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Abstract. Two-dimensional (2D), depth-averaged shallow
water equation (SWE) models are routinely used to sim-
ulate flooding in coastal areas – areas that often include
vast networks of channels and flood-control topographic fea-
tures and/or structures, such as barrier islands and levees.
Adequately resolving these features within the confines of
a 2D model can be computationally expensive, which has
led to coupling 2D simulation tools to less expensive one-
dimensional (1D) models. Under certain 1D–2D coupling
approaches, this introduces internal constraints that must be
considered in the generation of the 2D computational mesh
used. In this paper, we further develop an existing auto-
matic unstructured mesh generation tool for SWE models,
ADMESH+, to sequentially (i) identify 1D constraints from
the raw input data used in the mesh generation process,
namely the digital elevation model (DEM) and land–water
delineation data; (ii) distribute grid points along these in-
ternal constraints, according to feature curvature and user-
prescribed minimum grid spacing; and (iii) integrate these
internal constraints into the 2D mesh size function and mesh
generation processes. The developed techniques, which in-
clude a novel approach for determining the so-called medial
axis of a polygon, are described in detail and demonstrated
on three test cases, including two inland watersheds with vast
networks of channels and a complex estuarine system on the
Texas, USA, coast.

1 Introduction

Hydrodynamic models are routinely used to simulate, ana-
lyze, and assess the effects of physical phenomena that re-
sult in coastal flooding, such as tsunamis and hurricane storm

surges. Typically, the two-dimensional (2D), depth-averaged
shallow water equations, equipped with a suitable wetting
and drying algorithm, are used to model inundation within
the coastal floodplain in the main (see, for example, Luet-
tich and Westerink, 1999; Bunya et al., 2009; Dawson et al.,
2011). However, these coastal regions often include vast net-
works of small-scale channels that, while playing a signifi-
cant part in the conveyance of flood waters propagating into
and through the floodplain, are often left under-resolved in
practice, due to the computational expense of adequately re-
solving them within the confines of a strictly 2D modeling
approach. Moreover, in many situations, flow in open chan-
nels (and storm sewer systems in urban areas) can be ade-
quately described by simpler one-dimensional (1D), section-
averaged flow equations (as demonstrated in, for example,
Pramanik et al., 2010; Gichamo et al., 2012; Timbadiya et al.,
2014; Bhuyian et al., 2015; Price, 2018). This situation has
led to the development of a number of coupled 1D–2D mod-
eling approaches over the past decade (see references below)
that aim to more accurately and efficiently simulate flood-
ing events, and coastal hydrodynamics in general, than tradi-
tional 2D modeling approaches.

These types of coupled models have been applied in a
number of different hydrodynamic scenarios but have been
most widely used to simulate river flooding problems in
various settings (e.g., Liu et al., 2015; D’Alpaos and De-
fina, 2007; Kuiry et al., 2010; Martini et al., 2004; Marin
and Monnier, 2009; Gejadze and Monnier, 2007; Timbadiya
et al., 2015; Stelling and Verwey, 2006; Li et al., 2021;
Morales-Hernández et al., 2016). Some recent investigations
have focused on inundation in urban areas, where storm
sewer systems and channels, which are approximated in 1D,
interact with a 2D flooding model (Vojinovic and Tutulic,
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2009; Adeogun et al., 2012, 2015; Delelegn et al., 2011; Sey-
oum et al., 2012). Other coupled models have been developed
and applied for coupled riverine–estuarine flows near coastal
areas (Bakhtyar et al., 2020; Lin et al., 2006); river–lake
flows (Chen et al., 2012; Pham Van et al., 2016); supercriti-
cal flow in crossroads (Ghostine et al., 2015); overland–open
channel flows (West et al., 2017); and river closure projects
(Lin et al., 2020). More examples of coupled models, includ-
ing commercial models, are summarized elsewhere (Néelz
and Pender, 2009; Teng et al., 2017; Woodhead et al., 2007).

The coupled models are often categorized based on the
types of interactions that occur between the 1D–2D flows,
but here we categorize them into three types, based on the
way the 1D and 2D domains are connected (see Fig. 1). The
first type is boundary-connected domains (e.g., Chen et al.,
2012; Liu et al., 2015; Bakhtyar et al., 2020; Ghostine et al.,
2015; Pham Van et al., 2016). These types of domains are
widely used for river–lake or river–estuary systems (Chen
et al., 2012; Bakhtyar et al., 2020; Pham Van et al., 2016;
Ghostine et al., 2015), where the longitudinal (or frontal)
flows from 1D domains enter the 2D domains as a bound-
ary condition. However, in some cases, the interaction can
be made by lateral flow through breach between the 1D–2D
domains (Liu et al., 2015). The second type is internally con-
nected domains (e.g., West et al., 2017; Kuiry et al., 2010;
D’Alpaos and Defina, 2007; Martini et al., 2004; Marin and
Monnier, 2009; Gejadze and Monnier, 2007; Stelling and
Verwey, 2006; Timbadiya et al., 2015; Vojinovic and Tutulic,
2009; Bunya et al., 2023). These types of domains are widely
used for river–floodplain systems. The interaction is made
along the whole 1D domain, where the discharge from 2D
domains can enter the 1D domains or the 1D channel flows
exceeding bank level can enter the 2D domain. The third type
is vertically connected domains (e.g., Vojinovic and Tutulic,
2009; Fan et al., 2017; Adeogun et al., 2012, 2015; Delelegn
et al., 2011). These types of domains are mostly used for ur-
ban inundation with storm sewer systems. The interaction is
made at points where 1D–2D domains are connected verti-
cally, where the surcharged overflow can enter the 2D do-
mains.

Depending on the type of 1D–2D domain connections, the
mesh generation can be straightforward or extremely com-
plicated. The simplest case is boundary-connected domains.
In this case, the 2D computational meshes can be generated
with automatic mesh generators that have been developed
for 2D hydrodynamic models (see, for example, Persson and
Strang, 2004; Conroy et al., 2012; Koko, 2015; Roberts et al.,
2019; Engwirda, 2017; Hagen et al., 2002; Bilgili et al.,
2006; Candy and Pietrzak, 2018; Avdis et al., 2018; Remacle
and Lambrechts, 2018; Gorman et al., 2006). It would then
remain to generate 1D meshes and to connect them to the 2D
mesh at the boundary, which is straightforward once the 1D
domain is generated. For the vertically connected domains,
staggered 1D–2D computational meshes are widely used,
i.e., 1D line elements are not constrained to be co-located

with 2D mesh edges, given that the connections between
the 1D and 2D domains are limited to points. For example,
the meshes used in Delelegn et al. (2011); Adeogun et al.
(2012, 2015) are generated with standard two-dimensional
mesh generators, such as Gaja3D (Rath, 2007) and Triangle
(Shewchuk, 1996), without any consideration of the locations
of links.

The most complicated case is the internally connected
domains. Unlike vertically connected domains, collocated
meshes, which here means that 1D line elements are aligned
with 2D mesh edges, are desirable. The difficulty of mesh
generation for this type comes from the fact that the reso-
lutions of the 1D–2D domains are obviously closely inter-
twined with each other; however, the desired mesh resolu-
tions for each domain may be quite different. Additionally,
the 1D line elements must serve as internal constraints in
the mesh generation process, which must be carefully identi-
fied and preprocessed to avoid over-constraining the 2D ele-
ments, leading to triangles of poor quality.

In this paper, we present an automatic mesh generator for
internally connected 1D–2D hydrodynamic models that is an
extension of an existing mesh generator for shallow water
equation (SWE) models, ADMESH+ (Conroy et al., 2012),
which built upon the ideas and methodology of Persson’s
DistMesh program – a simple, open-source mesh genera-
tor implemented in MATLAB (Persson and Strang, 2004).
The ADMESH+ mesh generation process can be briefly out-
lined as follows. First, a mesh or element size function,
h, is constructed so that is used to prescribe element sizes
h(x) throughout a given 2D domain. These element sizes are
based on a number of geometric factors, such as shoreline
and/or boundary curvature and bathymetric/topographic gra-
dients, as well as user-defined inputs, such as target maxi-
mum and minimum element sizes and mesh grading speci-
fications (i.e., the ratio of neighboring elements should not
exceed some specified factor). Given the element size func-
tion, a Delaunay triangulation of an initial set of mesh nodes
with a density proportional to 1/h(x)2 is then generated and
the nodes of this initial mesh are repositioned by solving for
force equilibrium (iteratively) around each node, making use
of a spring mechanics analogy (see Conroy et al., 2012, for
complete details).

The primary improvements incorporated into ADMESH+
in this work are twofold. First, an automatic identification
of 1D domains is developed. This requires, as input to the
mesh generation process, a digital elevation model (DEM)
and a so-called land and water mask that identifies the (ini-
tially) dry and wet (respectively) portions of the domain. Us-
ing these input datasets, separate methods of identification of
narrow channels (i.e., those below a user-specified 2D mini-
mum element size) that define 1D model domains over land
and water are developed. These methods involve tightly in-
tegrating ADMESH+ with a MATLAB-based topographic
toolbox, TopoToolbox (Schwanghart and Kuhn, 2010), and
identifying the medial axis of the water portion of the do-
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main for which a novel approach is developed. Second, from
the extracted 1D model domains, target 1D mesh node dis-
tributions are computed along smooth spline approximations
of the 1D line segments according to channel curvature; i.e.,
mesh node density is increased in areas of high curvature and
relaxed in straight segments, as well as the underlying 2D
mesh size function computed during the standard mesh gen-
eration process. Similar to the 2D force equilibrium approach
mentioned above, the actual 1D mesh node distribution is
then determined from the target mesh size through the use
of a 1D spring mechanics approach. The final internal con-
straint obtained is then used within the 2D mesh generation
process to obtain meshes suitable for coupled (specifically,
internally connected) 1D–2D hydrodynamic models.

The rest of this paper is organized as follows. In the next
section, the framework of the proposed methodology and
the primary input datasets of the mesh generation are dis-
cussed. Details of the algorithms developed to identify inter-
nal constraints are then described in Sect. 3, with illustrative
examples for simple and complex geometries. The 1D and
2D mesh generation process with the identified internal con-
straints is then described in Sect. 4. Finally, the application
of the methodologies developed are demonstrated in Sect. 5,
and the paper is concluded by providing a brief summary of
the work and some possible future directions are identified.

2 Overview of coupled 1D–2D hydrodynamic domains

Consider a hydrodynamic model domain �2D ⊂ R2 defined
by a simple (i.e., not self-intersecting) polygon, possibly with
holes. A so-called mesh size function h :�2D→ R that as-
signs a target element size1= h(x,y) to each point (x,y) ∈
�2D plays a fundamental role in the construction of a trian-
gulation Th of �2D. Here, the mesh size function h is rep-
resented as a bilinear interpolant constructed on a rectilin-
ear background grid that consists of a set of points X, de-
fined such that Conv(�2D)⊂X, where Conv(�2D) denotes
the convex hull of �2D . In the existing ADMESH+ frame-
work, several factors can be considered in the construction
of the mesh size function, including user-specified minimum
and maximum element sizes, boundary curvature (see Con-
roy et al., 2012, for a complete description).

In our previous work (Conroy et al., 2012), the polygonal
domain �2D and the mesh size function h (together with its
corresponding background grid) have served as the two pri-
mary inputs to the mesh generation process of ADMESH+.
In this work, the incorporation and construction of a third
primary input is described that is fundamental to the gener-
ation of suitable meshes for coupled 1D–2D hydrodynamic
models, namely a set of internal constraints that consists of
a set of line segments interior to �2D, along which the edges
in the 2D triangulation must be constrained. Three types
of internal constraints are considered. The first type is line
segments that represent centerlines of narrow channels; i.e.,

those channels that cannot be accurately resolved under the
user-specified minimum element size. These line segments
make up the aforementioned 1D hydrodynamic domain. The
second type is line segments that align with sub-grid-scale to-
pographic features/structures, such as narrow barrier islands,
levees, and weirs, along which certain internal boundary con-
ditions are enforced in the 2D hydrodynamic model (see, for
example, Dawson et al., 2011). Finally, the third type of in-
ternal constraint is line segments that represent the boundary
between the land and water subdomains, i.e., the shorelines.
Note that this type of internal constraint is neither part of the
1D domain nor an internal boundary but is desired in order to
provide a clear distinction between the land and water sub-
domains by the generated 2D mesh.

We note that the described internal constraints can be pro-
vided directly from relevant data sources; for example, chan-
nel centerlines are available from the U.S. Geological Sur-
vey (USGS) National Hydrography Dataset (NHD) (U.S.
Geological Survey, 2016) but are more generally obtained
based on two functions defined over �2D. One is a func-
tion f :�2D→ R that assigns the (bare) Earth surface ele-
vation z= f (x,y) to a point (x,y) ∈�2D. This is typically
provided by a combination of topographic and bathymetric
(gridded) DEMs. A second is a so-called indicator function
1�w :�2D→ {0,1} of a subset �w ⊂�2D, defined as

1�w(x,y)=

{
1 if (x,y) ∈�w
0 if (x,y) 6∈�w

,

which indicates whether a point (x,y) ∈�2D is (initially)
wet (1) or dry (0), i.e., a so-called land–water mask. We refer
to �w as the water subdomain of �2D (see Fig. 2). This is
typically provided by a dataset of closed polygons whose in-
teriors indicate the water subdomain (see, for example, Wes-
sel and Smith, 1996). Below, we describe our methodology
for identifying internal constraints from the datasets that in-
form these two functions.

3 Identification of internal constraints

In this section, we present our methodology for extracting
the three types of internal constraints described above. The
methodologies vary for the land and water portions of the
domain. The key of the extraction of open channels from the
land portion of the domain is the drainage area computed us-
ing the gradient of the input DEM(s). In the water portion of
the domain, central to the extraction of open channels, is the
width measurement of relevant features of the domain. Note
that this methodology is further applied to identify internal
boundaries (the second type of internal constraint) from the
land portion of the domain. The third type of internal con-
straint – namely the boundaries between the land and water
domains – is obtained as a byproduct from this methodology.
As two distinct methodologies are applied, they are described
in separate subsections below.
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Figure 1. Schematic of three types of coupled 1D–2D models. (a) Boundary-connected, (b) internally connected, and (c) vertically connected
types. Blue areas indicate 2D domains, dashed black lines indicate 1D domains, and red crosses/arrows/lines indicate links between the
models.

Figure 2. Example of a DEM defining the bathymetry/topography elevations (a) and the corresponding land–water mask (b), where �w is
indicated by light blue.

3.1 Open channels from the land subdomain

In the land subdomain, only the first type of internal con-
straint mentioned above, namely channel centerlines, are
identified. From input DEM(s), internal constraints repre-
senting dry channels (flow paths) in the land subdomain are
detected by integrating the existing ADMESH+ code with
TopoToolbox – a widely used, MATLAB-based topographic
toolbox (Schwanghart and Kuhn, 2010).

The channel detection algorithm in TopoToolbox is a flow
accumulation algorithm based on the gradient of the DEM.
At each grid point of the DEM, flow direction is computed
for eight connected neighbors to create a global flow direc-
tion matrix M, which is defined by

Mij =
max(zi − zj ,0)

dij
, (1)

where zi is elevation at cell i, and dij is the distance between
cells i and j . Starting with a uniform unit water depth on each
grid point of the DEM, expressed as a vector w, the global
flow direction matrix is multiplied with the water depth vec-
tor to compute water depth at the next time step

wk+1
=Mwk, (2)

where wk is water depth vector at kth iteration. This oper-
ation is repeated until water completely leaves the system.
Then, drainage area at each grid point is defined as the sum-
mation of water depth over all iterations:

a = w0
+w1

+ . . .+wn, (3)

where a is drainage area vector. Finally, the channels are
identified by a threshold of minimum drainage area. Note
that while the algorithm is developed based on an iteration
method, in TopoToolbox, the drainage area is computed di-
rectly by using geometric procession:

a = w0
+w1

+ . . .+wn
+ . . . (4)

= (I+M+M2
+ . . .+Mn

+ . . .)w0 (5)

= (I−M)−1w0. (6)

Note that the quality of extracted open channels using the
flow accumulation algorithm depends on the quality of the
DEM. For example, if there is a sink in the midst of an open
channel, then the numerical flow computed using the given
algorithm cannot propagate at the sink, which results in an
erroneous channel network. In order to improve the quality of
open-channel extraction, sinks are filled as preprocess using
the fillsinks function provided in TopoToolbox.
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As mentioned above, while other datasets of open-channel
centerlines (for example, USGS NHD) can be used, in our
experience, open channels extracted from TopoToolbox show
better alignment with input DEMs.

3.2 Open channels from the water subdomain and
internal boundaries from the land subdomain

The water subdomain exhibits a wide range of scales from
large open waterbodies to narrow channels and islands, the
latter of which are represented as holes in the water mask. For
the purpose of identifying narrow channels and small islands
in the water subdomain, we describe our methodology for
performing a width-based decomposition of the water sub-
domain that makes use of a user-defined minimum width δw;
i.e., features of width < δw are identified as narrow.

3.2.1 Width-based mask decomposition

We describe the step-by-step procedure for determining the
width-based mask decomposition with the aid of the sim-
ple example shown in Fig. 3. For masks with more complex
boundaries and/or holes, additional processes are required,
which are described in Sect. 3.2.2.

– Step 1. For a given polygon (Fig. 3a), find the medial
axis (Fig. 3b).

The medial axis MA(P ), of any closed polygon P , is
defined as the set of interior points that have equal dis-
tances to two or more points on the boundary of P . Our
computation of the medial axis is based on the vector
distance transform (VDT) originally proposed by Mul-
likin (1992). Given a polygon P with the boundary ∂P ,
the value of the VDT, V (x,P ), at point x = (x,y) ∈ P

is defined as

V (x,P )=8(x,∂P )− x, (7)

where

8(x,∂P )= arginf
y∈∂P

||x− y||. (8)

Using the VDT, the medial axis of P can be obtained as
(see Appendix A)

MA(P )= {x ∈ P : ∇ ·V (x,P ) > 0}. (9)

Note that the VDT defined by Eq. (7) is not well de-
fined on the medial axis points, as multiple arguments
of the infimum are produced from Eq. (8). In numerical
implementation, we arbitrarily choose one of the argu-
ments of infimum of Eq. (8).

Finally, this algorithm produces medial axis points,
which is a subset of background grid points along the
medial axis. However, the following methodology is im-
plemented based on medial axis branches, which con-
sists of line segments. For details of the construction of

the medial axis branches from medial axis points, see
Appendix A.

– Step 2. Prune the medial axis (Fig. 3b).

After obtaining the medial axis, pruning near corners is
required to improve the quality of the width function,
which is described later. First, we construct a hierarchy
of medial axis branches; i.e., branches with free ends are
order 1, branches connected to order 1 are order 2, etc.
Next, for each medial axis point p on order 1 branches,
we define width and angle of medial axis as

`= max
i=1,...,4

||(p+ v)− (pi + vi)|| (10)

and

θ = max
i=1,...,4

cos−1
(

v · vi

||v|| ||vi ||

)
, (11)

where pi (i = 1, . . .,4) are four neighboring back-
ground grid points of p, and v and vi are VDTs cor-
responding to p and pi ; i.e., v = V (p,P ) and vi =

V (pi,P ) (see Fig. 4). As mentioned in the previous
step, the VDTs on the medial axis are arbitrarily cho-
sen in numerical implementation. This may cause dif-
ferences for lengths of the medial axis, but these dif-
ferences are insignificant (see Fig. 4). Note that inverse
cosine function computed with acos function in MAT-
LAB gives θi ∈ [0,π ]. Finally, the medial axis points
near corners are identified and pruned, based on the
thresholds

θ < δθ and ` < δ`, (12)

where δθ and δ` are specified threshold values used
for pruning. Based on our experiments, the values δθ =
0.9π and δ` = 2δw provide reasonable results.

– Step 3. Compute distance functions and define the width
function (Fig. 3c, d, and e).

Now we define two distance functions; one measures
the closest distance from a point x to the boundary
d(x,∂P ), and the other measures the closest distance
from a point to the x medial axis d(x,MA(P )). The
former can be measured using the VDT:

d(x,∂P )= ||V (x,P )||. (13)

Then, the width function is defined as twice the sum of
the two distance functions (see Fig. 5); i.e.,

fw(x,P ) := 2(d(x,∂P )+ d(x,MA(P ))). (14)

Note that, without pruning the medial axis, the width
function results in fw(x)≈ 0 in the vicinity of every
corner. This is because both boundary lines and the (un-
pruned) medial axis exist at every corner of the polygon
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boundary, and thus d(x,∂P )≈ 0 and d(x,MA(P ))≈
0. This results in the area around every corner being
identified as narrow, even though they are corners of
large waterbodies. This is the rational for pruning the
medial axis around corners, which was presented in
Step 2.

– Step 4. Decompose the polygon with a user-defined
minimum width δw (Fig. 3f).

With the width function Eq. (14), the given polygon P
can be decomposed as

P1 := {x ∈ P : fw(x,P ) < δw} (15)

and

P2 := {x ∈ P : fw(x,P )≥ δw}. (16)

We call the masks P1 and P2 level 1 and level 2 masks,
respectively. Note that the level 1 and level 2 masks can
be used for 1D and 2D domains for simple cases, but ad-
ditional processes are required for complex geometries.
The level 1 and level 2 masks are not identical to the 1D
and 2D domain in that case, and thus we use the term
“level” to avoid confusion.

3.2.2 Additional processes for complex geometries

The challenge in real applications comes from complex
boundaries and the presence of small narrow islands within
large waterbodies. The complexities result in the noise of
the width function and do not provide a clear distinction be-
tween level 1 and level 2 masks, and additional processes
are applied to resolve the noise. In order to catch the narrow
islands, the mask decomposition needs to be applied to the
land mask in a similar way to that of the water mask decom-
position. Applying the mask decomposition for both land and
water masks also requires an additional process, which is de-
scribed in this section. Hereinafter, the land and water masks
are denoted by ML and MW, respectively. These processes
are described below in the context of an example (see Figs. 6
and 7).

– Step 1. Remove small islands (Fig. 6a and b).

Small islands, by which we mean islands with areas
that are much smaller than the square of minimum el-
ement size, are removed at the first step for two rea-
sons. First, it is expected that small islands will not have
significant effects on the hydrodynamic models. Sec-
ond, mask decomposition with small islands tends to
result in poor internal constraints. Mask decomposition
converts small islands to internal constraints with the
length of their major axis, and therefore, small islands
tend to create internal constraints shorter than the min-
imum element size. Note that short internal constraints
can be identified and removed after decomposing masks

as well. In this example, islands with area less than
1000 m2 are removed, where the minimum element size
is set as 45 m (see Fig. 6a and b).

– Step 2. Apply width-based decomposition with filling to
land and water masks (Fig. 6e and f).

While the mask decomposition gives a clear distinction
between narrow and wide regions in the simple example
(see Fig. 3), more complex cases can result in noise in
the width function, which can be removed through a so-
called filling method.

The filling method is based on the idea of the maximal
disk (see Fig. 8a), which is defined as

D(x,P )= {y ∈ P : ||x− y|| ≤ d(x,∂P )}. (17)

And the level 1 and level 2 masks are updated with the
maximal disks centered in level 2 masks

Mĩ2 :=Mi2 ∪Di and Mĩ1 :=Mi1\Di, (18)

where

Di = {D(xj ,Mi) for all xj ∈MA(Mi)∩Mi2}, (19)

andMi =ML andMW. Note that the maximal disks are
sought on level 2 masks only. Also, there are some re-
gions of Mĩ1 that do not include any medial axis (see
Fig. 8b). These regions are redundant, as they cannot be
represented by the medial axis. Therefore, we transfer
such regions to level 2 masks and update the masks (see
Fig. 8c).

Mi2 :=Mĩ1 ∪Ri and Mi1 :=Mĩ1\Ri, (20)

where

Ri = {P ∈Mĩ1 : P ∩MA(Mi)=∅}. (21)

Note that with these procedures, the level 2 masks have
a smoother boundary and provide a better representa-
tion of the large waterbodies; see Fig. 6e and f, which
are updated masks of panels Fig. 6c and d, respectively,
after filling.

– Step 3. Find regions of a level 1 land mask that are sur-
rounded by a level 2 water mask (Fig. 7g).

The purpose of this step is to identify regions of a level
1 land mask that are retained as internal constraints in
the 2D hydrodynamic model. These narrow land re-
gions are typically modeled as internal boundaries over
which simple sub-grid-scale flow parameterizations are
performed, using, for example, a simple weir-based for-
mula (see, for example, Dawson et al., 2011).

First, the thinness of land regions is determined by the
so-called isoperimetric ratio (IPR), which is defined as
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Figure 3. Process of mask decomposition into narrow and wide regions. (a) A given water mask. (b) The medial axis before and after pruning
(red and blue). (c) The distance function to the boundary. (d) The distance function to the medial axis. (e) The width function. (f) The mask
decomposition with level 1 (gray; narrow regions) and level 2 (white; wide regions).

Figure 4. Schematic of the computation of width and angle (dashed
lines and gray circular sectors) of the medial axis (solid gray line).
White dots are a given medial axis point, black dots are neighbor-
ing background grid points, and solid arrows are VDTs from neigh-
boring background grid points. Two possible choices of VDT are
marked with dotted arrows in Cases 1 and 2.

perimeter2/area. Note that the IPR is a dimensionless
number, which is higher for thinner regions. Here, we
set a threshold of 30. Second, in order to identify if each
region is surrounded by level 2 water mask, we first set
a buffer for each region. The buffer size is set as half
of the length of the minor axis of the ellipse that has
the same normalized second central moments as the re-
gion (see Fig. 9a and b). The minor axis length is com-

Figure 5. Schematic of the width function.

puted using the regionprops function in MATLAB.
We then check the area of the level 2 masks within the
buffer. We define the land region to be surrounded by
level 2 water mask if the area of level 2 water mask is
greater than twice the area of level 1 land mask within
the buffer (see Fig. 9c and d, which show selected re-
gions of level 1 land mask shown in Fig. 9a and b, re-
spectively). Note that level 1 water masks will be in-
ternal constraints (channel centerlines). This means that
if a region of the level 1 land mask is surrounded by a
level 1 water mask, then there are too many internal con-
straints too close to each other. Therefore, we only re-
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tain regions of the level 1 land mask that are surrounded
by a level 2 water mask, denoted by ML1W2, which can
be expressed as

ML1W2 = {P ∈ML1 : IPR(P ) > 30

and

∣∣∣∣MW2 ∩B(P )
∣∣∣∣∣∣∣∣ML2 ∩B(P )
∣∣∣∣ > 2}, (22)

where IPR(P ) is the isoperimetric ratio, B(P ) is the
buffer of region P ∈ML1, and ||·|| denotes area.

– Step 4. Transfer regions of the level 1 land mask identi-
fied in Step 3 to the water mask (Fig. 7h).

As described in Step 3, the narrow regions identified
will now serve as internal constraints (specifically, in-
ternal boundaries as described above) in the mesh gen-
eration process and no longer need to be in land mask.
Therefore, these regions are transferred into the water
mask and updated land and water masks are defined as

ML :=ML\ML1W2 (23)

MW :=MW ∪ML1W2. (24)

Note that the centerlines of narrow land regions are used
as internal constraints (internal boundaries) for mesh
generation:

s1 =MA(ML)∩ML1W2. (25)

– Step 5. Apply the width-based mask decomposition to
the updated water mask (Fig. 7i).

The width-based decomposition of the water mask that
now includes the narrow land regions described above
will be different from the width-based decomposition
of the original input water mask. Therefore, the width-
based decomposition must be applied again. Note that,
in this step, the decomposition for the land mask is not
required. The centerlines of updated level 1 water mask
MW1 form the domain of a 1D hydrodynamic model;
i.e.,

�1D :=MA(MW)∩MW1. (26)

Here, we have the second type of internal constraint (1D
domain) for mesh generation

s2 =�1D. (27)

The domain of the 2D model is the entire domain, ex-
cept the domain of the 1D model. Note that it includes
the updated level 1 water mask, as well as the updated
level 2 water mask and land mask; i.e.,

�2D :=ML ∪MW2 ∪ (MW1\�1D). (28)

It is preferred that the mesh elements are aligned along
boundaries between waterbodies and land. This can be

ensured by passing the boundary of MW2 as internal
constraints, even though it is neither an open channel
nor an internal boundary, which is the third type of in-
ternal constraint for mesh generation:

s3 = ∂MW2. (29)

– Step 6. Construct mainstreams of 1D domain and inter-
nal boundaries.

The 1D domains and internal boundaries contain the
centerlines of narrow regions of the water and land
mask. These centerlines are obtained from the medial
axis of the mask, which has been pruned and ordered
into hierarchic medial axis branches. This branch-wise
ordering creates several short medial axis segments
(see, for example, Fig. 10), which is undesirable for
computing the internal constraint curvature that is used
to help determine the size of the 1D elements, as de-
scribed in the next section. Therefore, a procedure to
construct channel mainstreams is applied as follows.
First, at each joint, the pair of segments, or branches,
that have minimum (absolute) curvature are merged to-
gether to form a new segment (the mainstream). If there
are more than three branches at a joint, another pair of
branches with minimum curvature, excluding the main-
stream, is merged and set as a sub-stream. The sub-
streams are collected until there is no pair at a joint.

To conclude this section, the algorithm described gen-
erally provides a good identification of narrow regions
and the three types of internal constraints. However, this
identification is not perfect and can result in some nar-
row regions being falsely identified, or misclassified, as
level 2 regions. There are two possible reasons for this
misclassification. The first one is related to the quality of
the medial axis calculation. Recall that the medial axis is
obtained by computing the divergence of the VDT and
is subsequently pruned based on specified tolerances.
This approach can result in an inaccurate estimation of
the width function, especially within small regions. The
second reason relates to the use of the dimensionless
width parameter. Specifically, the identification of level
1 land regions surrounded by level 2 water masks (as
described in Step 3) depends on the IPR threshold and
the ratio of the surrounding level 2 water and land mask.
This can result in some level 1 land regions being omit-
ted, which we want to see represented by their center-
lines. Note that a higher quality of the medial axis can
be achieved by using other algorithms (see, for example,
Lee, 1982) or using an adaptive background grid such as
octree (Yerry and Shephard, 1983). In a simpler way, a
higher resolution of the (uniform Cartesian) background
grid can be utilized, which will cause memory and com-
putational inefficiencies. In order to further enhance the
quality of classification, a complex algorithm of criteria
choice may be required, such as machine learning.
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Additionally, there can be some internal constraints,
even if they are correctly identified, that result in ele-
ments that are too small or of poor quality. For exam-
ple, there can be internal constraints that are too close
to each other. Note that, by choosing level 1 land re-
gions surrounded by a level 2 water mask (in Step 3),
it is unlikely that internal boundaries are too close to
open channels. However, there are some internal bound-
aries/open channels which are too close to the third in-
ternal constraint, namely boundaries between waterbod-
ies and land.

While these problems are related to identification of nar-
row and wide regions and internal constraints, it is eas-
ier to resolve them during the mesh generation process
itself. Therefore, treatment of the problems mentioned
here will be described in the next section (specifically,
see Sect. 4.4).

4 Force equilibrium with internal constraints

The ADMESH+ is built using the force equilibrium algo-
rithm, originally proposed by Persson and Strang (Persson
and Strang, 2004). The basic idea of the force equilibrium
algorithm is to model each element edge as a spring. It as-
signs a repelling force to each element edge; for example, a
force of the form f = k(lh− li), where k is a spring constant,
li is the length of the element edge in the current triangulation
Ti , and lh is the desired length determined by the target mesh
size h. Total repelling forces for each node are computed and
applied to reposition nodes. The algorithm iterates this pro-
cess and seeks to equilibrium state. For complete details, see
Persson and Strang (2004).

In this section, we introduce a methodology to gener-
ate 2D finite element meshes given the identified internal
constraints. The goal of mesh generation with internal con-
straints is to use efficient mesh resolution along the internal
constraints so that it preserves the geography of the study ar-
eas with reduced computational demand. This is achieved by
assigning a mesh size inversely proportional to the curvature
of internal constraints. Also, additional processes are applied
to ensure robustness of the force equilibrium algorithm with
internal constraints.

4.1 Smoothing internal constraints

The internal constraints, which are given by user input or ex-
tracted from a DEM, are often based on a structured grid.
This can produce, for example, a choppy set of channel cen-
terlines (see Fig. 11) that do not provide a good basis for
computing channel curvature, which is used in the process of
determining mesh node placement and element size.

Therefore, in order to provide a smooth curve from which
we can compute curvature, a cubic spline smoothing is
applied based on the csaps function in MATLAB. The

Figure 6. Example of the step-by-step procedure for complex ge-
ometries applied to part of the Lower Neches Basin, TX. (a) Orig-
inal land and water masks from the input dataset (brown and blue
areas, respectively). (b) Land and water masks after removing small
islands (Step 1). (c, d) Decomposed land and water masks consist-
ing of level 1 and level 2 land masks (dark brown and light brown
areas, respectively) and level 1 and level 2 water masks (dark blue
and light blue areas, respectively). (e, f) Updated land and water
masks after filling (Step 2).

csaps function returns a smooth spline interpolation fp to
the N data points (ri,y(ri)), i = 1, . . .,N that minimizes

p

N∑
i=1

wi
∣∣yi − fp(ri)∣∣2+ (1−p)∫ λ(t)

∣∣∣D2fp(t)

∣∣∣2dt, (30)

where p is a smoothing parameter, D2fp is the second
derivative of fp, and wi and λ denote error measure weights
and a weight function, respectively (see the MATLAB
csaps help documentation for more details). Note that in-
ternal constraints are two-dimensional curves s = (xi,yi).
Thus, for each internal constraint, we define a parametric
curve as (x(ri),y(ri)), where ri = i for i = 1, . . .,N , and find
smoothed curves x̃p and ỹp individually. Note that the pa-
rameter ri is a set of arbitrary values, and the csaps func-
tion depends not only on the smoothing parameter p but also
on the parameter ri . In order to get standardized smoothing,
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Figure 7. Example of the step-by-step procedure for complex ge-
ometries applied to part of the Lower Neches Basin, TX (contin-
ued). (g) Regions of level 1 land mask surrounded by level 2 water
mask (Step 3). (h) Updated land and water masks after transferring
regions in panel (g) to internal boundary constraints (brown lines)
(Step 4). (i) Final land and water masks, including open-channel
constraints (blue lines), after applying mask decomposition for the
updated water mask (Step 5).

Figure 8. Example of the step-by-step process of filling a level 2
mask. (a) Maximal disks (dashed black lines), whose centers (red
cross marks) are in level 2 water masks. (b) Level 1 and level 2
water masks after filling. (c) Level 1 and level 2 water masks after
transferring level 1 regions without any medial axis to level 2 masks.
(Blue lines are the (pruned) medial axes, light blue areas are level 2
water masks, and dark blue areas are level 1 water masks.)

we find a smoothing parameter with root mean square error
(RMSE) closest to user-defined RMSE:

p∗ = argmin
p

∣∣∣∣∣∣
√√√√ N∑

i=1

(x(ri)− x̃p(ri))
2
+ (y(ri)− ỹp(ri))

2

N

−RMSEdesired| . (31)

Then a smoothed curve is defined as

s̃ = (x̃p∗ , ỹp∗). (32)

Note that the user-defined RMSE (RMSEdesired) should be
carefully selected. If it is too high, then the smoothed curve

Figure 9. Example of the selection of level 1 land regions that will
serve as internal constraints. (a, b) Example of buffers (black lines)
of level 1 land regions (dark brown areas) and (c, d) selected level
1 land regions. Light brown areas are level 2 land masks, and dark
blue and light blue areas are level 1 and level 2 water masks, respec-
tively.

Figure 10. Example of construction of mainstream for 1D domain.
Channel network before and after mainstream construction (a and
b, respectively). The colors of lines indicate different segments.

is close to a straight line. If it is too low, then it does not give
enough smoothing. In our numerical experiments, a smooth-
ing with RMSEdesired between 1 and 10 m is generally ap-
propriate in representing the overall curvature of the 1D con-
straints (see Fig. 11). It is noteworthy that RMSEdesired may
be determined based on the resolution of the DEM.

4.2 Initial target mesh size and 2D gradient limiting

Given a smoothed internal constraint segment s̃i , initial tar-
get mesh sizes along the curve are computed by

h̃2D(si) :=
1

K |κ(s̃i(r))|
, i = 1, . . .,N, (33)
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Figure 11. Example of extracted channel centerlines with TopoToolbox (solid black line) and smoothed line (dashed blue line, with
RMSEdesired = 10 m).

whereK is the number of elements per radian (a user-defined
parameter) and κ(s̃i(r)) is the curvature of smoothed internal
constraints s̃i(r).

It is often desired to ensure that the 2D element sizes grade
properly in the final mesh. Common approaches to achiev-
ing this are marching methods (e.g., Persson, 2006; Roberts
et al., 2019) and gradient limiting (e.g., Conroy et al., 2012;
Persson, 2006). In this paper, we adopt the gradient limiting
approach. Briefly, we find a steady-state solution to the so-
called gradient limiting equation:

∂h

∂t
+ |∇h| =min(|∇h| ,g), (34)

where g is related to a user-defined parameter that controls
the ratio of neighboring element sizes (see Conroy et al.,
2012 for details). The gradient limiting equation is solved
with the initial condition

h(x, t = 0)= h0(x). (35)

The gradient limiting is applied with the initial mesh size,
h0(x), on internal constraints being defined by Eq. (33). Note
that a one-dimensional gradient limiting equation could be
solved for each internal constraint. However, this may result
in inappropriate target mesh sizes if internal constraints are
close to each other (see Fig. 12).

4.3 Generation of 1D meshes on internal constraints

In order to generate collocated 1D elements and 2D edges,
1D meshes are first generated on internal constraints and then
used as fixed points in the 2D mesh generation. The target
element sizes of the 1D meshes on each internal constraint
are defined by projecting the gradient-limited mesh size h2D,
which is the solution of Eq. (34) with h̃2D as the initial con-
dition. That is,

hi1D(r)= h2D(si(r)), i = 1, . . .,N. (36)

Then, applying 1D force equilibrium with the target size on
each internal constraint provides 1D nodes ri, i = 1, . . .,N .
Now, fixed points of the 2D mesh generation are defined by

xi = s(ri)= (x(ri),y(ri)), i = 1, . . .,N. (37)

Note that the positioning of the fixed points is based on the
original internal constraints s(r) instead of smoothed curves
s̃(r) because smoothing can result in deviations from the
original set of points defining the internal constraints, as de-
scribed in Sect. 4.1. Also, it is necessary to keep junctions of
the curves so that the physical connections are not missed.
This can simply be ensured by using junction points as fixed
points of the 1D force equilibrium.

4.4 Post-processes for 1D mesh

As noted in Sect. 3.2.2, post-processes for the generated 1D
meshes are applied to improve identification of internal con-
straint types and to improve 2D mesh quality.

Note that regions of the level 2 land mask ML2 and the
updated level 2 water maskMW2 represent wide regions that
will be represented with 2D elements. Such regions are re-
quired to completely include at least one 2D element. How-
ever, for the regions falsely identified as level 2, their perime-
ter is not long enough to have three or more edges. This is
likely to happen for regions with small areas that are round
in shape. The IPR is lower for these types of areas, which
results in those regions not being selected with the IPR fil-
ter when level 1 land regions surrounded by level 2 water
mask are identified (see Eq. 22). Again, the boundaries of the
level 2 regions are the third type of internal constraint. When
1D meshes are generated along the internal constraints cor-
responding to the falsely identified regions, then there is only
one element per region, and such 1D elements are transferred
to the first or second type of internal constraint.
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Figure 12. Example of 2D gradient limiting on internal constraints. Target mesh size without and with gradient limiting (a and b, respec-
tively), and the 2D mesh generated with a given internal constraint (c).

As also noted in Sect. 3.2.2, there can be some of the
first and second type of internal constraints, open channels
and internal boundaries, that are too close to the third type
of internal constraints, boundaries between waterbodies and
land. This will result in 2D elements that are too small be-
tween such internal constraints. Therefore, if the all 1D mesh
nodes on an internal constraint are closer than hmin/2 to any
other 1D mesh on the third type of internal constraint – the
boundaries between the land and water domains – then the
1D meshes on the other two types of internal constraint are
removed.

As we fixed junction points to preserve physical connec-
tions, there can be 1D mesh node clusters, which are sets of
1D mesh nodes located within hmin/4 each other. Since this
will result in 2D elements that are too small, the 1D mesh
nodes are merged into the centroid of the cluster.

Finally, note that the mesh size of 1D elements (the dis-
tance between the 1D nodes in Eq. 37) is not identical to
the target mesh size provided by Eq. (36). The mesh gen-
erated from the force equilibrium algorithm has mesh sizes
relative to target mesh sizes (see Persson and Strang, 2004,
for details). Due to the nature of force equilibrium algorithm,
there can be 1D elements for which the length is shorter than
hmin/2. In order to obtain high-quality 2D elements, such 1D
elements are merged into their neighboring 1D elements.

4.5 Generation of 2D meshes with fixed points

The 2D force equilibrium is applied after 1D meshes are gen-
erated by adopting 1D mesh nodes as fixed points. Again,
note that the mesh size of the 1D mesh (the distance be-
tween the 1D nodes in Eq. 37) is not identical to the target
mesh size Eq. (36). Due to the discrepancy between the tar-
get mesh size (of the 2D mesh) and the actual mesh size (of
the 1D mesh), there are some non-converging nodes near in-
ternal constraints. Note that, in general, the displacement of
nodes decreases during the force equilibrium iterations and
nodes converge to their final node locations. However, the
non-converging nodes keep moving back and forth near in-
ternal constraints, and an additional treatment is applied to
resolve the non-converging node situation.

This treatment consists of the following steps (see Fig. 13):
(1) find nodes near the internal constraints that are not fixed
points but have distances to the internal constraints that are
shorter than hmin/2. (2) Compute the length of the closest 1D
element to this node. (3) If the length of closest element is
greater than 2hmin, then add the node to a new fixed point in
the middle of the 1D element (Fig. 13a1 and a2). Otherwise,
remove the node (Fig. 13b1 and b2).

This density control is applied while the 2D force equi-
librium is being applied. However, note that there might
be a number of nodes near the internal constraints which
are located within hmin/2 at early stages of the force equi-
librium process. Therefore, the density control is applied
for later stages of the force equilibrium, which starts from
0.8×maximum iteration number.

5 Results

The mesh generation algorithm presented in this paper is ap-
plied to three test cases. The first two test cases are for inland
watersheds without water subdomains. The third test case is
applied for a coastal basin to highlight the performance of
identification of 1D domains in water subdomains.

There are several measures used to assess the quality of
a mesh (see Field, 2000). The measure used in this paper is
twice the ratio of the inradius r and circumradius R of each
triangular element, i.e.,

q = 2
( r
R

)
=
(b+ c− a)(c+ a− b)(a+ b− c)

abc
, (38)

where a, b, and c are the edge lengths of the triangular ele-
ment. Note that this measure gives q = 1 for an equilateral
triangle and q = 0 for a completely degenerate triangle (see
Fig. 14).

Since mathematical error bounds for numerical methods
are influenced by the smallest angle in the mesh, it is desired
that a mesh consists of nearly equilateral triangles (Field,
2000). Meshes created with ADMESH+ typically have a
mean element quality measure of q ≥ 0.90 and a minimum
element quality measure of q > 0.30, where q = 0.30 corre-
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Figure 13. Schematic of density control. Black squares are 1D mesh nodes (fixed points in 2D force equilibrium algorithm), black circles
are 2D mesh nodes, white circles are non-converging nodes, and dashed lines are triangulations. (a) If the closest 1D mesh size is greater
than 2hmin, then a non-converging node is added to 1D mesh node. (b) If closest the 1D mesh size is shorter than 2hmin, then the node is
removed.

Figure 14. Geometric depiction of the element quality measure used to assess mesh quality.

sponds to an element with a minimum angle of 20° (Conroy
et al., 2012).

5.1 The Middle Bosque River watershed

The Middle Bosque River watershed (MBRW), located in
central Texas, has been the subject of numerous computa-
tional hydrological studies (see, for example, Bailey et al.,
2021; Park et al., 2019; Tefera and Ray, 2023). Given this in-
terest and the complex network of channels that must be rep-
resented for accurate model studies (see Fig. 15), the MBRW
presents an ideal test case for the developed 1D–2D mesh
generation process described.

The MBRW covers an area of approximately 516 km2

within the much larger Brazos River basin (≈ 119174 km2)
– the second-largest river basin by area within Texas. The
boundary of the MBRW is obtained from the USGS Wa-
tershed Boundary Dataset (WBD) (U.S. Geological Survey,
2014), which provides the input (polygonal) domain �2D
for the mesh generation process. In addition to this input,
a DEM covering the MBRW is available from the USGS 3D
Elevation Program (3DEP) (U.S. Geological Survey, 2017),
with the highest resolution available for the whole water-
shed being 1/3 arcsec (approximately 10 m). While channel
centerlines are available for the MBRW from the aforemen-
tioned USGS National Hydrography Dataset (NHD), in this
test case, the channel centerlines, which constitute the 1D
domain �1D, are extracted within our mesh generator using

TopoToolbox, as described in Sect. 3.1. The MBRW domain
boundary, DEM, and extracted channels are shown in Fig. 15.

Given the inputs described above, the mesh is automat-
ically generated using the procedure outlined with the fol-
lowing user-defined parameters: minimum and maximum el-
ement sizes are set to 30 and 500 m, respectively; the num-
ber of elements per radian K in Eq. (33) is set to 20; the
grading limit g in Eq. (34) is set to 0.15; and the smoothing
RMSE in Eq. (31) is set to 10 m. The resulting mesh is shown
in Figs. 16, 17, and 18, where several qualities of the mesh
can be visually noted. First, the dashed blue lines of panels
(a1) and (b1) of Fig. 16 show close-ups of the smooth spline
approximation of the channel centerlines that have been ex-
tracted from the input DEM. The accompanying panels (a2)
and (b2) of Fig. 16 show the node distribution of the 1D mesh
that is generated along these channels, where it can be noted
that smaller element sizes are present in highly curved ar-
eas and where elements sizes are relaxed in straighter chan-
nel segments (this is also visible, perhaps more so, in the
zoom-ins of Fig. 18). Given these 1D channel elements, the
2D mesh is then generated and post-processed as described;
see Figs. 17 and 18, where it can be noted that the 2D ele-
ments of the generated mesh are constrained along the chan-
nel centerlines, grading out to larger 2D element sizes away
from the channels, all while maintaining high quality. Specif-
ically, the generated 2D mesh has a mean element quality of
q = 0.97, with approximately 99 % of the 183 610 elements
of the mesh having a quality of q > 0.83 and only 18 ele-
ments (corresponding to 0.01 % of the elements) having a
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Figure 15. Domain of Middle Bosque River watershed (boundary of domain (solid black line), open channels extracted with TopoToolbox
(dashed blue lines), and zoomed-in boxes (dashed black lines).

Figure 16. (a1, a2) Zoomed-in box (a) from Fig. 15, with open channels (a1) and a 1D mesh on open channels (a2). (b1, b2) Zoomed-in
box (b) from Fig. 15, with open channels (b1) and a 1D mesh on open channels (b2).

quality of q < 0.50, with the minimum element quality being
q = 0.33. While the minimum and maximum element sizes
are set to 30 and 500 m, the minimum and maximum ele-
ment sizes of the mesh are 18 and 572 m. Note that, again,
the mesh generated from the force equilibrium algorithm has
mesh sizes relative to the target mesh size. The mesh was
generated in 13.16 min.

5.2 The Walnut Gulch Experimental Watershed

The Walnut Gulch Experimental Watershed (WGEW), es-
tablished in southeastern Arizona in the 1950s, operates as
an outdoor laboratory for studying hydrologic and erosion
processes. Over the years, an extensive database of precipita-
tion, runoff, and sediment records has been collected (Renard
et al., 2008; Goodrich et al., 2008; Stone et al., 2008), making
it, like the previous test case, the subject of numerous studies
(see, for example, Meng et al., 2008; Goodrich et al., 2012;
Yu and Duan, 2017) and an ideal test case for the developed
mesh generator.

The WGEW covers approximately 149 km2 in Cochise
County in southeastern Arizona. As with the previous test
case, the boundary of the domain is obtained from USGS
WBD (U.S. Geological Survey, 2014), which provides the
input (polygonal) domain �2D for the mesh generation pro-
cess. Additionally, for the WGEW, both fine-scale (1 m) and
coarse-scale (1/3 arcsec) DEMs are available through the
USGS 3DEP. The NHD dataset for channel centerlines is also
available, but as with the previous test case, TopoToolbox is
used to extract open channels. The top panel of Fig. 19 shows
the domain boundary, the DEM, and the extracted channel
networks of the WGEW.

Given these inputs, the mesh is generated with the follow-
ing user-defined parameters: minimum and maximum mesh
sizes of 30 and 500 m, respectively; the number of elements
per radianK is 20; the grading limit is 0.15; and the smooth-
ing RMSE is set to 10 m. The mesh that is generated is shown
in Figs. 19 and 20. Like the previous test case, the 2D ele-
ments of the generated mesh are constrained along the chan-
nel centerlines, grading out to larger 2D element sizes away
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Figure 17. Generated mesh of the Middle Bosque River watershed, where the blue lines indicate the open channels that serve as internal
constraints. Dashed rectangles labeled (a) and (b) indicate the zoomed-in areas shown in Fig. 18.

Figure 18. Zoomed-in figures in panels (a) and (b) from Fig. 17.

from the channels, while maintaining high quality through-
out the mesh. Again, as with the previous test case, the mesh
has a mean element quality of q = 0.97. Furthermore, out of
115 459 elements, only 1155 elements (corresponding to 1
percentile) have quality lower than q = 0.83 and only 12 ele-
ments (corresponding to 0.01 percentile) have quality below
q = 0.52, with the minimum element quality being q = 0.29.
The minimum and maximum element sizes of the mesh are
20 and 283 m, and the mesh was generated in 9.61 min.

5.3 Neches River tidal watershed

The Neches River flows southeast for approximately 670 km,
entering into Sabine Lake and then into the Gulf of Mexico
near Port Neches (see Texas Parks and Wildlife Department,
1974). This case study is focused on the Neches River tidal
segment, which stretches approximately 45 km from the Salt
Water Barrier to Sabine Lake and whose drainage area is ap-
proximately 546 km2 (Schramm and Jha, 2020). This area

is routinely included in the computational domains used for
storm surge simulations in Texas and southwestern Louisiana
(see, for example, Dawson et al., 2011; Bunya et al., 2010)
and includes rivers and streams of widely varying scales. For
example, the Neches River, which is the main channel of the
study area, has a width of approximately 300 m, which has
small tributaries with widths on the order of 10 to 30 m. The
complex geometry in the study area is not limited to the chan-
nels. Additionally, it includes a number of islands, whose ar-
eas range from 10 m2 to 300 km2.

For simplicity, a rectangular study area (see black line in
Fig. 21) is chosen as the domain boundary, where the identi-
fication of internal constraints associated with the land–water
mask decomposition will be applied. The water mask of the
study area is obtained from shoreline data provided by the
National Oceanic and Atmospheric Administration (NOAA)
Continually Updated Shoreline Product (CUSP) (see Na-
tional Oceanic and Atmospheric Administration (NOAA),
2011). The NOAA CUSP provides a set of line segments as
polylines in a shapefile format (see Fig. 21). Successive line
segments, which are connected to each other, are merged to
construct the boundary of the water mask (see Fig. 22). The
land mask is then obtained by subtracting the water mask
from the rectangular study area. As with the previous two test
cases, a DEM for the domain is obtained through the USGS
3DEP.

First, the water mask is preprocessed following the steps
described in Sect. 3.2.2, with small islands with an area
smaller than 2000 m2 being filtered out and by using δw =

100 m. The mesh is then generated with the following user-
defined parameters: minimum mesh size of 100 m, maximum
of 1000 m, the number of elements per radian K is 20, the
grading limit is 0.15, and the smoothing RMSE is 5 m.

The 2D mesh generated from the water mask (shoreline
data) has three types of internal constraints, namely open
channels (1D domain), internal boundaries, and boundaries
between waterbodies and land (see Figs. 23 and 24). The al-
gorithm automatically identified 333 open channels, 180 in-
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Figure 19. Domain of Walnut Gulch Experimental Watershed (top; boundary of the domain (solid black line); open channels extracted with
TopoToolbox (dashed blue lines); and zoomed-in boxes (dashed black lines) and 2D mesh on the study area (bottom).

Figure 20. (a1, a2) Zoomed-in box (a) from Fig. 19, with open channels (a1) and 2D mesh (a2). (b1, b2) Zoomed-in box (b) from Fig. 19,
with open channels (b1) and 2D mesh (b2).

ternal boundaries, and 68 boundaries between waterbodies
and land. This identification allows the preservation of most
of the channel networks (in particular, see panels a and b of
Fig. 24) and small-scale islands (in particular, see panel c of
Fig. 24) in the waterbodies without using extremely small
elements and provides a sharp delineation between land and
water. It should be noted that there are a few narrow channels
that were not identified as 1D domains. This occurs for open
channels with free ends, which correspond to an order 1 me-
dial axis branch, as a result of medial axis pruning (see Step
2 in Sect. 3.2.1). Likewise, there are a few small-scale islands
that are not identified as internal boundaries. However, over-
all, the algorithm does an exceptional job of automatically
identifying the internal constraints based on the specified
width parameter, while maintaining elements of high qual-
ity. The 2D mesh has a mean element quality of q = 0.93,

with only 624 (out of 62 403) elements having element qual-
ity lower than q = 0.65 (corresponding to 1 percentile) and
only 6 elements (corresponding to 0.01 percentile) having
element quality lower than q = 0.25. The minimum element
quality in this case is q = 0.16, which is lower than the pre-
vious two test cases. This is a result of internal constraints
being close to one another and is a trade-off for preserving
geographic features (see Fig. 25). While the minimum and
maximum element sizes are set to 100 and 1000 m, the min-
imum and maximum element sizes of the mesh are 25 and
1384 m. The minimum element size is significantly smaller
than target minimum element size, which is also caused by
internal constraints located close to one another.
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Figure 21. Domain of Lower Neches Basin. Boundary of study
area (dashed black lines) and shorelines provided by NOAA CUSP
(solid black lines).

Figure 22. Water mask of Lower Neches Basin obtained from
shoreline data provided by NOAA CUSP (shaded blue areas). The
land mask is obtained by subtracting the water mask from the rect-
angular study area.

6 Conclusions

An automatic mesh generation algorithm with internal con-
straints, especially for coupled 1D–2D hydrodynamic mod-
els, is presented in this paper. The main objectives of the pro-
posed algorithm are to automatically identify internal con-
straints (mainly channel centerlines) in the domain and to
generate collocated meshes along the internal constraints
with efficient sizing. The identification of internal constraints
is developed for both land and water subdomains. TopoTool-
box is used to extract channel centerlines from land subdo-
mains, and an additional smoothing is applied to estimate
appropriate curvature of the lines. The extraction of internal

Figure 23. The 2D mesh on Lower Neches Basin with three types of
internal constraints (channel centerlines (blue), internal boundaries
(brown), and shoreline (green)).

Figure 24. Zoomed-in figures of corresponding boxes in Fig. 23,
where again the channel centerlines are shown in blue, internal
boundaries in brown, and shorelines in green.

constraints from water subdomains is based on a width func-
tion and a user-defined threshold of thin channels. This en-
ables the identification of three types of internal constraints if
a water mask is given. Several additional processes are devel-
oped for complex water subdomains, including the represen-
tation of thin islands as internal boundaries. The meshes gen-
erated with the proposed algorithm have a precise alignment
along the given internal constraints with the efficient sizing
of high-quality 2D elements. This is obtained by assigning
proper target mesh sizes to the 1D–2D force equilibrium al-
gorithms and applying post-processing of 1D elements and
density control.

While the test cases presented in this paper have, in gen-
eral, elements of high quality, there are still a few elements of

https://doi.org/10.5194/gmd-17-1603-2024 Geosci. Model Dev., 17, 1603–1625, 2024



1620 Y. Kang and E. J. Kubatko: An automatic mesh generator for coupled 1D–2D hydrodynamic models

Figure 25. Zoomed-in figures from Fig. 23 for examples of poor-quality elements due to the internal constraints being too close to each
other.

poor quality. This can occur when internal constraints are lo-
cated too close to each other; for example, thin channels that
are very close to each other or thin islands that are located
very close to a shoreline. Note that these cases can be re-
solved by ignoring the object or allowing very small element
sizes if the element quality is of higher priority. However,
the proposed algorithm places a higher priority on keeping
geographical features with relatively low resolution. Alter-
natively, poor quality of elements can be resolved with post-
process software. For example, MeshGUI (Blain et al., 2008)
offers the operations of Smooth Angles to reduce mini-
mal angle of elements and Reduce Connectivity to re-
solve high valence. However, such post-processing software
should be applied carefully. as the poor-quality elements are
likely created near the internal constraints, which are not con-
sidered in the post-processing software.

Future work may include the following two objectives.
First, an efficient background grid such as an octree or un-
structured grid can be used to improve the computational
efficiency, especially for the identification of internal con-
straints in water subdomains. A key factor for the identifica-
tion of thin regions is the computation of the width function,
which requires that the background grid is fine enough to
span thin regions. It is expected that the use of an efficient
background grid such as an octree or unstructured grid can
improve the computational efficiency. Second, an automa-
tized algorithm to retrieve cross-sectional profiles from chan-
nels would be beneficial. Note that channel cross-sectional
representations, which are typically specified as triangles,
rectangles, or trapezoids, are required for most of the coupled
1D–2D hydrodynamic models. While the cross sections of
channels in land subdomains can be detected from the DEM,
there is some ambiguity for the width of the channels. On the
other hand, the width of channels in the water subdomain is
relatively clear, as it can be identified with the water mask.
However, the cross-sectional information would need to be
provided by supplemental bathymetric survey data, as stan-
dard DEMs do not contain bathymetric elevations.

Appendix A: Computation of medial axis with vector
distance transform

In this section, we provide details of the medial axis compu-
tation briefly described in Sect. 3.2.1 and Eq. (9). In particu-
lar, we demonstrate the fact that the divergence of the VDT
has positive values only on the medial axis. This is based on
Voronoi polygons and their properties, as described in Lee
(1982). A given polygon P can be partitioned into a set of
Voronoi polygons, with boundaries referred to as Voronoi
edges (see Fig. A2, for example). Voronoi polygons can be
categorized into two types. One consists of Voronoi polygons
whose boundaries include a segment of the external bound-
ary ∂P . Another consists of Voronoi polygons whose bound-
aries do not include any segments of the external bound-
ary. We refer to these two types as lateral and wedge types,
respectively (the white and gray polygons, respectively, in
Fig. A2).

In the case of lateral-type Voronoi polygons, the terminal
points of the VDT are on the corresponding external bound-
ary segment (see Lemma 1 in Lee, 1982, and Fig. A2). Note
that by the definition of VDT, the VDT is perpendicular with
the corresponding external boundary segment. This VDT can
be represented, once the corresponding external boundary
segment is projected to y = 0 (see Fig. A1), as follows:

V (x,P )= (0,−y), where x = (x,y). (A1)

In the wedge-type Voronoi polygons, the terminal points of
the VDT are vertices of a given polygon (see Lemma 1
in Lee, 1982, and Fig. A2). This VDT can be represented,
once the corresponding vertex is projected to the origin (see
Fig. A1), as follows:

V (x,P )= (−x,−y), where x = (x,y). (A2)

Therefore, we have

∇ ·V (x,P )=

{
−1 in lateral-type Voronoi polygons
−2 in wedge-type Voronoi polygons

.

(A3)
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Now,∇·V is computed on the Voronoi edges. From Corol-
lary 3 in Lee (1982), the medial axis is a subset of the Voronoi
edges. Let us call the Voronoi edges that are not part of the
medial axis the extra Voronoi edges. Note that, according
to Corollary 3 in Lee (1982), the extra Voronoi edges are
a subset of the boundaries between lateral- and wedge-type
Voronoi polygons. With the projection of external boundaries
and vertices described above and Eqs. (A1) and (A2), it can
be shown that VDT is continuous but non-differentiable on
extra Voronoi edges. Therefore, the divergence of VDT can-
not be analytically defined on extra Voronoi edges, but here
we show that the numerical divergence of VDT is between
−1 and −2 on extra Voronoi edges. For simplicity, let us
assume that the extra Voronoi edge is projected to x = 0,
which is the case shown in Fig. A1. Since the VDT is con-
tinuous and differentiable on each lateral- and wedge-type
Voronoi polygon, forward and backward difference schemes
on x = (0,y) give ∇ ·V (x,P )=−2 and−1, respectively. A
central difference scheme on x = (0,y) gives

∇ ·V (x,P )= lim
1x→0

−1x− 0
21x

+ lim
1y→0

−(y+1y)+ (y−1y)

21y
(A4)

=−
1
2
+
−21y
21y

(A5)

=−1.5. (A6)

Therefore, the numerical divergence from forward, back-
ward, and central difference schemes is between −1 and −2
on extra Voronoi edges. Finally, on the medial axis, the VDT
is discontinuous, and the divergence cannot be computed
explicitly. However, given the fact that the VDT diverges
from the medial axis to external boundaries, the numerical
divergence must be positive. The ∇ ·V is numerically com-
puted with divergence function in MATLAB and shown
in Fig. A3.

However, computation of ∇ ·V on a background grid re-
sults in positive values for multiple grid points near the me-
dial axis (see Fig. A4). As the medial axis branches play a
key role in the proposed methodology, medial axis branches
are constructed from the cluster of medial axis points. The
morphological operator bwmorph in MATLAB is utilized
for the construction of medial axis. The cluster of medial axis
points are thinned first, and end points and branch points are
identified. Then, starting from an end point or branch point,
all traversable points based on 8-connectivity are identified
until it reaches to another end point or branch point. After
repeating this process, medial axis branches are constructed.

One advantage of this method is that it requires low ad-
ditional computational cost. In our mesh generation algo-
rithm, the VDT is computed as part of computing the dis-
tance map (note that d(x,∂P )= ||V (x,P )||), which is as es-
sential requirement. Therefore, medial axis can be obtained
with a simple additional step, the computation of divergence

of VDT, which incurs a small computational cost. The medial
axis can also be found with criteria based on the gradient of
the distance map d(x,∂P ) (see Koko, 2015; Roberts et al.,
2019), i.e.,

||∇d(x,∂P )||< ε < 1, (A7)

where ε is a user-specified parameter (typically taken to be
0.9); however, based on our experiments, the medial axis
computed from Eq. (9) tends to be more accurate than the
medial axis computed from Eq. (A7).

Figure A1. Schematic of VDT in lateral- and wedge-type Voronoi
polygons (white and gray polygons, respectively).

Figure A2. Voronoi polygons of a simple polygon, where bound-
aries of Voronoi polygons are shown as dashed lines (blue lines are
the medial axis (a subset of the Voronoi edges) and red dashed lines
are Voronoi edges which are not part of the medial axis). The vec-
tor distance transform is shown by black arrows (scaled for visu-
alization purpose). White and gray polygons indicate lateral- and
wedge-type Voronoi polygons, respectively.
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Figure A3. Divergence of the vector distance transform of a simple
polygon. Note that the divergence values are −1 and −2 for lateral-
and wedge-type Voronoi polygons and positive on the medial axis.

Figure A4. Zoomed-in figure from Fig. A3. There are multiple grid
points with positive divergence values along medial axis.

Code and data availability. The current version of ADMESH+, the
mesh generator presented in this study, is available from the Zenodo
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ing author.
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