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Abstract. Addressing a variety of questions within Earth
science disciplines entails the inference of the spatiotempo-
ral distribution of parameters of interest based on observa-
tions of related quantities. Such estimation problems often
represent inverse problems that are formulated as linear op-
timization problems. Computational limitations arise when
the number of observations and/or the size of the discretized
state space becomes large, especially if the inverse prob-
lem is formulated in a probabilistic framework and there-
fore aims to assess the uncertainty associated with the esti-
mates. This work proposes two approaches to lower the com-
putational costs and memory requirements for large linear
space–time inverse problems, taking the Bayesian approach
for estimating carbon dioxide (CO2) emissions and uptake
(a.k.a. fluxes) as a prototypical example. The first algorithm
can be used to efficiently multiply two matrices, as long as
one can be expressed as a Kronecker product of two smaller
matrices, a condition that is typical when multiplying a sensi-
tivity matrix by a covariance matrix in the solution of inverse
problems. The second algorithm can be used to compute a
posteriori uncertainties directly at aggregated spatiotemporal
scales, which are the scales of most interest in many inverse
problems. Both algorithms have significantly lower memory
requirements and computational complexity relative to direct
computation of the same quantities (O(n2.5) vs. O(n3)). For
an examined benchmark problem, the two algorithms yielded
massive savings in floating point operations relative to direct
computation of the same quantities. Sample computer codes
are provided for assessing the computational and memory ef-
ficiency of the proposed algorithms for matrices of different
dimensions.

1 Introduction

Addressing a variety of questions within Earth science dis-
ciplines including environmental science, hydrology, geol-
ogy, geophysics, and biogeochemistry entails the inference
of the spatiotemporal distribution of parameters of interest
based on observations of related quantities. Such estimation
problems often represent inverse problems, with examples
including the estimation of hydraulic conductivity or other
aspects of subsurface structure using geophysical (e.g., Aster
et al., 2013) or hydrologic (e.g., Hyndman et al., 2007) ob-
servations, the identification of environmental contaminant
sources using downstream concentrations (e.g., Atmadja and
Bagtzoglou, 2001; Liu and Zhai, 2007; Michalak and Ki-
tanidis, 2003; Zhang and Chen, 2007), the characterization
of atmospheric and oceanic processes (Bennett, 2002), and
the quantification of budgets of atmospheric trace gases us-
ing atmospheric observations (e.g., Ciais et al., 2011; Ent-
ing, 2002). Such inverse problems are often formulated as
linear optimization problems. Even when the physics and/or
chemistry relating the unobserved field to the measurements
yields a nonlinear problem, the inverse problem is often
solved through iterative application of a linear approxima-
tion (e.g., Kitanidis, 1995). Computational limitations arise
when the number of observationsn and/or the size of the
discretized state spacem becomes large, especially if the in-
verse problem is formulated in a probabilistic framework and
therefore aims to assess the uncertainty associated with the
estimates.

This work proposes approaches for addressing these com-
putational limitations. We take the Bayesian approach for
estimating carbon dioxide (CO2) emissions and uptake
(a.k.a. fluxes) as a prototypical example of a spatiotemporal
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584 V. Yadav and A. M. Michalak: Improving computational efficiency in large linear inverse problems

inverse problem, and use it to illustrate the proposed tools.
We use the study of Gourdji et al. (2012) as a computational
benchmark.

1.1 A prototypical spatiotemporal inverse problem

Gourdji et al. (2012) used atmospheric concentration mea-
surements of CO2 to constrain CO2 fluxes in North America
at a 1◦ longitude by 1◦ latitude spatial resolution (ms = 2635
land regions for 50◦ W to 170◦ W and 10◦ N to 70◦ N) and a
3 hourly temporal frequency over the period of 24 Decem-
ber 2003 to 31 December 2004 (mτ = 2992 periods over
374 days). The implemented setup resulted inn = 8503 ob-
servations andm = ms ×mτ =7 883 920 parameters to be es-
timated. This high spatiotemporal resolution was primarily
motivated by the desire to avoid “aggregation errors” (Enge-
len et al., 2002; Meirink et al., 2008, Thompson et al., 2011),
i.e., biases in the estimated fluxes caused by prescribing spa-
tial and temporal patterns within estimation regions and not
allowing these patterns to be adjusted through the estima-
tion. The resolutions that can be resolved by observations
are often coarser, however, as are the scales that are of most
scientific interest. In the case of Gourdji et al. (2012), the
estimates were therefore aggregated a posteriori to monthly
and annual temporal resolution for interpretation. The a pri-
ori spatiotemporal error covariance was assumed separable,
with exponential decay in correlation in both space and time.
As a result, the prior covariance matrix could be expressed
as a Kronecker product of matrices describing the spatial and
temporal covariances, respectively.

1.2 Bayesian framework for linear inverse problems

Stochastic linear inverse problems are often formulated in
a Bayesian framework by requiring the minimization of an
objective function that can be written as

Ls =
1

2
(z− Hs)T R−1 (z− Hs) +

1

2

(
s− sp

)T Q−1(s− sp

)
, (1)

wherez(n×1) is a known vector of measurements,H(n×m) is a
matrix that describes the relationship between measurements
and the unknown fields(m×1), R(n×n) is the covariance ma-
trix of the model–data mismatch errors,sp(m×1) is the prior
estimate ofs, andQ(m×m) is a (square and symmetric) prior
error covariance matrix, describing deviations between the
true field s and the priorsp. The first term in Eq. (1) pe-
nalizes differences between available observations and those
that would result from an estimated underlying field, while
the second is a regularization term that penalizes departures
from the prior, or more generally any type of desired struc-
ture.

The solution to the Bayesian linear inverse problem, de-
fined as the estimate ofs that minimizes the objective func-
tion in Eq. (1), can be expressed as

ŝ= sp + (HQ)T (HQHT
+ R)−1(z− Hsp) (2)

and the a posteriori uncertainty covariance of the estimatedŝ
can be written as

Vŝ = Q − (HQ)T (HQHT
+ R)−1HQ (3)

For smalln andm, implementing Eqs. (2) and (3) is straight-
forward. As inverse problems are solved using increasingly
more observations and are used to estimate parameters at in-
creasingly high spatiotemporal resolutions, as in the proto-
typical Gourdji et al. (2012) example, the number of floating
point operations required to implement these equations be-
comes prohibitive.

A closer look at Eqs. (2) and (3) shows that the first com-
putational bottleneck occurs due to the cost of multiplying
matricesH andQ. The second is the cost of computing and
storing a denseVŝ with dimensionsm × m. Paradoxically,
as noted previously, the scales of ultimate interest are often
coarser than the native resolution ofVŝ, and these covari-
ances are frequently aggregated a posteriori in space and/or
time by summing or averaging the corresponding entries in
Vŝ.

In this work, we propose a computational approach for
evaluatingHQ, and by extensionHQHT for very large in-
verse problems, for the case where the covariance matrix
Q can be expressed as a Kronecker product of two smaller
matrices. This is typical of spatiotemporal inverse problems
where the space–time covariance is assumed separable, or
simpler problems that only consider covariance in space or
in time, rather than both. While the fact that the covariance
matrix Q can be expressed as a Kronecker product has been
recognized in previous work (Meirink et al., 2008; Singh et
al., 2011; Thompson et al., 2011), the novelty here is the
use of this property in developing an algorithm for increas-
ing the computational efficiency of the matrix productHQ.
We further present an approach for directly calculating the a
posteriori error covariance at aggregated scales, without the
intermediary step of first computing the fullVŝ. Note that
both of the presented algorithms rely on the availability of
a pre-computed matrixH, which can itself entail consider-
able computational cost that is not addressed in the work
presented here. We use the Gourdji et al. (2012) problem as a
computational benchmark for evaluating the performance of
the proposed approaches relative to a direct implementation
of Eqs. (2) and (3). Code demonstrating the implementation
of both methods for a toy example is available as supplemen-
tary material.

2 Efficient method for the multiplication of any matrix
with a matrix expressed as a Kronecker product

Reducing the computational cost of matrix multiplication
and determining the minimum number of operations required
to perform this operation has been an area of active research
for several decades. The computational efficiency of matrix
multiplication was generally assumed to be cubic until 1969
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when Strassen (1969) showed that by performing more ad-
ditions and fewer multiplications this cost could be reduced
to O(n2.82) (see Chapt. 47, p. 3 in Bini, 2010). This lower
bound has since been further reduced, with the last mini-
mum reported bound of O(n2.37) obtained by Coppersmith
and Winograd (1990). The majority of the existing algo-
rithms (see Chapt. 47, p. 9 by Bini, 2010) rely on the prop-
erty that matrix multiplication can be represented as multilin-
ear maps (for details, see Bini and Lotti (1980) and Horn and
Johnson (1990)), which helps in formulating a recursive non-
commutative block decomposition based algorithms for per-
forming matrix multiplication (Bini, 2010; Laderman, 1976).
However the stability of these algorithms remains question-
able, and other than Strassen’s algorithm the proposed algo-
rithms have not been found to be practically feasible (Bini
and Lotti, 1980; Eve, 2009; Li et al., 2011).

The computational complexity of performing matrix mul-
tiplication of sparse and specially structured matrices such as
Toeplitz, triangular Toeplitz, Hankel, Cauchy, Vandermonde,
and Vandermonde transposed matrices (Mouilleron, 2011),
circulant matrices (Nowak et al., 2003), banded matrices
(Gohberg and Olshevsky, 1994), and hierarchical matrices
(Saibaba and Kitanidis, 2012) with an arbitrary matrix can be
made to be significantly lower (for comparison of computa-
tional cost, see page 15 in Mouilleron, 2011). As such, in the
case of inverse problems, the structure of the covariance ma-
trices can be used to reduce the cost of matrix multiplication.
For the special case of a regular estimation grid and Toeplitz
covariances, for example, the fast Fourier (FF) method of
matrix multiplication gives an exact answer and has a com-
putational complexity of O(n2 logn) (for details, see Nowak
et al., 2003); however the algorithm has high computational
cost and memory requirements for sparse matrices. For an
irregular estimation grid, an approximate method based on
a hierarchical framework has been proposed by Saibaba and
Kitanidis (2012). Like the FF method, this method also has
a computational complexity of O(n2 logn), and can only be
used for very specific generalized covariance functions (for
details, see Saibaba and Kitanidis, 2012).

Another type of structured covariance matrix is the one
that can be expressed as the Kronecker product of two
smaller matrices, such as in the case ofQ. This property
has been used in the past for decomposing square symmetric
covariance matrices (Meirink et al., 2008; Thompson et al.,
2011) and in some cases in increasing the efficiency of the
matrix multiplication of separable covariance matrices with
diagonal matrices (Singh et al., 2011). Here we build upon
this work and propose an algorithm for matrix multiplication
of two arbitrary matrices, one of which can be expressed as
a Kronecker product, and show that its computational com-
plexity is O(n2.5). The algorithm has the same stability prop-
erties as those of cubic matrix multiplication algorithm.

2.1 Algorithm

Any matrix B(pr×qt) that can be expressed as a Kronecker
product can be defined based on matricesD(p×q) andE(r×t)

and denoted asD ⊗ E, where

D(p×q) ⊗ E(r×t) =

 d(1,1)E · · · d(1,q)E
...

. . .
...

d(p,1)E · · · d(p,q)E

 . (4)

For a square covariance matrixQ, both D and E are also
square. For the prototypical case examined here,Q is ex-
pressed as the Kronecker product of the temporal covariance
and the spatial covariance, both of which decay exponentially
with separation distance or lag:

Q = σ 2
s

temporal
covariance(D)︷ ︸︸ ︷[
exp

(
−

Xτ

lτ

)]
⊗

spatial
covariance(E)︷ ︸︸ ︷[
exp

(
−

Xs

ls

)]
, (5)

whereσ 2
s is the variance in space and time,Xs andXτ rep-

resent the separation distances/lags between estimation loca-
tions in space and time, respectively, andls and lτ are the
spatial and temporal correlation range parameters, respec-
tively. In this case,p = q = mτ andr = t = ms . This defines
a block matrixQ with m2

τ blocks, each defined as a square
matrixd(i,j)E with m2

s elements. As the Kronecker product is
not commutative, the arrangement of the temporal and spatial
covariance in Eq. (5) determines the design ofQ.

Returning to the more generic case, the multiplication of
any matrixA(n×pr) by B(pr×qt) proceeds as follows:

1. Divide A into p column blocks each with dimension
(n×r )

A(n×pr) =

(
a1︸︷︷︸

(n×r)

a2︸︷︷︸
(n×r)

. . . ap︸︷︷︸
(n×r)

)
. (6)

2. Multiply each block ofA by the elements of the first

column of D and add these blocks (
p∑

i=1
aid(i,1)). If an

element ofD is zero, then skip the multiplication; if it is
one, then add the column block ofA without performing
scalar multiplication.

3. Multiply the resultingn × r matrix byE(r×t) to obtain
the firstn × t column block ofAB.

4. Repeat steps 2 and 3 for the remainingq −1 columns of
D and the corresponding blocks ofAB. Overall,

AB(n×qt) (7)

=


(

p∑
i=1

aid(i,1)

)
E︸ ︷︷ ︸

(n×t)

(
p∑

i=1

aid(i,2)

)
E︸ ︷︷ ︸

(n×t)

· · ·

(
p∑

i=1

aid(i,q)

)
E︸ ︷︷ ︸

(n×t)

 .

www.geosci-model-dev.net/6/583/2013/ Geosci. Model Dev., 6, 583–590, 2013



586 V. Yadav and A. M. Michalak: Improving computational efficiency in large linear inverse problems

This algorithm can also be used for the multiplication of ma-
trices where the first matrix is a Kronecker product of two
smaller matrices, through the cyclical permutation property
of transposes.

For H(n×m)=(n×mτ ms ) andQ(m×m)=(mτ ms×mτ ms ), Eqs. (6)
and (7) become

H(n×mτ ms ) =

(
h1︸︷︷︸

(n×ms )

h2︸︷︷︸
(n×ms )

. . . hmτ︸︷︷︸
(n×ms )

)
(8)

HQ(n×mτ ms ) =


(

mτ∑
i=1

hid(i,1)

)
E︸ ︷︷ ︸

(n×ms )

(
mτ∑
i=1

hid(i,2)

)
E︸ ︷︷ ︸

(n×ms )

· · ·

(
mτ∑
i=1

hid(i,mτ )

)
E︸ ︷︷ ︸

(n×ms )

. (9)

The multiplication ofH and Q whereQ is a block diago-
nal (e.g., there is correlation in space but not in time) is a
special case of the algorithm whereD is an identity matrix.

2.2 Floating point operations

The number of floating point operations required for a direct
multiplication of a matrixA by a matrixB can be expressed
as a function of the dimensions of these matrices (for details,
see Golub and Van Loan, 1996):

ABdirect = nqt (2pr − 1). (10)

Similarly, the cost of the “indirect” multiplication algorithm
presented in the last section is

AB indirect =

Scalar
multiplication

(step2)︷ ︸︸ ︷
n {prq} +

Addition of
column blocks

(step 2)︷ ︸︸ ︷
q {(p − 1)nr} +

Matrix
multiplication

(step 3)︷ ︸︸ ︷
q {(2r − 1)nt} . (11)

Equation (11) is based on the fact that steps 2 and 3 are each
repeatedq times. The relative computational performance of
the indirect method can therefore be expressed as

AB indirect

ABdirect
=

2pr + 2rt − r − t

t (2pr − 1)
. (12)

For H and Q, this simplifies to

HQindirect

HQdirect
=

2(mτ + ms − 1)

2 mτms − 1
. (13)

Note that the number of observationsn does not affect
the relative performance of the algorithm. Asymptotically,
Eq. (13) approaches zero with increasingmτ and ms . For
the Gourdji et al. (2012) problem, this ratio is 7.14× 10−4,
a savings of over 99.9 % floating point operations relative to
the direct approach.

For the more generic case of multiplyingA andB, con-
sider the special simplifying case wheren = m andp = q =

r = t =
√

n; the floating point operations required by the di-
rect and indirect methods become

ABdirect = 2n3
− n2 and (14)

AB indirect = 4n2√n − 2n2. (15)

This results in an asymptotic complexity of O(n3) for the
direct method, and O(n2.5) for the indirect method. The di-
rect method is thus more economical only forn < 3, and the
relative cost of the indirect method decreases exponentially
thereafter. The overall computational cost could be reduced
further if the matrix multiplications in step 3 of the algo-
rithm were computed through the Strassen or Coppersmith
and Winograd algorithm. For a special case whereD is com-
posed of zeros and ones, the computational cost can also be
further reduced by avoiding scalar multiplications, as listed
in step 2 of the algorithm.

2.3 Other computational aspects of the
indirect approach

Beyond the economies in floating point operations, the indi-
rect method also dramatically decreases the random access
memory requirements for matrix multiplication, because the
proposed approach eliminates the need to create or store the
full matrix B (or Q). Thus, again taking the special case of
n = m andp = q = r = t =

√
n as an example, the memory

requirement for storingD andE is O(n2), whereas it is O(n4)

if B is explicitly stored in memory.
To maximize the computational gains from the algorithm,

it is also necessary to take into account the method adopted
by different computer languages for storing arrays in com-
puter memory. For example, C and C++ are far more ef-
ficient at multiplyingQ by HT than H by Q. This results
from the fact that C and C++ store matrices in row-major
order, whereas Fortran and MATLAB store them in column-
major order. The Fortran and C++ codes submitted with this
manuscript show how these operations are performed for ma-
trices stored in column (Fortran and MATLAB) or row-major
order (C and C++) for square symmetricQ, D andE matri-
ces. In addition, whether the matrices are stored as single-
dimension vectors or as two-dimensional matrices also af-
fects the computational performance of the proposed algo-
rithm, especially in C and C++, which are not array-based
programming languages.

In comparison to the direct method, the indirect approach
for matrix multiplication is also fault tolerant and amenable
to distributed parallel programming or “out of core” matrix
multiplication, as each column block ofAB (or HQ) can
be obtained separately without any communication between
processors populating the individual blocks.

In the case of the solution of an inverse problem, the mul-
tiplication of HQHT can also be completed block by block:

Geosci. Model Dev., 6, 583–590, 2013 www.geosci-model-dev.net/6/583/2013/
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HQHT
=

mτ∑
j=1

((
mτ∑
i=1

hi d(i,j)

)
E

)
hT

j , (16)

wherehi and hj represent column blocks of theH matrix
as defined earlier. The computational efficiency of the ma-
trix multiplication of H, Q andHT can be further improved
if the symmetry ofHQHT is taken into account (see details
on quadratic forms (Harville, 2008)). However there are no
“Basic Linear Algebra Subroutines” (Blackford et al., 2002;
Dongarra et al., 1988; Lawson et al., 1979) that take this
property into account, and additional work would be required
to develop these methods for application in inverse problems
and statistics.

3 Computation of aggregated a posteriori covariance in
large linear space–time inverse problems

The a posteriori covariance matrix (Vŝ; Eq. 3) is typically
dense, and calculatingVŝ is a computational bottleneck for
large inverse problems. For example, computingVŝ explic-
itly for the Gourdji et al. (2012) problem would require ap-
proximately 1.06× 1018 floating point operations, and over
56 TB of RAM. We propose an algorithm for computing the
a posteriori covariance directly at aggregated scales, which
are typically the scales of most interest as described in Sect.
1, without explicitly calculatingVŝ. We use the estimation of
a posteriori uncertainties at the native spatial scales (1◦

× 1◦

grid scale in the prototypical example) but for estimates av-
eraged across larger temporal scales as an example.

3.1 Algorithm

The algorithm is presented for aVŝ design consistent with
Eqs. (4) and (5), i.e., where the diagonal blocks describe
the spatial covariance, and the off-diagonal blocks describe
the decay of this covariance with time. The particular design
framework ofVŝ used in this study does not hinder the ap-
plication of the proposed algorithm for obtaining a posteriori
covariances and cross-covariances in inverse problems where
Vŝ has a different design, or where the aggregation is to be
conducted over a different desired dimension.

The calculation of the a posteriori covariance at the native
spatial resolution aggregated temporally over a desired time
period proceeds as follows:

1. Sum all blocks of the matrix corresponding to the
k = tu − tl + 1 time periods between periodstl and tu
over which the a posteriori uncertainties are to be ag-
gregated, where 1≤ tl < mτ , tl ≤ tu < mτ . For Q ex-
pressed as a Kronecker product as given in Sect. 2.1,
this is the sum of all entries betweentl andtu in D, mul-

tiplied byE (spatial covariance):

Qsum(ms × mτ ) =

((
tu∑

j=tl

tu∑
i=tl

d(i,j)

)
E

)
, (17)

whereQsum represents the sum of allQ blocks between
tl andtu.

2. Sum all column blocks of theHQ (see Eq. (9)):

(HQ)sum=

(
tu∑

j=tl

(
mτ∑
i=1

hi d(i,j)

)
E

)
(n×ms )

, (18)

where(HQ)sum represents the sum of allHQ column
blocks as shown in Eq. (9) betweentl andtu.

3. Compute the aggregated grid-scale a posteriori covari-
anceV̄ŝ for the estimates averaged over the desired time
periods:

V̄ŝ =

(
Qsum− (HQ)Tsum

(
HQHT

+ R
)−1

(HQ)sum

)
k2

,

(19)

whereV̄ŝ is the covariance of̂s temporally averaged for
time periodstl to tu .

3.2 Floating point operations

The number of floating point operations required for the di-
rect calculation ofVŝ (Eq. 3) and its aggregation overk
time periods is compared to the calculation of the aggre-
gatedVŝ using the algorithm described above. The floating
point operations required for multiplyingH by Q andHQ
by HT , for addingR to HQHT , for taking the inverse of(
HQHT

+ R
)
, and for dividing the aggregated covariance by

k2 are excluded in the floating point operation count, because
the cost of these operations is the same for both approaches.
Of course, computational savings can be achieved for both
by following the algorithm outlined in Sect. 2 for the matrix
multiplications.

The number of floating point operations required for ob-
taining grid-scale a posteriori covariance from the direct
method can be divided into four sequential operations: (1)
matrix multiplication of (HQ)T and(HQHT

+R)−1, (2) ma-
trix multiplication of (HQ)T (HQHT

+ R)−1 and HQ, (3)
subtraction of(HQ)T (HQHT

+ R)−1HQ from Q, and (4)
summation of allk2 andm2

s (spatial covariance) blocks of
Vŝ. The floating point operations for these four calculations
are

V̄ ŝdirect = [nmτms (2n − 1)] +

[
m2

τm
2
s (2n − 1)

]
+

[
m2

τm
2
s

]
+

[
m2

s

(
k2

− 1
)]

. (20)
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For the algorithm proposed in Sect. 3.1, five opera-
tions are required to obtain aggregated a posteriori co-
variance for the desired time period: (1) summation of
k and m2

s (spatial covariance) blocks ofQ, (2) sum-
mation of k and n × ms blocks of HQ, (3) multiplica-

tion of (HQ)Tsum and
(
HQHT

+ R
)−1

, (4) multiplication of

(HQ)Tsum

(
HQHT

+ R
)−1

and(HQ)sum, and (5) subtraction

of (HQ)Tsum

(
HQHT

+ R
)−1

(HQ)sum from Qsum. The last
three of these are all part of step 3 of the algorithm. The float-
ing point operations for these five calculations are

V̄ŝindirect
= (21)

compute
Qsum
(step 1)︷ ︸︸ ︷

k2
−1+m2

s +

compute
(HQ)sum
(step 2)︷ ︸︸ ︷

[nms (k−1)] +

Compute
V̄ ŝindirect
(step 3)︷ ︸︸ ︷

[nms (2n−1)] +
[
m2

s (2n−1)
]
+

[
m2

s

]
.

Asymptotically, V̄ŝindirect
V̄ŝdirect

approaches zero with increasingn,

mτ andms . For the Gourdji et al. (2012) problem, this ratio
is 5.34× 10−7 when evaluating the a posteriori covariance
aggregated over the full year (k = mτ ), a savings of over
99.9999 % in floating point operations relative to the direct
approach.

For the special simplifying case wheren = m (i.e., n =

mτms) andmτ = ms , the ratio of floating point operations
required by the direct and the indirect methods becomes

V̄ ŝ indirect

V̄ ŝdirect
=

2n2√n + 2n2
+ n

√
n(k − 2) + n + k2

− 1

4n3 − n2 + n(k2 − 1)
.

(22)

This results in an asymptotic complexity of O(n3) for the
direct method, and O(n2.5) for the indirect method. The re-
duced memory requirements are arguably even more impor-
tant, however, as the proposed algorithm makes it possible to
compute a posteriori covariances at any temporal resolution
without explicitly creatingVŝ.

4 Conclusions

We propose two algorithms to lower the computational cost
of performing large linear space–time inverse problems.
The proposed matrix multiplication algorithm can be im-
plemented with any matrices, as long as one of them can
be expressed as a Kronecker product of smaller matrices,
making it broadly applicable in other areas of statistics and
signal processing, among others (Van Loan, 2000). Further-
more, although not explicitly discussed in this work, the Kro-
necker product representation of covariance matrices can be
used for reducing the memory allocation complexity of stor-
ing error covariance matrices in both batch inverse prob-
lems and data assimilation (for application, see Singh et al.,
2011). The presented a posteriori covariance computation

algorithm can provide aggregated uncertainty covariances
even for extremely large space–time inverse problems with
dramatically decreased computational and memory require-
ments. The mounting availability of massive volumes of data
(e.g., satellite observations) will further increase the compu-
tational cost associated with the solution of inverse problems
in the Earth sciences, making algorithms such as the ones
presented here, as well as further improvements to the com-
putational efficiency associated with the solution of large in-
verse problems, increasingly important.

Appendix A

Description of the submitted code

Two MATLAB code files demonstrating the application
of the methods proposed in this manuscript are in-
cluded as supplementary material. The MATLAB script file
“HQ HQHt.m” allows users to experiment with different
sizes of random covariance matrices in a Kronecker product
form and computesHQ andHQHT using the direct method
as well as the method presented in Sect. 2.1. The second
MATLAB script file “Uncertainty Computations.m” allows
users to experiment with random matrices for computing a
posteriori covariances aggregated either over all time periods
or for specified time periods. A detailed description of the
codes is also given at the beginning of the script files. Note
that these codes are provided to illustrate the two algorithms
proposed in this research, but these codes should not be used
to assess the computational performance of these algorithms.
This is because MATLAB uses (1) highly optimized multi-
threaded external libraries (Basic Algebra Subroutines) for
performing matrix multiplication, and (2) automatic memory
management (e.g., allocation and reallocation of memory).

To supplement the MATLAB routines, we also include
completely serial Fortran (filename: HQ.f90) and C++ (file-
name: HQ.cpp) code for performing the matrix multiplica-
tion of H andQ matrix. Although the performance of these
codes may vary depending on computer architecture, the per-
formance will approximately reflect the computational sav-
ings described in the manuscript. For example, for the For-
tran code compiled using the GFortran compiler on a Intel
Xeon X5660 2.80 GHz machine with 96 GB RAM, a ma-
trix multiplication (1) with n = 8503, r = t =10, andp =

q = 100 took approximately 12 s using the direct method
and approximately 2.2 s using the indirect method; (2) with
n = 8503, r = t = 100, andp = q = 10, the direct method
took approximately 9.4 s whereas the indirect method took
approximately 1.0 s; and (3) with n = 15000, r = t = 150
andp = q = 150, the direct method took approximately 3 h
whereas the indirect method took approximately 3.4 min.
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Supplementary material related to this article is
available online at:http://www.geosci-model-dev.net/6/
583/2013/gmd-6-583-2013-supplement.zip.
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