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Abstract. Addressing a variety of questions within Earth 1 Introduction

science disciplines entails the inference of the spatiotempo-

ral distribution of parameters of interest based on observa-

tions of related quantities. Such estimation problems oftenAddressing a variety of questions within Earth science dis-
represent inverse problems that are formulated as linear opg=iPlines including environmental science, hydrology, geol-
timization problems. Computational limitations arise when 09y, geophysics, and biogeochemistry entails the inference
the number of observations and/or the size of the discretize@f the spatiotemporal distribution of parameters of interest
state space becomes large, especially if the inverse protpased on observations of related quantities. Such estimation
lem is formulated in a probabilistic framework and there- Problems often represent inverse problems, with examples
fore aims to assess the uncertainty associated with the estidcluding the estimation of hydraulic conductivity or other
mates. This work proposes two approaches to lower the com@SPects of subsurface structure using geophysical (e.g., Aster
putational costs and memory requirements for large linea€t al-, 2013) or hydrologic (e.g., Hyndman et al., 2007) ob-
space-time inverse problems, taking the Bayesian approao‘pprvations, the identification of environmental contaminant
for estimating carbon dioxide (G emissions and uptake Sources using downstream concentrations (e.g., Atmadja and
(a.k.a. fluxes) as a prototypical example. The first algorithmBagtzoglou, 2001; Liu and Zhai, 2007; Michalak and Ki-
can be used to efficiently multiply two matrices, as long astanidis, 2003; Zhang and Chen, 2007), the characterization
one can be expressed as a Kronecker product of two smalle&f atmospheric and oceanic processes (Bennett, 2002), and
matrices, a condition that is typical when multiplying a sensi- the quantification of budgets of atmospheric trace gases us-
tivity matrix by a covariance matrix in the solution of inverse iNg atmospheric observations (e.g., Ciais et al., 2011; Ent-
problems. The second algorithm can be used to compute B9, 2002). Such inverse problems are often formulated as
posteriori uncertainties directly at aggregated spatiotemporain€ar optimization problems. Even when the physics and/or
scales, which are the scales of most interest in many inversghemistry relating the unobserved field to the measurements
problems. Both algorithms have significantly lower memory Yields a nonlinear problem, the inverse problem is often
requirements and computational complexity relative to directSolved through iterative application of a linear approxima-
computation of the same quantities (®¢) vs. O@3)). For tion (e.g., Kitanidis, 1995). Computational limitations arise
an examined benchmark problem, the two algorithms yieldedvhen the number of observationsand/or the size of the
massive savings in floating point operations relative to directdiscretized state spaeebecomes large, especially if the in-
computation of the same quantities. Sample computer code¥erse problem is formulated in a probabilistic framework and
are provided for assessing the computational and memory efherefore aims to assess the uncertainty associated with the

ficiency of the proposed algorithms for matrices of different estimates. _
dimensions. This work proposes approaches for addressing these com-

putational limitations. We take the Bayesian approach for
estimating carbon dioxide (CQ emissions and uptake
(a.k.a. fluxes) as a prototypical example of a spatiotemporal
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inverse problem, and use it to illustrate the proposed toolsand the a posteriori uncertainty covariance of the estimated
We use the study of Gourd;ji et al. (2012) as a computationakan be written as

benchmark.
Ve=Q — (HQ)" HQHT +R)IHQ (3)

1.1 A prototypical spatiotemporal inverse problem . ) ) )
For smalln andm, implementing Egs.4) and @) is straight-

Gourdiji et al. (2012) used atmospheric concentration meaforward. As inverse problems are solved using increasingly
surements of C@to constrain C@ fluxes in North America  more observations and are used to estimate parameters at in-
ata P longitude by 2 latitude spatial resolutiom{; = 2635  creasingly high spatiotemporal resolutions, as in the proto-
land regions for 50W to 170 W and 10 Nto 70° N) and a  typical Gourdiji et al. (2012) example, the number of floating

3 hourly temporal frequency over the period of 24 Decem-point operations required to implement these equations be-
ber 2003 to 31 December 2004 { = 2992 periods over ~comes prohibitive.

374 days). The implemented setup resulted ia 8503 ob- A closer look at Egs.4) and @) shows that the first com-
servations aneh = m, x m, =7 883 920 parameters to be es- putational bottleneck occurs due to the cost of multiplying
timated. This high spatiotemporal resolution was primarily matricesH andQ. The second is the cost of computing and
motivated by the desire to avoid “aggregation errors” (Enge-storing a dens&/s with dimensionsn x m. Paradoxically,

len et al., 2002; Meirink et al., 2008, Thompson et al., 2011),as noted previously, the scales of ultimate interest are often
i.e., biases in the estimated fluxes caused by prescribing spgoarser than the native resolution \¢§, and these covari-

tial and temporal patterns within estimation regions and notances are frequently aggregated a posteriori in space and/or
allowing these patterns to be adjusted through the estimatime by summing or averaging the corresponding entries in
tion. The resolutions that can be resolved by observationd/s.

are often coarser, however, as are the scales that are of mostIn this work, we propose a computational approach for
scientific interest. In the case of Gourdji et al. (2012), theevaluatingHQ, and by extensiomiQH” for very large in-
estimates were therefore aggregated a posteriori to monthlyerse problems, for the case where the covariance matrix
and annual temporal resolution for interpretation. The a pri-Q can be expressed as a Kronecker product of two smaller
ori spatiotemporal error covariance was assumed separablg)atrices. This is typical of spatiotemporal inverse problems
with exponential decay in correlation in both space and timeWhere the space—time covariance is assumed separable, or
As a result, the prior covariance matrix could be expressedsimpler problems that only consider covariance in space or
as a Kronecker product of matrices describing the spatial andn time, rather than both. While the fact that the covariance

temporal covariances, respectively. matrix Q can be expressed as a Kronecker product has been
recognized in previous work (Meirink et al., 2008; Singh et
1.2 Bayesian framework for linear inverse problems al., 2011; Thompson et al., 2011), the novelty here is the

use of this property in developing an algorithm for increas-
Stochastic linear inverse problems are often formulated iqng the computational efficiency of the matrix prodit®.

a Bayesian framework by requiring the minimization of an \we further present an approach for directly calculating the a
objective function that can be written as posteriori error covariance at aggregated scales, without the
1 S 1 o intermediary step of first computing the folly. Note that

Ly=5@-H9'R=@2Z-H9)+5(s=s)) Q7 (s—s) (1)  both of the presented algorithms rely on the availability of
a pre-computed matrikl, which can itself entail consider-
wherez 1) is a known vector of measuremeriti, «m) IS&  aple computational cost that is not addressed in the work
matrix that describes the relationship between measuremeni§esented here. We use the Gourdiji et al. (2012) problem as a
and the unknown field, 1), Rxn) is the covariance ma-  computational benchmark for evaluating the performance of
trix of the model-data mismatch errogs,.x1) is the prior  the proposed approaches relative to a direct implementation
estimate of, andQxm) is a (square and symmetric) prior of Egs. @) and @). Code demonstrating the implementation

true fields and the priors,. The first term in Eq. 1) pe-  tary material.

nalizes differences between available observations and those
that would result from an estimated underlying field, while
the second is a regularization term that penalizes departureg Efficient method for the multiplication of any matrix
from the prior, or more generally any type of desired struc- ~ With a matrix expressed as a Kronecker product
ture.
The solution to the Bayesian linear inverse problem, de-Reducing the computational cost of matrix multiplication
fined as the estimate efthat minimizes the objective func- and determining the minimum number of operations required

tion in Eq. (1), can be expressed as to perform this operation has been an area of active research
for several decades. The computational efficiency of matrix
§=s,+ HQT HQHT +R)L(z— Hs,) (2) multiplication was generally assumed to be cubic until 1969
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when Strassen (1969) showed that by performing more ad2.1  Algorithm

ditions and fewer multiplications this cost could be reduced

to O(%%2) (see Chapt. 47, p. 3 in Bini, 2010). This lower Any matrix B,,x4r) that can be expressed as a Kronecker
bound has since been further reduced, with the last minifroduct can be defined based on matridgs. ;) andE
mum reported bound of @¢37) obtained by Coppersmith and denoted ab ® E, where

and Winograd (1990). The majority of the existing algo- danE - dagE
rithms (see Chapt. 47, p. 9 by Bini, 2010) rely on the prop- ’ q
erty that matrix multiplication can be represented as multilin- Dipxg) @Ewrxn = : S
ear maps (for details, see Bini and Lotti (1980) and Horn and dip,nE - dpE
Johnson (.1990))’ which helps ir?formulating ar_ecursive NNt a square covariance mati@, both D andE are also
commutative block decomposition based algorithms for per-

. : S . i square. For the prototypical case examined h€rés ex-
]Ic—?cr)r\?vg]vgeTtit:);tr:tl)jilltiltzlIg?:;:);sf;gc?r%?r;sl_?:r?\g?ninaﬁzzggn-pressed as the Kronecker product of the temporal covariance
able, and other than Strassen’s algorithm the proposed alg and the spatial covariance, both of which decay exponentially

rithms have not been found to be practically feasible (Bini‘-\)l\”th separation distance or lag:

(4)

and Lotti, 1980; Eve, 2009; Li et al., 2011). temporal spatial
The computational complexity of performing matrix mul- covariancéD)  covariancéE)
tiplication of sparse and specially structured matrices such as
Toeplitz, triangular Toeplitz, Hankel, Cauchy, Vandermonde,Q — 2 [exp(—&)} ® [exp(—ﬁ)], (5)
and Vandermonde transposed matrices (Mouilleron, 2011), ! Iz ls

circulant matrices (Nowak et al., 2003), banded matrices 5. : . .

(Gohberg and Olshevsky, 1994), and hierarchical m::xtriceé'\/hereash s the Vaf'ang_e in spat;le anctj) e, andxf rep- |

(Saibaba and Kitanidis, 2012) with an arbitrary matrix can be{i?)?qesnitr;[ se Zecza;gogmftigge:c?\?; e;w;enr:j?st{lir:\ea?sg oca-

made to be significantly lower (for comparison of computa—s atial anpd temporal co’rrela[t)ion rany’e Qaram:aters respec-

tional cost, see page 15 in Mouilleron, 2011). As such, in the P . In thi b o dr — g_ P This d f’. b

case of inverse problems, the structure of the covariance mai/ely- Inthis casep = g 5 e 8NQr =1 = m;. | IS Celines

trices can be used to reduce the cost of matrix multiplication.al blO.Ck matrle W'tzh m; blocks, each defined as a square

For the special case of a regular estimation grid and Toeplitzm"j‘tr'xal(‘?/')E with m; elements. As the Kronecker productis

covariances, for example, the fast Fourier (FF) method ofnot cqmmut.atlve,the arrangement Ofth? temporal and spatial

matrix multiplication gives an exact answer and has a com-ovanancen Eq.9) determines .the design Q. L

putational complexity of @:2logn) (for details, see Nowak Returmng to the more generic case, the multlp'llcatlon of

et al., 2003); however the algorithm has high computationa®"Y MAtixXAx pr) BY B(pr<gi) proceeds as follows:

cost and memory requirements for sparse matrices. For an 1. Divide A into p column blocks each with dimension

irregular estimation grid, an approximate method based on  (nxr)

a hierarchical framework has been proposed by Saibaba and 2 a a

Kitanidis (2012). Like the FF me‘;hod, this method also has At pr) = <¢, 2 $> _ (6)

a computational complexity of @<logn), and can only be (nxr) (nxr)  (axr)

used for very specific generalized covariance functions (for

details, see Saibaba and Kitanidis, 2012). 2. Multiply each block ofA by the elements of the first
Another type of structured covariance matrix is the one

P
column of D and add these blocks)( a;d(;.1)). If an
that can be expressed as the Kronecker product of two Zla, (1)

1=
smaller matrices, such as in the caseQfThis property element oD is zero, then skip the multiplication; if it is
has been used in the past for decomposing square symmetric  one, then add the column blockAfwithout performing
covariance matrices (Meirink et al., 2008; Thompson et al., scalar multiplication.

2011) and in some cases in increasing the efficiency of the
matrix multiplication of separable covariance matrices with

diagonal matrices (Singh et al., 2011). Here we build upon
this work and propose an algorithm for matrix multiplication 4. Repeat steps 2 and 3 for the remaining 1 columns of
of two arbitrary matrices, one of which can be expressed as D and the corresponding blocks AB. Overall,

a Kronecker product, and show that its computational com-

plexity is O@2°). The algorithm has the same stability prop- AB (1) )

erties as those of cubic matrix multiplication algorithm. » » »
(Zaid(i,l)> E (Zaid(i,2)> E.-. <Zaid(i,q)) E
i=1 i=1 i=1

(nxt) (nxt) (nxt)

3. Multiply the resultingn x r matrix by E(. ;) to obtain
the firstn x ¢ column block ofAB.
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This algorithm can also be used for the multiplication of ma- r = r = /n; the floating point operations required by the di-
trices where the first matrix is a Kronecker product of two rect and indirect methods become
smaller matrices, through the cyclical permutation property
of transposes. AB girect= 2n° — n? and (14)
ForH(nxm)z(nxm,mS) andQ(mxm):(m,msxmrmx)a EqS- 6)
and (/) become
ABingirect= 4n’/n — 2n°. (15)

h1  hy ... hm, ) ®)

H(n><mrmJ) — ( —_—  —— ——
(nxmyg) (nxmyg) (nxmy)

This results in an asymptotic complexity of(€3) for the
direct method, and @2°) for the indirect method. The di-
rect method is thus more economical only fiox 3, and the

(ihid(m) E (ihid(nz)> E- (ihid(i,,n,>> E relative cost of the indirect method decreases exponentially
BQeumem, = | \i=t i=1 i=1 (©) thereafter. The overall computational cost could be reduced
further if the matrix multiplications in step 3 of the algo-
rithm were computed through the Strassen or Coppersmith
and Winograd algorithm. For a special case wh#is com-
posed of zeros and ones, the computational cost can also be

further reduced by avoiding scalar multiplications, as listed
2.2 Floating point operations in step 2 of the algorithm.

(nxmyg) (nxmyg) (nxmy)

The multiplication ofH and Q whereQ is a block diago-
nal (e.g., there is correlation in space but not in time) is a
special case of the algorithm whdbds an identity matrix.

The number of floating point operations required for a direct2.3 Other computational aspects of the

multiplication of a matrixA by a matrixB can be expressed indirect approach

as a function of the dimensions of these matrices (for details,

see Golub and Van Loan, 1996): Beyond the economies in floating point operations, the indi-
rect method also dramatically decreases the random access

ABgirect= nqt (2pr — 1). (20) memory requirements for matrix multiplication, because the
proposed approach eliminates the need to create or store the

Similarly, the cost of the “indirect” mUltiplication algorithm full matrix B (Or Q) Thus, again takmg the specia| case of

presented in the last section is n=m andp =g=r=t= \/ﬁ as an examp|e, the memory

requirement for storin® andE is O(n?), whereas itis @:%)

ABindirect = B _ if B is explicitly stored in memory.
Scalar Addition of Matrix To maximize the computational gains from the algorithm,
multiplication  column blocks multiplication it is also necessary to take into account the method adopted
(step? (step 2) (step 3) by different computer languages for storing arrays in com-
—_——
wiprd)  + al(p—Dnr) +ql@ —Dnt).  (11)  Puter memory. For example, C andt& are far more ef-

ficient at multiplyingQ by H” thanH by Q. This results
Equation (1) is based on the fact that steps 2 and 3 are eaclirom the fact that C and €+ store matrices in row-major
repeateq times. The relative computational performance of order, whereas Fortran and MATLAB store them in column-
the indirect method can therefore be expressed as major order. The Fortran andiGr codes submitted with this

manuscript show how these operations are performed for ma-
ABindirect _ 2pr+2rt —r—t ' (12)  trices stored in column (Fortran and MATLAB) or row-major
ABudirect t(2pr —1) order (C and G-+) for square symmetriQ, D andE matri-
ces. In addition, whether the matrices are stored as single-
dimension vectors or as two-dimensional matrices also af-

For H and Q, this simplifies to

HQindirect  2(mz +my — 1) fects the computational performance of the proposed algo-

HQuirect B 2mems—1 (13) rithm, especially in C and €+, which are not array-based
programming languages.

Note that the number of observationsdoes not affect In comparison to the direct method, the indirect approach

the relative performance of the algorithm. Asymptotically, for matrix multiplication is also fault tolerant and amenable
Eq. (13) approaches zero with increasing andm. For  to distributed parallel programming or “out of core” matrix
the Gourdji et al. (2012) problem, this ratio is 72404, multiplication, as each column block &B (or HQ) can

a savings of over 99.9 % floating point operations relative tobe obtained separately without any communication between

the direct approach. processors populating the individual blocks.
For the more generic case of multiplyiigand B, con- In the case of the solution of an inverse problem, the mul-
sider the special simplifying case where-m andp =g = tiplication of HQH” can also be completed block by block:

Geosci. Model Dev., 6, 58390, 2013 www.geosci-model-dev.net/6/583/2013/



V. Yadav and A. M. Michalak: Improving computational efficiency in large linear inverse problems 587

HQHT = i <<i h; d(l-,,-)) E) hT, (16)
i=1

j=1

whereh; andh; represent column blocks of the matrix

as defined earlier. The computational efficiency of the ma-
trix multiplication of H, Q andH” can be further improved

if the symmetry ofHQH is taken into account (see details
on quadratic forms (Harville, 2008)). However there are no
“Basic Linear Algebra Subroutines” (Blackford et al., 2002;
Dongarra et al., 1988; Lawson et al., 1979) that take this
property into account, and additional work would be required
to develop these methods for application in inverse problems
and statistics.

3 Computation of aggregated a posteriori covariance in
large linear space—time inverse problems

The a posteriori covariance matri¥4; Eq. 3) is typically
dense, and calculatings is a computational bottleneck for
large inverse problems. For example, computifigexplic-
itly for the Gourd;ji et al. (2012) problem would require ap-
proximately 106 x 10'8 floating point operations, and over
56 TB of RAM. We propose an algorithm for computing the

tiplied by E (spatial covariance):
tLl lu
Qsum(ms x mz) = ((Z Zd(i,j)) E) s (17)
j=ti=y

whereQsymrepresents the sum of &l blocks between
f andt,.

. Sum all column blocks of thelQ (see Eq. 9)):

ty my
(HQ)sym= (Z ( hid, j>> E) : (18)
1

J=t \i= (nxmy)

where (HQ)g,m represents the sum of aiQ column
blocks as shown in EqQ9) between; andz,.

. Compute the aggregated grid-scale a posteriori covari-

anceV for the estimates averaged over the desired time
periods:

(Qeum— (HQ)Zum(HQHT +R) ™ (HQ)sum)

k2 ’
(19)

Vo=

whereVy is the covariance & temporally averaged for
time periods; to¢,, .

a posteriori covariance directly at aggregated scales, which
are typically the scales of most interest as described in Secg 2  Floating point operations
1, without explicitly calculating/s. We use the estimation of

a posteriori uncertainties at the native spatial scaleg (E  The number of floating point operations required for the di-
grid scale in the prototypical example) but for estimates av-rect calculation ofV (Eq. 3) and its aggregation over
eraged across larger temporal scales as an example. time periods is compared to the calculation of the aggre-
gatedV using the algorithm described above. The floating
point operations required for multiplying by Q andHQ

by H”, for addingR to HQH, for taking the inverse of
The algorithm is presented for\ design consistent with  (HQH” + R), and for dividing the aggregated covariance by
Egs. #) and ), i.e., where the diagonal blocks describe 2 are excluded in the floating point operation count, because
the spatial covariance, and the off-diagonal blocks describgne cost of these operations is the same for both approaches.
the decay of this covariance with time. The particular designpoy course, computational savings can be achieved for both

framework ofV used in this study does not hinder the ap- py following the algorithm outlined in Sect. 2 for the matrix
plication of the proposed algorithm for obtaining a posteriori yytiplications.

covariances and cross-covariances in inverse problems where The numper of floating point operations required for ob-
Vs has a different design, or where the aggregation is to bqajning grid-scale a posteriori covariance from the direct
conducted over a different desired dimension. _ method can be divided into four sequential operatiofis: (
The calculation of the a posteriori covariance at the nativematrix multiplication of HQ)” and(HQH” +R)~L, (2) ma-
spatial resolution aggregated temporally over a desired timgix multiplication of (HQ)? (HQH” +R)~! andHQ, (3)
period proceeds as follows: subtraction of(HQ)” (HQH” +R)~*HQ from Q, and @)
summation of allk? and mf (spatial covariance) blocks of

1. Sum all blocks of the matrix corresponding to the v/, The floating point operations for these four calculations
k=1, —1+1 time periods between periogsandz, are

over which the a posteriori uncertainties are to be ag-
gregated, where £ 4 <m,, t <t, <m,. For Q ex- 1%
pressed as a Kronecker product as given in Sect. 2.1,
this is the sum of all entries betwegrands, in D, mul-

3.1 Algorithm

=[nm mz(2n — )]+ [m%ms2 (2n — 1)]

+ [mfmf] + [msz (k2 - 1)] . (20)

Sdirect
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For the algorithm proposed in Sect. 3.1, five opera-algorithm can provide aggregated uncertainty covariances
tions are required to obtain aggregated a posteriori coeven for extremely large space-time inverse problems with
variance for the desired time periodl)(summation of  dramatically decreased computational and memory require-
k and m? (spatial covariance) blocks 0, (2) sum-  ments. The mounting availability of massive volumes of data
mation of k and n x m; blocks Of HQ, (3) multiplica- (¢ g satellite observations) will further increase the compu-
tion of (HQ){,m and (HQHT + R) , (4) multiplication of  tational cost associated with the solution of inverse problems
(HQ)gum(HQHT + R)_l and(HQ),m, and 6) subtraction  in the Earth sciences, making algprithms such as the ones
of (HQ)STum(HQHT i R)_l(HQ)sum from Qeum The last presented here, as well as further improvements to the com-

three of these are all part of step 3 of the algorithm. The roatJ:’l“'tationelI efficiency asspciatgd with the solution of large in-
ing point operations for these five calculations are verse problems, increasingly important.

Ve o= (21)
Sindirect Appendle
compute  compute Compute
Qsum (HQ)sum V‘i‘”d"e“ Description of the submitted code
(step1)  (step2 (step 3

Two MATLAB code files demonstrating the application
of the methods proposed in this manuscript are in-
Vandiet cluded as supplementary material. The MATLAB script file
Asymptotlcally Vdire approaches zero with increasing “HQ_HQHt.m" allows users to experiment with different
m. andm,. For the Gourdii et al. (2012) problem, this ratio sizes of random covariance matrices in a Kronecker product
is 5.34x 10~7 when evaluating the a posteriori covariance form and computeslQ andHQH T using the direct method
aggregated over the full yeak & m-), a savings of over a5 well as the method presented in Sect. 2.1. The second
99.9999 % in floating point operations relative to the direct MATLAB script file “Uncertainty. Computations.m” allows
approach. users to experiment with random matrices for computing a
For the special simplifying case whete=m (i.e., n= " posteriori covariances aggregated either over all time periods
m.mg) andm, = m, the ratio of floating point operations or for specified time periods. A detailed description of the
required by the direct and the indirect methods becomes  codes is also given at the beginning of the script files. Note
_ that these codes are provided to illustrate the two algorithms
Viindirect  2n2/n+2n%+nn(k—2)+n+k?—1 proposed in this research, but these codes should not be used
Vidirect 4n3 —n? +n(k?—1) ) to assess the computational performance of these algorithms.
(22) This is because MATLAB uses (1) highly optimized multi-
threaded external libraries (Basic Algebra Subroutines) for
This results in an asymptotic complexity of(63) for the performing matrix multiplication, and (2) automatic memory
direct method, and @2°) for the indirect method. The re- management (e.g., allocation and reallocation of memory).
duced memory requirements are arguably even more impor- To supplement the MATLAB routines, we also include
tant, however, as the proposed algorithm makes it possible taompletely serial Fortran (filename: HQ.f90) andt-€ (file-
compute a posteriori covariances at any temporal resolutiomame: HQ.cpp) code for performing the matrix multiplica-
without explicitly creatingvs. tion of H andQ matrix. Although the performance of these
codes may vary depending on computer architecture, the per-
formance will approximately reflect the computational sav-
ings described in the manuscript. For example, for the For-

We propose two algorithms to lower the computational costtran code compiled using the GFortran compiler on a Intel
prop g P Xeon X5660 2.80 GHz machine with 96 GB RAM, a ma-

of performing large linear space—time inverse problems.trix multiplication (1) with n = 8503, ¢ =10, andp —

The proposeq matrix mu_ItlpI|cat|on algorithm can be Im_r? — 100 took approximately 125 using the direct method
plemented with any matrices, as long as one of them ca

be expressed as a Kronecker product of smaller matrices, and approximately 2.2:s using the indirect meth@with
=8503,r =+ =100, andp = g = 10, the direct method
making it broadly applicable in other areas of statistics an
took approximately 9.4 s whereas the indirect method took
signal processing, among others (Van Loan, 2000). Further-
approximately 1.0s; and3) with » = 15000,r =t = 150
more, although not explicitly discussed in this work, the Kro-
and p = g = 150, the direct method took approximately 3h
necker product representation of covariance matrices can bé
Whereas the indirect method took approximately 3.4 min.
used for reducing the memory allocation complexity of stor-
ing error covariance matrices in both batch inverse prob-
lems and data assimilation (for application, see Singh et al.,
2011). The presented a posteriori covariance computation

e e
K2=Ltm? 4 [y (k=1)]+ [ @n=1)]+ [ m? @n-1) |+ [m?].

4 Conclusions
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