Articles | Volume 17, issue 4
Development and technical paper
23 Feb 2024
Development and technical paper |  | 23 Feb 2024

An automatic mesh generator for coupled 1D–2D hydrodynamic models

Younghun Kang and Ethan J. Kubatko

Related subject area

Numerical methods
Numerical coupling of aerosol emissions, dry removal, and turbulent mixing in the E3SM Atmosphere Model version 1 (EAMv1) – Part 1: Dust budget analyses and the impacts of a revised coupling scheme
Hui Wan, Kai Zhang, Christopher J. Vogl, Carol S. Woodward, Richard C. Easter, Philip J. Rasch, Yan Feng, and Hailong Wang
Geosci. Model Dev., 17, 1387–1407,,, 2024
Short summary
Numerical coupling of aerosol emissions, dry removal, and turbulent mixing in the E3SM Atmosphere Model version 1 (EAMv1) – Part 2: A semi-discrete error analysis framework for assessing coupling schemes
Christopher J. Vogl, Hui Wan, Carol S. Woodward, and Quan M. Bui
Geosci. Model Dev., 17, 1409–1428,,, 2024
Short summary
jsmetrics v0.2.0: a Python package for metrics and algorithms used to identify or characterise atmospheric jet streams
Tom Keel, Chris Brierley, and Tamsin Edwards
Geosci. Model Dev., 17, 1229–1247,,, 2024
Short summary
P3D-BRNS v1.0.0: a three-dimensional, multiphase, multicomponent, pore-scale reactive transport modelling package for simulating biogeochemical processes in subsurface environments
Amir Golparvar, Matthias Kästner, and Martin Thullner
Geosci. Model Dev., 17, 881–898,,, 2024
Short summary
MinVoellmy v1: a lightweight model for simulating rapid mass movements based on a modified Voellmy rheology
Stefan Hergarten
Geosci. Model Dev., 17, 781–794,,, 2024
Short summary

Cited articles

Adeogun, A., Pathirana, A., and Daramola, M.: 1D-2D Hydrodynamic Model Coupling for Inundation Analysis of Sewer Overflow, J. Eng. Appl. Sci., 7, 356–362,, 2012. a, b, c
Adeogun, A. G., Daramola, M. O., and Pathirana, A.: Coupled 1D-2D Hydrodynamic Inundation Model for Sewer Overflow: Influence of Modeling Parameters, Water Science, 29, 146–155,, 2015. a, b, c
Avdis, A., Candy, A. S., Hill, J., Kramer, S. C., and Piggott, M. D.: Efficient Unstructured Mesh Generation for Marine Renewable Energy Applications, Renewable Energy, 116, 842–856,, 2018. a
Bailey, R. T., Tasdighi, A., Park, S., Tavakoli-Kivi, S., Abitew, T., Jeong, J., Green, C. H., and Worqlul, A. W.: APEX-MODFLOW: A New integrated model to simulate hydrological processes in watershed systems, Environ. Modell. Softw., 143, 105093,, 2021. a
Bakhtyar, R., Maitaria, K., Velissariou, P., Trimble, B., Mashriqui, H., Moghimi, S., Abdolali, A., der Westhuysen, A. J. V., Ma, Z., Clark, E. P., and Flowers, T.: A New 1D/2D Coupled Modeling Approach for a Riverine-Estuarine System Under Storm Events: Application to Delaware River Basin, J. Geophys. Res.-Oceans, 125, e2019JC015822,, 2020. a, b, c
Short summary
Models used to simulate the flow of coastal and riverine waters, including flooding, require a geometric representation (or mesh) of geographic features that exhibit a range of disparate spatial scales from large, open waters to small, narrow channels. Representing these features in an accurate way without excessive computational overhead presents a challenge. Here, we develop an automatic mesh generation tool to help address this challenge. Our results demonstrate the efficacy of our approach.