Articles | Volume 5, issue 6
Development and technical paper
12 Nov 2012
Development and technical paper |  | 12 Nov 2012

Implementation of multirate time integration methods for air pollution modelling

M. Schlegel, O. Knoth, M. Arnold, and R. Wolke

Related subject area

Numerical methods
Modeling large‐scale landform evolution with a stream power law for glacial erosion (OpenLEM v37): benchmarking experiments against a more process-based description of ice flow (iSOSIA v3.4.3)
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343,,, 2023
Short summary
A mixed finite-element discretisation of the shallow-water equations
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev., 16, 1265–1276,,, 2023
Short summary
Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling
Anthony Gruber, Max Gunzburger, Lili Ju, Rihui Lan, and Zhu Wang
Geosci. Model Dev., 16, 1213–1229,,, 2023
Short summary
Massively parallel modeling and inversion of electrical resistivity tomography data using PFLOTRAN
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev., 16, 961–976,,, 2023
Short summary
Parallelized domain decomposition for multi-dimensional Lagrangian random walk mass-transfer particle tracking schemes
Lucas Schauer, Michael J. Schmidt, Nicholas B. Engdahl, Stephen D. Pankavich, David A. Benson, and Diogo Bolster
Geosci. Model Dev., 16, 833–849,,, 2023
Short summary

Cited articles

Hairer, E., Norsett, S., and Wanner, G.: Solving ordinary differential equations, vol. I, Springer Verlag, 1987.
Hinneburg, D., Renner, E., and Wolke, R.: Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony, Environ. Sci. Pollut. Res., 16, 25–35, 2009.
Hundsdorfer, W. and Verwer, J.: Numerical solution of time-dependent advection-diffusion reaction equations, Springer Series in Computational Mathematics, Springer, Berlin, Heidelberg, New York, 2003.
Jackiewicz, Z. and Vermiglio, R.: Order conditions for partitioned Runge–Kutta methods, Appl. Math., 45, 301–316, 1998.
Karypis, G.: Multilevel algorithms for multi-constraint hypergraph partitioning, Technical Report 99–034, University of Minnesota, Department of Computer Science/Army HPC Research Center, 1999.