2009. For
all cases in the papery = 4096 nodes are used on each
sphere, withM = 43 Chebyshev nodes used in the radial di-

. ) rection. The time discretization of the energy equation uses
where P are the (unnormalized) associated Legendre func- semj-implicit method. All terms that involve radial deriva-
tions ands,,o is the Kronecker delta. It should be noted that {jyes are time-stepped with a Crank—Nicolson method, while
the stability of preferred patterns in purely axisymmetric con-terms involving latitudinal and longitudinal derivatives are
vective flows has been studied Bgbib et al (1980 1983. time-stepped with a third-order Adams—Bashforth method.

2.1 CitComS

(2 + 1) (€ —m)!

YO = o A o)+ m)!

P/ (cos9) cogmar), (8)

3 Stability of cubic steady state with regard to

CitcomS is a second-order finite-element code written in C. ) . N " .
perturbations in the initial condition at varying Ra

Its purpose is to explore mantle convection problems in 3-
D spherical geometryZhong et al. 2000 Tan et al, 2006.
Developed from the software CitcorMéresi and Soloma-
tov, 1995 Moresi et al, 1996, a code structured for 3-D
Cartesian geometry, CitcomS employs an Uzawa algorith

The cubic initial condition temperature profile used in many

3-D spherical convection studies — suctRacliff and Schu-

bert (1996, Kameyama et al(2008, Zhong et al.(2000,
Myoshida and Kageyam#2004), Stemmer et al.(2006),

to solve the momentum equation coupled with the incom-

oo X Choblet et al (2007, Zhong et al.(2008, and Kameyama
pressibility constraintsRamage and Wathef©994). The en- et al.(2008 — is specified by lettind® in E be equal to
ergy equation is solved with a streamline upwind Petrov— (2009 —is specified by letting in Eq. (7) au

Galerkin method Brooks 1981). We used version 3.1.1,

available from the Computational Infrastructure for Geody- 0 5 A
namics http://www.geodynamics.org/cig/software/citcoms  Tp(0,2) = | Y4(6,2) + §(1 —8)Y, 0,1 |, )
The global mesh is obtained by first dividing the spher- —_—

ical shell into 12 caps of approximatively equal size. Then ¢

each cap is divided int&/ x N elements in the angular di- \heres = 0. A perturbation parametétas been introduced
rections andM elements in the vertical direction, forming tg gllow us to slowly perturb the amplitude of the nonaxisym-
a |ayel’ed briCk'Iike structure. For eaCh 3-D element, eightmetric mode_ The_)\ temperature dependence Of an
velocity nodes with trilinear interpolation functions and one g spherical shell surface can be seen in Eigfor§ = 0. As$
constant pressure node are used. Per cap, we will be using 4§creases the initial condition slowly tends to a pifdnitial
elements in each dimension, resulting inx128x 48x 48  condition, with the amplitude of the four plumes along the
total elements. equatorial region decreasing and progressively merging to-
gether as seen in Fidb for § = 0.30. It should be noted here
that § = 0 does not correspond to perfect cubic symmetry
but has, however, become the standard in modern geophysi-
cal and astrophysical simulations such as those cited above.
Indeed, the maximum amplitude of the plumes in Fg.
varies slightly between the poles and the equator. Perfect cu-
bic symmetry, as predicted Bussg(1975, numerically dis-
terior points and two boundary points) and “scattered” covered byvoung(1974, and with early simulations biyla-

nodes (for example, sedomersley and Sloar2003/200J chetel et al (1986 and Bercovici et al.(1989, is obtained
are placed on each of the resultiigspherical surfaces. This With e = \/§ instead of3.

gives a tensor product structure between the radial and lateral In the next two subsections, we examine how transitions
directions, which allows the spatial operators to be computedrom the cubic steady state to axisymmetric patterns of lower
in O(M?N) + O(MN?) operations instead ob(M?N?).  order occur as a function of perturbing the nonaxisymmet-
While all radial derivatives are discretized using Cheby-ric mode of the initial condition, and more interestingly
shev polynomials, differential operators in the latitudinal di- how these transitions differ depending on the numerical dis-
rection @) and longitudinal directionA) are approximated cretization of the governing equations.

2.2 RBF-PS

Here, an overview of the spectral RBF-PS model is given; for
a detailed description of the numerical method, ¥érgght

et al.(2010. To spatially discretize the 3-D spherical shell, a

“2(0,1) + 1(r)" layered approach is used. In the radial di-

rection, M + 2 Chebyshev nodes (correspondingMoin-
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contrast, fors > 0.30, the figure shows that the RBF-PS so-
lution is attracted to thé = 4 axisymmetric mode. In either
case, the solution, once destabilized, transitions to patterns
characterized by a highet T >.

3.2 Sensitivity to amplitude perturbations in the initial
condition at high Ra

As would be expected, at high®u, the cubic steady state is
much more sensitive to small perturbations in the initial con-
dition. ForRa = 70000, ther mode of the initial condition
was very slowly perturbed in increments &t 5 x 1073,
as shown in Fig4. The cubic steady state is destabilized
at § > 0.065 for CitcomS ands > 0.070 for the RBF-PS
method with different transitional patterns.

With CitcomsS, the destabilization shows a transitional pat-
tern between a cubic steady state to an unsteady axisymmet-
ric pattern a6 = 0.065 ands = 0.007, characterized by two

diametrically opposed upwelling plumes in the equatorial re-
04 02 0 0.2 0.4 0.6 0.8 gion with a great circle of downwelling that encompasses the
Te polar regions. It develops via a two-by-two merging of up-

welling plumes on the equator; initial upwelling plumes at
the poles are destabilized and migrate to the equatorial re-
gion. The end state for perturbationsd# 0.75 is also an
unsteady axisymmetric pattern. However, the pattern of con-
vection has been completely rearranged, with upwelling now
3.1 Sensitivity to amplitude perturbations in the initial Occurring in the p0|ar regions and downwe”ing in the equa-
condition at low Ra torial region, yielding a strong dominance of an oscillating
¢ =2 mode. The quasi-uniform oscillation of this end state
At low Rayleigh number, 500& Ra < 10 000, the cubic can be seen in the time traces of the outer and volume-
steady-state pattern is stable for both models up%d0.30.  averaged root-mean-square (rms) velocity in Figwhere
In other words, the cubic pattern is maintained if the ratio of the region for > 0.2 has been enlarged for better viewing.
the spectral coefficient dﬁ‘ to Yf is atleast 2. This can be With the RBF-PS model, the cubic steady state also even-
seen in Fig2, where the isosurfaces of residual temperaturetually evolves into an unsteady axisymmetric pattern for
(see caption for further details, as this is how 3-D convections > 0.085, similar to that of the CitcomS as shown in Fg.
will be illustrated in the paper) are plotted as a functiod.of However, the transition between these two states is very dif-
Incrementings by 0.01, the RBF-PS model displays a ferent than what was observed with the CitcomS model. For
clear transition between the cubic steady state and an ordey= 0.07, the cubic pattern is only partially destabilized. Two
¢ = 4 axisymmetric pattern. In contrast, CitcomS convergesplumes on one side merge and begin to pulsate. Although this
to a transitional steady-state pattern foBD< 3§ <0.32, in  structure is unsteady, it stays stable with no other changes in
which the four plumes along the equator grow and merge tothe general pattern of convection observeds At0.075, the
gether two by two, but the process is not completed. This iscubic geometry is fully destabilized and the model begins
never observed with the RBF-PS discretization (see Big. to converge to the unsteady axisymmetric pattern, seen for
At higher values o8, CitcomS and the RBF-PS method con- § ~= 0.09.
verge to the same pattern. Thus, at the parameter value of For the two methods, the stability of the cubic symmetry
destabilizationd = 0.30), the numerical discretization plays pattern as a function of the Rayleigh number and the amount
an important role in what pattern emerges. Also, the transi-of perturbations to the initial condition is summarized in
tion point at which ther spherical harmonic mode com- Fig. 6. The amount of perturbation needed to destabilize
pletely dominates and thlég1 part of the initial condition no  the steady-state cubic symmetry pattern begins to decrease
longer influences the final pattern of convection differs be-rapidly afterRa ~ 20 000. The shaded blue and pink regions
tween the two models. depict where transition states are observed for the CitcomS
Figure3 shows the evolution of the volume-averaged tem- model and RBF-PS model, respectively. Generally, the evo-
perature & T >) for both models atRa =7000. As just lution of the transition is well defined using both methods.
discussed, the figure illustrates that CitcomS converges t&€itcomS shows a transitional pattern for all Rayleigh num-
three different steady states, depending on the valdelof  bers. A transitional pattern appears with RBF-PS only for

Figure 1.6 — A temperature dependence of the cubic initial condi-
tion (Eq.9) for § = 0 (a) andé = 0.30 (b).
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5,000 < Ra < 10,000
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Figure 2. Final convection patterns resulting from perturbatidn$o the cubic initial condition as obtained with CitcomS (top row) and the
RBF-PS method (bottom row). Diagram is valid for 508@Ra < 10 000. The isosurfaces show the residual temperdfire T (r,0, 1) —

(T (r)), where(T (r)) is the horizontally average temperature. Blue (downwelling — descending motion) and yellow (upwelling — ascending
motion) isosurfaces are féf" equal to—0.15 and 0.15, respectively. The red solid sphere is the inner boundary.
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Ra > 30000. In all cases, using RBF-PS, the transition is not
characterized by a single pattern, as in CitcomS, but by a pro-
gressive transition as a function of the perturbati&n $ur-
prisingly, this transitional regime broadens for large Rayleigh
numbers (see red shaded area wkth> 50 000), implying
larger perturbations are required to fully diminish the influ-
ence of the? =4 modes. These results clearly demonstrate
how numerical discretization impacts pattern formation and
its interpretation in simulations of 3-D convective flow.

4 Stability at higher orders of symmetry:
a dodecahedral initial condition

In Busse(1975, a steady-state higher-order convection pat-
tern corresponding to dodecahedral symmetry is predicted.
Here, for the first time (to the authors’ knowledge), the sta-
bility of this pattern for lowRa is studied, with surprising
results on how the numerical discretization scheme severely
affects the interpretation of steady-state stability ranges. The
initial condition is given by Eq.&) with

0 14 5
To(6. 1) = | Yg(0.1) +,/ 17786, 1) |

The 6 — 1 temperature dependence on a sphere is shown
in Fig. 7. It has 12 initial plumes of upwelling, forming the
faces of a dodecahedron, where the strongest downwelling

(10)

Figure 3. Time trace of the volume-averaged temperature for the (in dark blue) occurs at the vertices of the pentagons.

cubic initial conditions atRa = 7000 for 0< § < 0.33. CitcomS

The evolution of convection with a dodecahedral initial

shows transition to three steady states, while RBF-PS shows Onl)éondition at aRa = 7000 is presented in Fig. Both meth-

two. See Fig2 for the final pattern of convection associated with
each model.

www.geosci-model-dev.net/7/2065/2014/

ods first converge to a steady-state dodecahedral pattern;
however, this convection pattern is unstable. The symmetry
is broken at different times for RBF-PS and CitcomS mod-
els. Plumes begin to merge after 0.7 with CitcomsS, while

Geosci. Model Dev., 7, 2§ 2014
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Ra=70,000

<« CitcomS

Cubic steady state Axisymmetric Axisymmetric
unsteady unsteady
= a = a =
0.0 0.06 —0.065 —0.07 — 0.075 —0.08 — 0.085 — 0.09 >
= - = = =
Cubic steady state Transmonal patterns Axisymmetric
"Pulsating” unsteady

@ ‘@ J <« RBF-PS

Figure 4. Stability of the cubic steady state Rz = 70 000 with CitcomS (up row) and the RBF-PS method (bottom row). The cubic steady-
state pattern is destabilized & 0.065 with CitcomS and > 0.07 with RBF-PS. The figure highlights transitional patterns between the
two main geometries.
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S 660 E
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'8.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6
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Figure 5. Time trace ofa) the outer Nusselt number afio) the rms velocity for both models & = 70 000 forRa = 70000 ands = 0.08
with CitcomS and = 0.09 with RBF. Both methods converge to an unsteady oscillating axisymmetric pattern dominated by2hmode
(see Fig4).

for the RBF-PS model, plumes do not merge unt 2.7. same final patterns are observed, with the only difference be-
Surprisingly, the final stable stationary state differs betweenng that the dodecahedral pattern is maintained for a longer
the two numerical discretizations: RBF-PS converges to gperiod. These results imply that there are at least two sta-
tetrahedral pattern, dominated by & 3 mode, while Cit-  ble branches of solutions that correspond to these patterns;
comsS reaches the cubic pattern studied in the previous sedirowever, which branch manifests itself in simulations is de-
tion. In order to reduce the possible effect of spatial dis-pendent on the numerical discretization. We will see more
cretization error, mesh resolution in CitcomS was increasecdevidence of this later in the discussion.

by a factor of 8 to 12 96° and doubled in the RBF-PS to

51(r) x 65610, 1). The results are displayed in Fig. The

Geosci. Model Dev., 7, 20652076 2014 www.geosci-model-dev.net/7/2065/2014/
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Figure 6. Stability domain of the cubic steady-state pattern as a
function of the perturbation to the initial conditiod, and the Figure 8. Time trace of the rms velocity for both modelsRd =
Rayleigh number. Shaded areas show the transitional domains foro00 for two different spatial resolutions.
the CitcomS (blue) and RBF-PS (red) methods. Detailed patterns
are presented in Fig2 for 5000< Ra <10000 and Fig4 for
Ra =70000. For each model, the bottom curve is the maxirium
value for which it converges to the cubic steady state, while the toppattern observed with the RBF method without adding an ad-
curve is the minimund value which converges to an axisymmetricgitiona injtial perturbation representing these odd modes.
pattern (steady or unsteady). The black dotted line is the value of The stability of the dodecahedral steady-state solution for
the Rayleigh number that marks the transition between/taet 2000< Ra < 10 000 can also be seen in the time evolution
steady state and the unsteady state. - — . .
of the volume-averaged rms velocity and the inner and outer
Nusselt numbers as given in Fig. In all cases of theRa,

T the dodecahedral convection pattern is initially observed and
stationary. This pattern is identical in both methods, whether
one considers its geometry, the convergence of rms veloc-

o 0 ity, average temperature, or Nusselt numbers before the tran-
sition (Tablel). However, weakly unstable modes of lower
spherical harmonic degree become excited and cause the so-
lution to transition to a second steady state. When this transi-
tion occurs in the time evolution is clearly dependent on the
model. For instance at= 2, CitcomS has already reached a

_— steady-state cubic pattern while RBF-PS is still in the weakly

S | unstable steady-state dodecahedral pattern.
04 02 0 02 04 06 08 As the Rayleigh number incrgases from 2000, the final
To stationary pattern observed varies greatly between the two
models, also showing how preferred patterns of convection
Figure 7.6 — . temperature dependence of the dodecahedral initialin numerical simulations are dependent on the spatial dis-
condition (Eq.10). cretization scheme. Figuti illustrates these end states for
both numerical methods, starting from the dodecahedral ini-
tial condition for 2000< Ra < 70000 for each of the mod-
For CitcomS, the mesh discretization shows a symmetri-els. The RBF-PS model shows a clear transition from the do-
cal effect. The shell is initially divided in 12 caps. Each cap decahedral pattern to a variety of steady states, depending
is diametrically opposite to another orighpng et al, 2000. on the Rayleigh number. For 3080Ra < 5750, end-state
Thus during the transition, we can observe that destabilizaconvection is dominated by the cubic steady-state pattern
tion occurs in symmetrical pairs with respect to the caps. Asdiscussed in the previous section. In CitcomS, this pattern
a result it is reasonable to presume that mesh discretizatiois not seen untilRa = 5000, and persists t8a = 7000. In
and the cap divisions influence the distribution of numer-fact, the regime within 500& Ra < 5750 is the only range
ical errors and favor even modes. Under these conditionswhere both the CitcomS and RBF-PS transition to the same
CitcomS will not reproduce the tetrahedral or the five-cell final steady-state convection pattern. At 5 Ra < 6025,
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Figure 9. Transition between steady states, as evidenced by both the RBF-PS and CitComS mode{¥yirsttimp panels) N uj (middle
panels), andVuo (bottom panels) for the dodecahedral initial condition.

Table 1. Comparison between computational methods RBF and CitcomS for the dodecahedral stationary pattern at various Rayleigh number.
For CitcomS and ®a = 2000, the dodecahedral pattern does not satisfy stationarity to estimate parameters value.

(T) (Vims) Nut Nup
Ra RBF CitS RBF CitS RBF CitS RBF CitS
2000 0.2723 - 8.45 - 1.889 - 1.889 -

3000 0.2521 0.2535 12.97 13.07 2411 2.413 2411 2422
4000 0.2403 0.2414 16.67 16.76 2768 2.768 2768 2.777
5000 0.2322 0.2331 19.93 20.01 3.043 3.042 3.043 3.052
6000 0.2261 0.2271 22.89 22.98 3.270 3.269 3.270 3.280
7000 0.2213 0.2223 25.62 25.65 3.465 3.465 3.465 3.476
8000 0.2174 0.2183 28.19 2831 3.638 3.638 3.638 3.650
9000 0.2141 0.2151 30.62 30.74 3.794 3.793 3.794 3.807
10000 0.2112 0.2123 32.93 33.07 3.937 3.935 3.937 3.951

a newly observed five-cell pattern emerges as the end statiora stable steady-state axisymmettie- 2 pattern. ForRa >

ary state in the RBF-PS model. It results from a mixed-model0 000, the final patterns become unsteady, yet maintain a re-
interaction between thé =3 and¢ =4 modes, as will be semblance to the axisymmetric and tetrahedral patterns seen
discussed in the next section. For 680Ra <10000, the in CitcomS and RBF-PS, respectively.

final pattern of convection for RBF-PS is the tetrahedral pat-

tern observed in Fig8. In contrast, CitcomS transitions to
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——= 2000 stondy Siote Figure 11.6 — A temperature dependence of the five cells’ initial

condition (Eq.11) with (a) y = 3 and(b) y = 13.

Figure 10. Transition of dodecahedral plume formation to different . .
steady states for 2069 Ra < 10 000 and to an unsteady state for modes. InChossat and Beltran{@014), the authors investi-

10000< Ra < 70 000 with the RBF-PS method (right column) and 9ated = 3,4 mode interactions in a context compatible with
CitcomsS (left column). Rayleigh—Bénard convection without having highlighted the

occurrence of a five-cell structure. Here, we focus on the for-
mation of a steady-state five-cell pattern that is stable at large
Rayleigh numberRa = 50 000, approximately 70 times the
critical Rayleigh numberKa; = 712, the onset of convec-
tion).

Through numerical experimentation, we discovered that a

5 A new convection mode: five cells

At 5750< Ra < 6050 with RBF-PS method, the weakly un-

stable dodecahedral pattern relaxed into a steady-state ﬁv%'ombination on33 and Yf spherical harmonics will yield a

cell convection pattern. This structure is characterized by five, .o pattern. However, in order to determine the volume-
upwelling plumes: two at the poles, each surrounded by a, ' ’

} | . fd li dth | h veraged spectral energies or variances between the two
triangular region of downwelling, and three along the equa-p,yeq thay yield the fastest stabilization in a five-cell steady-

tor, each surrounded by a square region of downwelling_ Thestate pattern, a parameteion theYj" mode is introduced. It
pattern appeare(_j for a narrow range of _Raylelgh NUMbErSyi pe varied slowly fromy equals O to 1, in increments of
between the cubic patt(_arn at Iower_Raerlgh numl:_)er and thelo_z_ The initial condition is now given by Eq6) with
tetrahedral pattern at higher Rayleigh number. This observa-
tion al_ong With the fact t_hat the convective regions of de.— To(0, 1) = [Yg(g,k) + yyf(g’k)]. (11)
scending motion are defined by both the vertices of a tri-

angle in the polar regions (the case for the tetrahedral pat- Figure11 displays the initial conditions for two different
tern) and those of a square in the equatorial regions (the caselues ofy that will lead to two different steady states.

for the cubic pattern) leads us consider a mixed-mode inter- We begin at a low Rayleigh number, such/s= 7000.
action between thé = 3 and an¢ =4 modes for an initial However, the results hold for even lower Rayleigh num-
condition. Previous studies of mixed-mode patterns bifurcat-bers, down toRa = 1000, just above the onset of convec-
ing from spherically symmetric ones have been predicted intion. Figure12 shows the evolution of the volume-averaged
Busse and Riahi1988 and numerically observed ifeudel  temperature and the final convection patterns (isosurfaces
et al. (2011). However, these studied reported a seven cellof §7 = £0.15; yellow: ascending motion; blue: descend-
pattern resulting from an interaction ofta=4 and¢ =5 ing motion) asy is varied. As can be seen, depending on
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' (e) 4x 10* and(f) 5x 10%.
9
2028
3 . e . .
8 Ys observing the stability of the five-cell pattern as a function of
§o.26 Axisymmetric ((=4) 1 Rayleigh number. With the RBF-PS model, once the volume-
o averaged spectral energies between the two modes are equal
5 0.24} (i.e.,y = 1), the flow reverts to an axisymmetric steady state,
& dominated by thé = 4 mode. With the CitcomS model, the
. ratio of the modes only have to be within 10 % of one another
0.22y Five cells ] (i.e.,y = 0.9) for this to occur. Lastly, Figl3shows that this
CitcomS convection pattern is not only steady but stable with respect
0.20 : : : : : : : : : to perturbing the Rayleigh number for values at least up to
0 02 04 06 08 1.0 12 14 16 18 2 . " :
time Ra =50000, 70 times the critical Rayleigh number. Both
d) y=05 e) y=10 models obtained this result. Also, as the Rayleigh number

increases, the boundary layer thickness decreases, as would
be expected with increased convection.

6 Conclusions

In time-dependent fully nonlinear systems, when numerical
simulations are performed, a great variety of complex spa-
Figure 12. Time traces of the evolution of the average temperaturetlotempora| regimes can be observed depending on parameter
as a function of the parameter At = 7000 for (a) the RBF-PS 5,65 However, what this paper has illustrated is that what
;n:c?]e:)?:'hoéi)ecrggggf (Vc\:liﬁgshciwoth(z)ﬁna_lcggvizt(;czg)pagelrns for patterns are actually observed and at which parameter values
' y=20y =0 y== they manifest themselves is definitely impacted by the nu-
merical discretization used. Since computation has become a
third arm of physical understanding, along with experimenta-
the value ofy, the model converges to three distinct steadytion and analysis, it is important to highlight this fact so that
states. Foy < 0.20, the? = 4 mode has no influence and the a discretization scheme is not blindly applied just because it
models converge to a steady state defined byl@epheri- is commonly used, as in the case of spherical harmonics.
cal harmonic mode. This pattern is similar to that found in  Here, we have compared an RBF-Chebyshev discretiza-
Busse and Riah{1988, except that there is a merging of tion (RBF-PS) to a finite-element discretization. The latter
the ascending motion in the polar regions. The steady-statées a community-based model called CitcomS, specially de-
five-cell pattern shown in Figl2d manifests itself in both  signed for studying thermal convection in a 3-D spherical
models for @2 < y < 0.3, with the fastest stabilization to this shell. For simpler spherical symmetries as the cubic pattern
state fory = 0.5. As a result, this is what will be used when (sometimes referred to as the octahedral pattern), the results
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at low Rayleigh number were more similar between the mod-order of numerical discretization affects pattern formation in

els, both destabilizing when the contribution of the nonax-the context of benchmarking community codes.

isymmetrict = 4 spherical harmonic mode in the initial con-

dition fell below 50 %. However, CitcomS showed a transi-
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