Articles | Volume 6, issue 3
Geosci. Model Dev., 6, 583–590, 2013
https://doi.org/10.5194/gmd-6-583-2013
Geosci. Model Dev., 6, 583–590, 2013
https://doi.org/10.5194/gmd-6-583-2013

Development and technical paper 03 May 2013

Development and technical paper | 03 May 2013

Improving computational efficiency in large linear inverse problems: an example from carbon dioxide flux estimation

V. Yadav and A. M. Michalak

Related authors

Mapping of satellite Earth observations using moving window block kriging
J. M. Tadić, X. Qiu, V. Yadav, and A. M. Michalak
Geosci. Model Dev., 8, 3311–3319, https://doi.org/10.5194/gmd-8-3311-2015,https://doi.org/10.5194/gmd-8-3311-2015, 2015
A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion
J. Ray, J. Lee, V. Yadav, S. Lefantzi, A. M. Michalak, and B. van Bloemen Waanders
Geosci. Model Dev., 8, 1259–1273, https://doi.org/10.5194/gmd-8-1259-2015,https://doi.org/10.5194/gmd-8-1259-2015, 2015
Short summary
Using atmospheric observations to evaluate the spatiotemporal variability of CO2 fluxes simulated by terrestrial biospheric models
Y. Fang, A. M. Michalak, Y. P. Shiga, and V. Yadav
Biogeosciences, 11, 6985–6997, https://doi.org/10.5194/bg-11-6985-2014,https://doi.org/10.5194/bg-11-6985-2014, 2014
Short summary
A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions
J. Ray, V. Yadav, A. M. Michalak, B. van Bloemen Waanders, and S. A. McKenna
Geosci. Model Dev., 7, 1901–1918, https://doi.org/10.5194/gmd-7-1901-2014,https://doi.org/10.5194/gmd-7-1901-2014, 2014

Related subject area

Earth and Space Science Informatics
ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021,https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
A spatiotemporal weighted regression model (STWR v1.0) for analyzing local nonstationarity in space and time
Xiang Que, Xiaogang Ma, Chao Ma, and Qiyu Chen
Geosci. Model Dev., 13, 6149–6164, https://doi.org/10.5194/gmd-13-6149-2020,https://doi.org/10.5194/gmd-13-6149-2020, 2020
Short summary
A new end-to-end workflow for the Community Earth System Model (version 2.0) for the Coupled Model Intercomparison Project Phase 6 (CMIP6)
Sheri Mickelson, Alice Bertini, Gary Strand, Kevin Paul, Eric Nienhouse, John Dennis, and Mariana Vertenstein
Geosci. Model Dev., 13, 5567–5581, https://doi.org/10.5194/gmd-13-5567-2020,https://doi.org/10.5194/gmd-13-5567-2020, 2020
Short summary
HyLands 1.0: a hybrid landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution
Benjamin Campforts, Charles M. Shobe, Philippe Steer, Matthias Vanmaercke, Dimitri Lague, and Jean Braun
Geosci. Model Dev., 13, 3863–3886, https://doi.org/10.5194/gmd-13-3863-2020,https://doi.org/10.5194/gmd-13-3863-2020, 2020
Short summary
Using SHAP to interpret XGBoost predictions of grassland degradation in Xilingol, China
Batunacun, Ralf Wieland, Tobia Lakes, and Claas Nendel
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-59,https://doi.org/10.5194/gmd-2020-59, 2020
Revised manuscript accepted for GMD
Short summary

Cited articles

Aster, R. C., Borchers, B., and Thurber, C. H.: Parameter estimation and inverse problems, Academic Press, 376 pp., 2013.
Atmadja, J. and Bagtzoglou, A. C.: State of the art report on mathematical methods for groundwater pollution source identification, Environ. Forensics, 2, 205–214, 2001.
Bennett, A. F.: Inverse modeling of the ocean and atmosphere, Cambridge University Press, Cambridge, UK, 2002.
Bini, D. and Lotti, G.: Stability of Fast Algorithms for Matrix Multiplication, Numer. Math., 36, 63–72, https://doi.org/10.1007/bf01395989, 1980.
Bini, D.: Fast Matrix Multiplication, in: Handbook of Linear Algebra, edited by: Hogben, L., Discrete Mathematics and its Applications, Chapman & Hall/CRC, Boca Raton, 47–41 to 47–12, 2010.
Download