Articles | Volume 17, issue 4
https://doi.org/10.5194/gmd-17-1603-2024
https://doi.org/10.5194/gmd-17-1603-2024
Development and technical paper
 | 
23 Feb 2024
Development and technical paper |  | 23 Feb 2024

An automatic mesh generator for coupled 1D–2D hydrodynamic models

Younghun Kang and Ethan J. Kubatko

Related subject area

Numerical methods
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary
Assessing the benefits of approximately exact step sizes for Picard and Newton solver in simulating ice flow (FEniCS-full-Stokes v.1.3.2)
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024,https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary

Cited articles

Adeogun, A., Pathirana, A., and Daramola, M.: 1D-2D Hydrodynamic Model Coupling for Inundation Analysis of Sewer Overflow, J. Eng. Appl. Sci., 7, 356–362, https://doi.org/10.3923/jeasci.2012.356.362, 2012. a, b, c
Adeogun, A. G., Daramola, M. O., and Pathirana, A.: Coupled 1D-2D Hydrodynamic Inundation Model for Sewer Overflow: Influence of Modeling Parameters, Water Science, 29, 146–155, https://doi.org/10.1016/j.wsj.2015.12.001, 2015. a, b, c
Avdis, A., Candy, A. S., Hill, J., Kramer, S. C., and Piggott, M. D.: Efficient Unstructured Mesh Generation for Marine Renewable Energy Applications, Renewable Energy, 116, 842–856, https://doi.org/10.1016/j.renene.2017.09.058, 2018. a
Bailey, R. T., Tasdighi, A., Park, S., Tavakoli-Kivi, S., Abitew, T., Jeong, J., Green, C. H., and Worqlul, A. W.: APEX-MODFLOW: A New integrated model to simulate hydrological processes in watershed systems, Environ. Modell. Softw., 143, 105093, https://doi.org/10.1016/j.envsoft.2021.105093, 2021. a
Bakhtyar, R., Maitaria, K., Velissariou, P., Trimble, B., Mashriqui, H., Moghimi, S., Abdolali, A., der Westhuysen, A. J. V., Ma, Z., Clark, E. P., and Flowers, T.: A New 1D/2D Coupled Modeling Approach for a Riverine-Estuarine System Under Storm Events: Application to Delaware River Basin, J. Geophys. Res.-Oceans, 125, e2019JC015822, https://doi.org/10.1029/2019JC015822, 2020. a, b, c
Download
Short summary
Models used to simulate the flow of coastal and riverine waters, including flooding, require a geometric representation (or mesh) of geographic features that exhibit a range of disparate spatial scales from large, open waters to small, narrow channels. Representing these features in an accurate way without excessive computational overhead presents a challenge. Here, we develop an automatic mesh generation tool to help address this challenge. Our results demonstrate the efficacy of our approach.