Articles | Volume 15, issue 24
https://doi.org/10.5194/gmd-15-9015-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-9015-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Predicting peak daily maximum 8 h ozone and linkages to emissions and meteorology in Southern California using machine learning methods (SoCAB-8HR V1.0)
Ziqi Gao
CORRESPONDING AUTHOR
School of Civil and Environmental Engineering, Georgia Institute of
Technology, Atlanta, GA 30332, USA
Yifeng Wang
School of Civil and Environmental Engineering, Georgia Institute of
Technology, Atlanta, GA 30332, USA
Petros Vasilakos
School of Civil and Environmental Engineering, Georgia Institute of
Technology, Atlanta, GA 30332, USA
Cesunica E. Ivey
Department of Chemical and Environmental Engineering, University of
California, Riverside, Riverside, CA 92521, USA
now at: Department of Civil and Environmental Engineering,
University of California, Berkeley, Berkeley, CA 94720, USA
Khanh Do
Department of Chemical and Environmental Engineering, University of
California, Riverside, Riverside, CA 92521, USA
Center for Environmental Research and Technology, University of
California, Riverside, Riverside, CA 92521,
USA
Armistead G. Russell
School of Civil and Environmental Engineering, Georgia Institute of
Technology, Atlanta, GA 30332, USA
Related authors
No articles found.
Athanasios Nenes, Spyros N. Pandis, Maria Kanakidou, Armistead G. Russell, Shaojie Song, Petros Vasilakos, and Rodney J. Weber
Atmos. Chem. Phys., 21, 6023–6033, https://doi.org/10.5194/acp-21-6023-2021, https://doi.org/10.5194/acp-21-6023-2021, 2021
Short summary
Short summary
Ecosystems and air quality are affected by the dry deposition of inorganic reactive nitrogen (Nr, the sum of ammonium and nitrate). Its large variability is driven by the large difference in deposition velocity of N when in the gas or particle phase. Here we show that aerosol liquid water and acidity, by affecting gas–particle partitioning, modulate the dry deposition velocity of NH3, HNO3, and Nr worldwide. These effects explain the rapid accumulation of nitrate aerosol during haze events.
Petros Vasilakos, Armistead Russell, Rodney Weber, and Athanasios Nenes
Atmos. Chem. Phys., 18, 12765–12775, https://doi.org/10.5194/acp-18-12765-2018, https://doi.org/10.5194/acp-18-12765-2018, 2018
Short summary
Short summary
In this work, we investigated the role of emission reductions on aerosol acidity and particulate nitrate. We found that models exhibit positive biases in pH predictions, attributed to very high levels of crustal elements (Mg, Ca, K) in model simulations, which in turn led to an increasing aerosol pH trend over the past decade and allowed nitrate to become an important component of aerosol, which is inconsistent with the measurements, highlighting the importance of accurate pH prediction.
Petros Vasilakos, Yong-Ηa Kim, Jeffrey R. Pierce, Sotira Yiacoumi, Costas Tsouris, and Athanasios Nenes
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-96, https://doi.org/10.5194/gmd-2017-96, 2017
Revised manuscript not accepted
Short summary
Short summary
Radioactive charging can significantly impact the way radioactive aerosols behave, and as a result their lifetime, but such effects are neglected in predictive model studies of radioactive plumes. We extend a well-established model that simulates the evolution of atmospheric particulate matter to account for radioactive charging effects in an accurate and computationally efficient way. It is shown that radioactivity can strongly impact the deposition patterns of aerosol.
Havala O. T. Pye, Benjamin N. Murphy, Lu Xu, Nga L. Ng, Annmarie G. Carlton, Hongyu Guo, Rodney Weber, Petros Vasilakos, K. Wyat Appel, Sri Hapsari Budisulistiorini, Jason D. Surratt, Athanasios Nenes, Weiwei Hu, Jose L. Jimenez, Gabriel Isaacman-VanWertz, Pawel K. Misztal, and Allen H. Goldstein
Atmos. Chem. Phys., 17, 343–369, https://doi.org/10.5194/acp-17-343-2017, https://doi.org/10.5194/acp-17-343-2017, 2017
Short summary
Short summary
We use a chemical transport model to examine how organic compounds in the atmosphere interact with water present in particles. Organic compounds themselves lead to water uptake, and organic compounds interact with water associated with inorganic compounds in the rural southeast atmosphere. Including interactions of organic compounds with water requires a treatment of nonideality to more accurately represent aerosol observations during the Southern Oxidant and Aerosol Study (SOAS) 2013.
Related subject area
Numerical methods
Strategies for conservative and non-conservative monotone remapping on the sphere
Modeling large‐scale landform evolution with a stream power law for glacial erosion (OpenLEM v37): benchmarking experiments against a more process-based description of ice flow (iSOSIA v3.4.3)
A mixed finite-element discretisation of the shallow-water equations
Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling
Massively parallel modeling and inversion of electrical resistivity tomography data using PFLOTRAN
Parallelized domain decomposition for multi-dimensional Lagrangian random walk mass-transfer particle tracking schemes
The Intelligent Prospector v1.0: geoscientific model development and prediction by sequential data acquisition planning with application to mineral exploration
Transfer learning for landslide susceptibility modeling using domain adaptation and case-based reasoning
ISMIP-HOM benchmark experiments using Underworld
spyro: a Firedrake-based wave propagation and full-waveform-inversion finite-element solver
Spatial filtering in a 6D hybrid-Vlasov scheme to alleviate adaptive mesh refinement artifacts: a case study with Vlasiator (versions 5.0, 5.1, and 5.2.1)
A Bayesian data assimilation framework for lake 3D hydrodynamic models with a physics-preserving particle filtering method using SPUX-MITgcm v1
A fast, single-iteration ensemble Kalman smoother for sequential data assimilation
Characterizing uncertainties of Earth system modeling with heterogeneous many-core architecture computing
Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol applied to Earth system models
Impact of the numerical solution approach of a plant hydrodynamic model (v0.1) on vegetation dynamics
Islet: interpolation semi-Lagrangian element-based transport
Multi-dimensional hydrological–hydraulic model with variational data assimilation for river networks and floodplains
Assessing the robustness and scalability of the accelerated pseudo-transient method
Fast Barnes Interpolation
Assessment of stochastic weather forecast of precipitation near European cities, based on analogs of circulation
University of Warsaw Lagrangian Cloud Model (UWLCM) 2.0: adaptation of a mixed Eulerian–Lagrangian numerical model for heterogeneous computing clusters
Prediction error growth in a more realistic atmospheric toy model with three spatiotemporal scales
On numerical broadening of particle-size spectra: a condensational growth study using PyMPDATA 1.0
Lossy checkpoint compression in full waveform inversion: a case study with ZFPv0.5.5 and the overthrust model
Blockworlds 0.1.0: a demonstration of anti-aliased geophysics for probabilistic inversions of implicit and kinematic geological models
Efficient high-dimensional variational data assimilation with machine-learned reduced-order models
Improved double Fourier series on a sphere and its application to a semi-implicit semi-Lagrangian shallow-water model
SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python
Flow-Py v1.0: a customizable, open-source simulation tool to estimate runout and intensity of gravitational mass flows
Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES
A three-dimensional variational data assimilation system for aerosol optical properties based on WRF-Chem v4.0: design, development, and application of assimilating Himawari-8 aerosol observations
Implementation of a Gaussian Markov random field sampler for forward uncertainty quantification in the Ice-sheet and Sea-level System Model v4.19
A method for assessment of the general circulation model quality using the K-means clustering algorithm: a case study with GETM v2.5
An explicit GPU-based material point method solver for elastoplastic problems (ep2-3De v1.0)
MagIC v5.10: a two-dimensional message-passing interface (MPI) distribution for pseudo-spectral magnetohydrodynamics simulations in spherical geometry
Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets
Recalculation of error growth models' parameters for the ECMWF forecast system
How biased are our models? – a case study of the alpine region
B-flood 1.0: an open-source Saint-Venant model for flash-flood simulation using adaptive refinement
A micro-genetic algorithm (GA v1.7.1a) for combinatorial optimization of physics parameterizations in the Weather Research and Forecasting model (v4.0.3) for quantitative precipitation forecast in Korea
SymPKF (v1.0): a symbolic and computational toolbox for the design of parametric Kalman filter dynamics
NDCmitiQ v1.0.0: a tool to quantify and analyse greenhouse gas mitigation targets
Combining ensemble Kalman filter and reservoir computing to predict spatiotemporal chaotic systems from imperfect observations and models
The Coastline Evolution Model 2D (CEM2D) V1.1
An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3
Ocean Plastic Assimilator v0.2: assimilation of plastic concentration data into Lagrangian dispersion models
Development of a moving point source model for shipping emission dispersion modeling in EPISODE–CityChem v1.3
Efficient Bayesian inference for large chaotic dynamical systems
Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1
David H. Marsico and Paul A. Ullrich
Geosci. Model Dev., 16, 1537–1551, https://doi.org/10.5194/gmd-16-1537-2023, https://doi.org/10.5194/gmd-16-1537-2023, 2023
Short summary
Short summary
Climate models involve several different components, such as the atmosphere, ocean, and land models. Information needs to be exchanged, or remapped, between these models, and devising algorithms for performing this exchange is important for ensuring the accuracy of climate simulations. In this paper, we examine the efficacy of several traditional and novel approaches to remapping on the sphere and demonstrate where our approaches offer improvement.
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023, https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
Short summary
In this study, we benchmark a topography-based model for glacier erosion (OpenLEM) with a well-established process-based model (iSOSIA). Our experiments show that large-scale erosion patterns and particularly the transformation of valley length geometry from fluvial to glacial conditions are very similar in both models. This finding enables the application of OpenLEM to study the influence of climate and tectonics on glaciated mountains with reasonable computational effort on standard PCs.
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev., 16, 1265–1276, https://doi.org/10.5194/gmd-16-1265-2023, https://doi.org/10.5194/gmd-16-1265-2023, 2023
Short summary
Short summary
This paper introduces the Met Office's new shallow water model. The shallow water model is a building block towards the Met Office's new atmospheric dynamical core. The shallow water model is tested on a number of standard spherical shallow water test cases, including flow over mountains and unstable jets. Results show that the model produces similar results to other shallow water models in the literature.
Anthony Gruber, Max Gunzburger, Lili Ju, Rihui Lan, and Zhu Wang
Geosci. Model Dev., 16, 1213–1229, https://doi.org/10.5194/gmd-16-1213-2023, https://doi.org/10.5194/gmd-16-1213-2023, 2023
Short summary
Short summary
This work applies a novel technical tool, multifidelity Monte Carlo (MFMC) estimation, to three climate-related benchmark experiments involving oceanic, atmospheric, and glacial modeling. By considering useful quantities such as maximum sea height and total (kinetic) energy, we show that MFMC leads to predictions which are more accurate and less costly than those obtained by standard methods. This suggests MFMC as a potential drop-in replacement for estimation in realistic climate models.
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev., 16, 961–976, https://doi.org/10.5194/gmd-16-961-2023, https://doi.org/10.5194/gmd-16-961-2023, 2023
Short summary
Short summary
We present a robust and highly scalable implementation of numerical forward modeling and inversion algorithms for geophysical electrical resistivity tomography data. The implementation is publicly available and developed within the framework of PFLOTRAN (http://www.pflotran.org), an open-source, state-of-the-art massively parallel subsurface flow and transport simulation code. The paper details all the theoretical and implementation aspects of the new capabilities along with test examples.
Lucas Schauer, Michael J. Schmidt, Nicholas B. Engdahl, Stephen D. Pankavich, David A. Benson, and Diogo Bolster
Geosci. Model Dev., 16, 833–849, https://doi.org/10.5194/gmd-16-833-2023, https://doi.org/10.5194/gmd-16-833-2023, 2023
Short summary
Short summary
We develop a multi-dimensional, parallelized domain decomposition strategy for mass-transfer particle tracking methods in two and three dimensions, investigate different procedures for decomposing the domain, and prescribe an optimal tiling based on physical problem parameters and the number of available CPU cores. For an optimally subdivided diffusion problem, the parallelized algorithm achieves nearly perfect linear speedup in comparison with the serial run-up to thousands of cores.
John Mern and Jef Caers
Geosci. Model Dev., 16, 289–313, https://doi.org/10.5194/gmd-16-289-2023, https://doi.org/10.5194/gmd-16-289-2023, 2023
Short summary
Short summary
In this work, we formulate the sequential geoscientific data acquisition problem as a problem that is similar to playing chess against nature, except the pieces are not fully observed. Solutions to these problems are given in AI and rarely used in geoscientific data planning. We illustrate our approach to a simple 2D problem of mineral exploration.
Zhihao Wang, Jason Goetz, and Alexander Brenning
Geosci. Model Dev., 15, 8765–8784, https://doi.org/10.5194/gmd-15-8765-2022, https://doi.org/10.5194/gmd-15-8765-2022, 2022
Short summary
Short summary
A lack of inventory data can be a limiting factor in developing landslide predictive models, which are crucial for supporting hazard policy and decision-making. We show how case-based reasoning and domain adaptation (transfer-learning techniques) can effectively retrieve similar landslide modeling situations for prediction in new data-scarce areas. Using cases in Italy, Austria, and Ecuador, our findings support the application of transfer learning for areas that require rapid model development.
Till Sachau, Haibin Yang, Justin Lang, Paul D. Bons, and Louis Moresi
Geosci. Model Dev., 15, 8749–8764, https://doi.org/10.5194/gmd-15-8749-2022, https://doi.org/10.5194/gmd-15-8749-2022, 2022
Short summary
Short summary
Knowledge of the internal structures of the major continental ice sheets is improving, thanks to new investigative techniques. These structures are an essential indication of the flow behavior and dynamics of ice transport, which in turn is important for understanding the actual impact of the vast amounts of water trapped in continental ice sheets on global sea-level rise. The software studied here is specifically designed to simulate such structures and their evolution.
Keith J. Roberts, Alexandre Olender, Lucas Franceschini, Robert C. Kirby, Rafael S. Gioria, and Bruno S. Carmo
Geosci. Model Dev., 15, 8639–8667, https://doi.org/10.5194/gmd-15-8639-2022, https://doi.org/10.5194/gmd-15-8639-2022, 2022
Short summary
Short summary
Finite-element methods (FEMs) permit the use of more flexible unstructured meshes but are rarely used in full waveform inversions (FWIs), an iterative process that reconstructs velocity models of earth’s subsurface, due to computational and memory storage costs. To reduce those costs, novel software is presented allowing the use of high-order mass-lumped FEMs on triangular meshes, together with a material-property mesh-adaptation performance-enhancing strategy, enabling its use in FWIs.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Artur Safin, Damien Bouffard, Firat Ozdemir, Cintia L. Ramón, James Runnalls, Fotis Georgatos, Camille Minaudo, and Jonas Šukys
Geosci. Model Dev., 15, 7715–7730, https://doi.org/10.5194/gmd-15-7715-2022, https://doi.org/10.5194/gmd-15-7715-2022, 2022
Short summary
Short summary
Reconciling the differences between numerical model predictions and observational data is always a challenge. In this paper, we investigate the viability of a novel approach to the calibration of a three-dimensional hydrodynamic model of Lake Geneva, where the target parameters are inferred in terms of distributions. We employ a filtering technique that generates physically consistent model trajectories and implement a neural network to enable bulk-to-skin temperature conversion.
Colin Grudzien and Marc Bocquet
Geosci. Model Dev., 15, 7641–7681, https://doi.org/10.5194/gmd-15-7641-2022, https://doi.org/10.5194/gmd-15-7641-2022, 2022
Short summary
Short summary
Iterative optimization techniques, the state of the art in data assimilation, have largely focused on extending forecast accuracy to moderate- to long-range forecast systems. However, current methodology may not be cost-effective in reducing forecast errors in online, short-range forecast systems. We propose a novel optimization of these techniques for online, short-range forecast cycles, simultaneously providing an improvement in forecast accuracy and a reduction in the computational cost.
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Lixin Wu, Dexun Chen, Yang Gao, Zhiqiang Wei, Dongning Jia, and Xiaopei Lin
Geosci. Model Dev., 15, 6695–6708, https://doi.org/10.5194/gmd-15-6695-2022, https://doi.org/10.5194/gmd-15-6695-2022, 2022
Short summary
Short summary
To understand the scientific consequence of perturbations caused by slave cores in heterogeneous computing environments, we examine the influence of perturbation amplitudes on the determination of the cloud bottom and cloud top and compute the probability density function (PDF) of generated clouds. A series of comparisons of the PDFs between homogeneous and heterogeneous systems show consistently acceptable error tolerances when using slave cores in heterogeneous computing environments.
Vijay S. Mahadevan, Jorge E. Guerra, Xiangmin Jiao, Paul Kuberry, Yipeng Li, Paul Ullrich, David Marsico, Robert Jacob, Pavel Bochev, and Philip Jones
Geosci. Model Dev., 15, 6601–6635, https://doi.org/10.5194/gmd-15-6601-2022, https://doi.org/10.5194/gmd-15-6601-2022, 2022
Short summary
Short summary
Coupled Earth system models require transfer of field data between multiple components with varying spatial resolutions to determine the correct climate behavior. We present the Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol to evaluate the accuracy, conservation properties, monotonicity, and local feature preservation of four different remapper algorithms for various unstructured mesh problems of interest. Future extensions to more practical use cases are also discussed.
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022, https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary
Short summary
Accounting for water movement in the soil and water transport within the plant is important for plant growth in Earth system modeling. We implemented different numerical approaches for a plant hydrodynamic model and compared their impacts on the simulated aboveground biomass (AGB) at single points and globally. We found care should be taken when discretizing the number of soil layers for numerical simulations as it can significantly affect AGB if accuracy and computational costs are of concern.
Andrew M. Bradley, Peter A. Bosler, and Oksana Guba
Geosci. Model Dev., 15, 6285–6310, https://doi.org/10.5194/gmd-15-6285-2022, https://doi.org/10.5194/gmd-15-6285-2022, 2022
Short summary
Short summary
Tracer transport in atmosphere models can be computationally expensive. We describe a flexible and efficient interpolation semi-Lagrangian method, the Islet method. It permits using up to three grids that share an element grid: a dynamics grid for computing quantities such as the wind velocity; a physics parameterizations grid; and a tracer grid. The Islet method performs well on a number of verification problems and achieves high performance in the E3SM Atmosphere Model version 2.
Léo Pujol, Pierre-André Garambois, and Jérôme Monnier
Geosci. Model Dev., 15, 6085–6113, https://doi.org/10.5194/gmd-15-6085-2022, https://doi.org/10.5194/gmd-15-6085-2022, 2022
Short summary
Short summary
This contribution presents a new numerical model for representing hydraulic–hydrological quantities at the basin scale. It allows modeling large areas at a low computational cost, with fine zooms where needed. It allows the integration of local and satellite measurements, via data assimilation methods, to improve the model's match to observations. Using this capability, good matches to in situ observations are obtained on a model of the complex Adour river network with fine zooms on floodplains.
Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y. Podladchikov
Geosci. Model Dev., 15, 5757–5786, https://doi.org/10.5194/gmd-15-5757-2022, https://doi.org/10.5194/gmd-15-5757-2022, 2022
Short summary
Short summary
Continuum mechanics-based modelling of physical processes at large scale requires huge computational resources provided by massively parallel hardware such as graphical processing units. We present a suite of numerical algorithms, implemented using the Julia language, that efficiently leverages the parallelism. We demonstrate that our implementation is efficient, scalable and robust and showcase applications to various geophysical problems.
Bruno K. Zürcher
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-116, https://doi.org/10.5194/gmd-2022-116, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
We present a novel algorithm to efficiently compute Barnes interpolation, which is a method for transforming data values recorded at irregularly spaced points into a corresponding regular grid. In contrast to naive implementations that have an algorithmic complexity that depends directly on both the number of sample points and the grid size, our approach reduces this dependency essentially to the number of grid points.
Meriem Krouma, Pascal Yiou, Céline Déandreis, and Soulivanh Thao
Geosci. Model Dev., 15, 4941–4958, https://doi.org/10.5194/gmd-15-4941-2022, https://doi.org/10.5194/gmd-15-4941-2022, 2022
Short summary
Short summary
We evaluated the skill of a stochastic weather generator (SWG) to forecast precipitation at different time scales and in different areas of western Europe from analogs of Z500 hPa. The SWG has the skill to simulate precipitation for 5 and 10 d. We found that forecast weaknesses can be associated with specific weather patterns. The comparison with ECMWF forecasts confirms the skill of our model. This work is important because it provides information about weather forecasts over specific areas.
Piotr Dziekan and Piotr Zmijewski
Geosci. Model Dev., 15, 4489–4501, https://doi.org/10.5194/gmd-15-4489-2022, https://doi.org/10.5194/gmd-15-4489-2022, 2022
Short summary
Short summary
Detailed computer simulations of clouds are important for understanding Earth's atmosphere and climate. The paper describes how the UWLCM has been adapted to work on supercomputers. A distinctive feature of UWLCM is that air flow is calculated by processors at the same time as cloud droplets are modeled by graphics cards. Thanks to this, use of computing resources is maximized and the time to complete simulations of large domains is not affected by communications between supercomputer nodes.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 15, 4147–4161, https://doi.org/10.5194/gmd-15-4147-2022, https://doi.org/10.5194/gmd-15-4147-2022, 2022
Short summary
Short summary
A scale-dependent error growth described by a power law or by a quadratic hypothesis is studied in Lorenz’s system with three spatiotemporal levels. The validity of power law is extended by including a saturation effect. The quadratic hypothesis can only serve as a first guess. In addition, we study the initial error growth for the ECMWF forecast system. Fitting the parameters, we conclude that there is an intrinsic limit of predictability after 22 days.
Michael A. Olesik, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, Simon Unterstrasser, and Sylwester Arabas
Geosci. Model Dev., 15, 3879–3899, https://doi.org/10.5194/gmd-15-3879-2022, https://doi.org/10.5194/gmd-15-3879-2022, 2022
Short summary
Short summary
In systems such as atmospheric clouds, droplets undergo growth through condensation of vapor. The broadness of the resultant size spectrum of droplets influences precipitation likelihood and the radiative properties of clouds. One of the inherent limitations of simulations of the problem is the so-called numerical diffusion causing overestimation of the spectrum width, hence the term numerical broadening. In the paper, we take a closer look at one of the algorithms used in this context: MPDATA.
Navjot Kukreja, Jan Hückelheim, Mathias Louboutin, John Washbourne, Paul H. J. Kelly, and Gerard J. Gorman
Geosci. Model Dev., 15, 3815–3829, https://doi.org/10.5194/gmd-15-3815-2022, https://doi.org/10.5194/gmd-15-3815-2022, 2022
Short summary
Short summary
Full waveform inversion (FWI) is a partial-differential equation (PDE)-constrained optimization problem that is notorious for its high computational load and memory footprint. In this paper we present a method that combines recomputation with lossy compression to accelerate the computation with minimal loss of precision in the results. We show this using experiments running FWI with a variety of compression settings on a popular academic dataset.
Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps
Geosci. Model Dev., 15, 3641–3662, https://doi.org/10.5194/gmd-15-3641-2022, https://doi.org/10.5194/gmd-15-3641-2022, 2022
Short summary
Short summary
This paper addresses numerical challenges in reasoning about geological models constrained by sensor data, especially models that describe the history of an area in terms of a sequence of events. Our method ensures that small changes in simulated geological features, such as the position of a boundary between two rock layers, do not result in unrealistically large changes to resulting sensor measurements, as occur presently using several popular modeling packages.
Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany Lusch, Prasanna Balaprakash, Ian Foster, and Rao Kotamarthi
Geosci. Model Dev., 15, 3433–3445, https://doi.org/10.5194/gmd-15-3433-2022, https://doi.org/10.5194/gmd-15-3433-2022, 2022
Short summary
Short summary
In numerical weather prediction, data assimilation is frequently utilized to enhance the accuracy of forecasts from equation-based models. In this work we use a machine learning framework that approximates a complex dynamical system given by the geopotential height. Instead of using an equation-based model, we utilize this machine-learned alternative to dramatically accelerate both the forecast and the assimilation of data, thereby reducing need for large computational resources.
Hiromasa Yoshimura
Geosci. Model Dev., 15, 2561–2597, https://doi.org/10.5194/gmd-15-2561-2022, https://doi.org/10.5194/gmd-15-2561-2022, 2022
Short summary
Short summary
This paper proposes a new double Fourier series (DFS) method on a sphere that improves the numerical stability of a model compared with conventional DFS methods. The shallow-water model and the advection model using the new DFS method give stable results without the appearance of high-wavenumber noise near the poles. The model using the new DFS method is faster than the model using spherical harmonics (especially at high resolutions) and gives almost the same results.
Mirko Mälicke
Geosci. Model Dev., 15, 2505–2532, https://doi.org/10.5194/gmd-15-2505-2022, https://doi.org/10.5194/gmd-15-2505-2022, 2022
Short summary
Short summary
I preset SciKit-GStat, a well-documented and tested Python package for variogram estimation. The variogram is the core means of geostatistics, which almost all other methods rely on. Geostatistical interpolation and field generation are widely spread in geoscience, i.e., for data assimilation or modeling.
While SciKit-GStat focuses on effective and intuitive variogram estimation, it can interface with other prominent packages and make its variograms available for a multitude of methods.
Christopher J. L. D'Amboise, Michael Neuhauser, Michaela Teich, Andreas Huber, Andreas Kofler, Frank Perzl, Reinhard Fromm, Karl Kleemayr, and Jan-Thomas Fischer
Geosci. Model Dev., 15, 2423–2439, https://doi.org/10.5194/gmd-15-2423-2022, https://doi.org/10.5194/gmd-15-2423-2022, 2022
Short summary
Short summary
The term gravitational mass flow (GMF) covers various natural hazard processes such as snow avalanches, rockfall, landslides, and debris flows. Here we present the open-source GMF simulation tool Flow-Py. The model equations are based on simple geometrical relations in three-dimensional terrain. We show that Flow-Py is an educational, innovative GMF simulation tool with three computational experiments: 1. validation of implementation, 2. performance, and 3. expandability.
Evan Baker, Anna B. Harper, Daniel Williamson, and Peter Challenor
Geosci. Model Dev., 15, 1913–1929, https://doi.org/10.5194/gmd-15-1913-2022, https://doi.org/10.5194/gmd-15-1913-2022, 2022
Short summary
Short summary
We have adapted machine learning techniques to build a model of the land surface in Great Britain. The model was trained using data from a very complex land surface model called JULES. Our model is faster at producing simulations and predictions and can investigate many different scenarios, which can be used to improve our understanding of the climate and could also be used to help make local decisions.
Daichun Wang, Wei You, Zengliang Zang, Xiaobin Pan, Yiwen Hu, and Yanfei Liang
Geosci. Model Dev., 15, 1821–1840, https://doi.org/10.5194/gmd-15-1821-2022, https://doi.org/10.5194/gmd-15-1821-2022, 2022
Short summary
Short summary
This paper presents a 3D variational data assimilation system for aerosol optical properties, including aerosol optical thickness (AOT) retrievals and lidar-based aerosol profiles, which was developed for a size-resolved sectional model in WRF-Chem. To directly assimilate aerosol optical properties, an observation operator based on the Mie scattering theory was designed. The results show that Himawari-8 AOT assimilation can significantly improve model aerosol analyses and forecasts.
Kevin Bulthuis and Eric Larour
Geosci. Model Dev., 15, 1195–1217, https://doi.org/10.5194/gmd-15-1195-2022, https://doi.org/10.5194/gmd-15-1195-2022, 2022
Short summary
Short summary
We present and implement a stochastic solver to sample spatially and temporal varying uncertain input parameters in the Ice-sheet and Sea-level System Model, such as ice thickness or surface mass balance. We represent these sources of uncertainty using Gaussian random fields with Matérn covariance function. We generate random samples of this random field using an efficient computational approach based on solving a stochastic partial differential equation.
Urmas Raudsepp and Ilja Maljutenko
Geosci. Model Dev., 15, 535–551, https://doi.org/10.5194/gmd-15-535-2022, https://doi.org/10.5194/gmd-15-535-2022, 2022
Short summary
Short summary
A model's ability to reproduce the state of a simulated object is always a subject of discussion. A new method for the multivariate assessment of numerical model skills uses the K-means algorithm for clustering model errors. All available data that fall into the model domain and simulation period are incorporated into the skill assessment. The clustered errors are used for spatial and temporal analysis of the model accuracy. The method can be applied to different types of geoscientific models.
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 14, 7749–7774, https://doi.org/10.5194/gmd-14-7749-2021, https://doi.org/10.5194/gmd-14-7749-2021, 2021
Short summary
Short summary
We propose an implementation of the material point method using graphical processing units (GPUs) to solve elastoplastic problems in three-dimensional configurations, such as the granular collapse or the slumping mechanics, i.e., landslide. The computational power of GPUs promotes fast code executions, compared to a traditional implementation using central processing units (CPUs). This allows us to study complex three-dimensional problems tackling high spatial resolution.
Rafael Lago, Thomas Gastine, Tilman Dannert, Markus Rampp, and Johannes Wicht
Geosci. Model Dev., 14, 7477–7495, https://doi.org/10.5194/gmd-14-7477-2021, https://doi.org/10.5194/gmd-14-7477-2021, 2021
Short summary
Short summary
In this work we discuss a two-dimensional distributed parallelization of MagIC, an open-source code for the numerical solution of the magnetohydrodynamics equations. Such a parallelization involves several challenges concerning the distribution of work and data. We detail our algorithm and compare it with the established, optimized, one-dimensional distribution in the context of the dynamo benchmark and discuss the merits of both implementations.
Moritz Lange, Henri Suominen, Mona Kurppa, Leena Järvi, Emilia Oikarinen, Rafael Savvides, and Kai Puolamäki
Geosci. Model Dev., 14, 7411–7424, https://doi.org/10.5194/gmd-14-7411-2021, https://doi.org/10.5194/gmd-14-7411-2021, 2021
Short summary
Short summary
This study aims to replicate computationally expensive high-resolution large-eddy simulations (LESs) with regression models to simulate urban air quality and pollutant dispersion. The model development, including feature selection, model training and cross-validation, and detection of concept drift, has been described in detail. Of the models applied, log-linear regression shows the best performance. A regression model can replace LES unless high accuracy is needed.
Hynek Bednář, Aleš Raidl, and Jiří Mikšovský
Geosci. Model Dev., 14, 7377–7389, https://doi.org/10.5194/gmd-14-7377-2021, https://doi.org/10.5194/gmd-14-7377-2021, 2021
Short summary
Short summary
Forecast errors in numerical weather prediction systems grow in time. To quantify the impacts of this growth, parametric error growth models may be employed. This study recalculates and newly defines parameters for several statistic models approximating error growth in the ECMWF forecasting system. Accurate values of parameters are important because they are used to evaluate improvements of the forecasting systems or to estimate predictability.
Denise Degen, Cameron Spooner, Magdalena Scheck-Wenderoth, and Mauro Cacace
Geosci. Model Dev., 14, 7133–7153, https://doi.org/10.5194/gmd-14-7133-2021, https://doi.org/10.5194/gmd-14-7133-2021, 2021
Short summary
Short summary
In times of worldwide energy transitions, an understanding of the subsurface is increasingly important to provide renewable energy sources such as geothermal energy. To validate our understanding of the subsurface we require data. However, the data are usually not distributed equally and introduce a potential misinterpretation of the subsurface. Therefore, in this study we investigate the influence of measurements on temperature distribution in the European Alps.
Geoffroy Kirstetter, Olivier Delestre, Pierre-Yves Lagrée, Stéphane Popinet, and Christophe Josserand
Geosci. Model Dev., 14, 7117–7132, https://doi.org/10.5194/gmd-14-7117-2021, https://doi.org/10.5194/gmd-14-7117-2021, 2021
Short summary
Short summary
The development of forecasting tools may help to limit the impacts of flash floods. Our purpose here is to demonstrate the possibility of using b-flood, which is a 2D tool based on shallow-water equations and adaptive mesh refinement.
Sojung Park and Seon K. Park
Geosci. Model Dev., 14, 6241–6255, https://doi.org/10.5194/gmd-14-6241-2021, https://doi.org/10.5194/gmd-14-6241-2021, 2021
Short summary
Short summary
One of the biggest uncertainties in numerical weather predictions (NWPs) comes from treating subgrid-scale physical processes. Physical processes, such as cumulus, microphysics, and planetary boundary layer processes, are parameterized in NWP models by empirical and theoretical backgrounds. We developed an interface between a micro-genetic algorithm and the WRF model for a combinatorial optimization of physics for heavy rainfall events in Korea. The system improved precipitation forecasts.
Olivier Pannekoucke and Philippe Arbogast
Geosci. Model Dev., 14, 5957–5976, https://doi.org/10.5194/gmd-14-5957-2021, https://doi.org/10.5194/gmd-14-5957-2021, 2021
Short summary
Short summary
This contributes to research on uncertainty prediction, which is important either for determining the weather today or estimating the risk in prediction. The problem is that uncertainty prediction is numerically very expensive. An alternative has been proposed wherein uncertainty is presented in a simplified form with only the dynamics of certain parameters required. This tool allows for the determination of the symbolic equations of these parameter dynamics and their numerical computation.
Annika Günther, Johannes Gütschow, and Mairi Louise Jeffery
Geosci. Model Dev., 14, 5695–5730, https://doi.org/10.5194/gmd-14-5695-2021, https://doi.org/10.5194/gmd-14-5695-2021, 2021
Short summary
Short summary
The mitigation components of the nationally determined contributions (NDCs) under the Paris Agreement are essential in our fight against climate change. Regular updates with increased ambition are requested to limit global warming to 1.5–2 °C. The new and easy-to-update open-source tool NDCmitiQ can be used to quantify the NDCs' mitigation targets and construct resulting emissions pathways. In use cases, we show target uncertainties from missing clarity, data, and methodological challenges.
Futo Tomizawa and Yohei Sawada
Geosci. Model Dev., 14, 5623–5635, https://doi.org/10.5194/gmd-14-5623-2021, https://doi.org/10.5194/gmd-14-5623-2021, 2021
Short summary
Short summary
A new method to predict chaotic systems from observation and process-based models is proposed by combining machine learning with data assimilation. Our method is robust to the sparsity of observation networks and can predict more accurately than a process-based model when it is biased. Our method effectively works when both observations and models are imperfect, which is often the case in geoscience. Therefore, our method is useful to solve a wide variety of prediction problems in this field.
Chloe Leach, Tom Coulthard, Andrew Barkwith, Daniel R. Parsons, and Susan Manson
Geosci. Model Dev., 14, 5507–5523, https://doi.org/10.5194/gmd-14-5507-2021, https://doi.org/10.5194/gmd-14-5507-2021, 2021
Short summary
Short summary
Numerical models can be used to understand how coastal systems evolve over time, including likely responses to climate change. However, many existing models are aimed at simulating 10- to 100-year time periods do not represent a vertical dimension and are thus unable to include the effect of sea-level rise. The Coastline Evolution Model 2D (CEM2D) presented in this paper is an advance in this field, with the inclusion of the vertical coastal profile against which the water level can be altered.
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124, https://doi.org/10.5194/gmd-14-5107-2021, https://doi.org/10.5194/gmd-14-5107-2021, 2021
Short summary
Short summary
Simplified schemes, known as parameterisations, are sometimes used to describe physical processes within numerical models. However, the values of the parameters are uncertain. This introduces uncertainty into the model outputs. We develop a simple approach to identify plausible ranges for model parameters. Using a model of the Antarctic Ice Sheet, we find that the value of one parameter can depend on the values of others. We conclude that a single optimal set of parameter values does not exist.
Axel Peytavin, Bruno Sainte-Rose, Gael Forget, and Jean-Michel Campin
Geosci. Model Dev., 14, 4769–4780, https://doi.org/10.5194/gmd-14-4769-2021, https://doi.org/10.5194/gmd-14-4769-2021, 2021
Short summary
Short summary
We present a new algorithm developed at The Ocean Cleanup to update ocean plastic models based on measurements from the field to improve future cleaning operations. Prepared in collaboration with MIT researchers, this initial study presents its use in several analytical and real test cases in which two observers in a flow field record regular observations to update a plastic forecast. We demonstrate this improves the prediction, even with inaccurate knowledge of the water flows driving plastic.
Kang Pan, Mei Qi Lim, Markus Kraft, and Epaminondas Mastorakos
Geosci. Model Dev., 14, 4509–4534, https://doi.org/10.5194/gmd-14-4509-2021, https://doi.org/10.5194/gmd-14-4509-2021, 2021
Short summary
Short summary
A new moving point source (MPS) model was developed to simulate the dispersion of emissions generated by the moving ships. Compared to the commonly used line source (LS) or fixed point source (FPS) model, the MPS model provides more emission distribution details generated by the moving ships and matches reasonably with the measurements. Therefore, the MPS model should be a valuable alternative for the environmental society to evaluate the pollutant dispersion contributed from the moving ships.
Sebastian Springer, Heikki Haario, Jouni Susiluoto, Aleksandr Bibov, Andrew Davis, and Youssef Marzouk
Geosci. Model Dev., 14, 4319–4333, https://doi.org/10.5194/gmd-14-4319-2021, https://doi.org/10.5194/gmd-14-4319-2021, 2021
Short summary
Short summary
Model predictions always contain uncertainty. But in some cases, such as weather forecasting or climate modeling, chaotic unpredictability increases the difficulty to say exactly how much uncertainty there is. We combine two recently proposed mathematical methods to show how the uncertainty can be analyzed in models that are simplifications of true weather models. The results can be extended in the future to show how forecasts from large-scale models can be improved.
Alexander Schaaf, Miguel de la Varga, Florian Wellmann, and Clare E. Bond
Geosci. Model Dev., 14, 3899–3913, https://doi.org/10.5194/gmd-14-3899-2021, https://doi.org/10.5194/gmd-14-3899-2021, 2021
Short summary
Short summary
Uncertainty is an inherent property of any model of the subsurface. We show how geological topology information – how different regions of rocks in the subsurface are connected – can be used to train uncertain geological models to reduce uncertainty. More widely, the method demonstrates the use of probabilistic machine learning (Bayesian inference) to train structural geological models on auxiliary geological knowledge that can be encoded in graph structures.
Cited articles
Agarwal, R. and Sen, S.: Creators of Mathematical and Computational
Sciences, https://doi.org/10.1007/978-3-319-10870-4, 2014.
Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson,
L. D.: The Effects of Tropospheric Ozone on Net Primary Productivity and
Implications for Climate Change, Annu. Rev. Plant Biol., 63,
637–661, https://doi.org/10.1146/annurev-arplant-042110-103829, 2012.
Aldrin, M. and Haff, I.: Generalised additive modelling of air pollution,
traffic volume and meteorology, Atmos. Environ., 39, 2145–2155,
https://doi.org/10.1016/j.atmosenv.2004.12.020, 2005.
Alduchov, O. A. and Eskridge, R. E.: Improved Magnus Form Approximation of
Saturation Vapor Pressure, J. Appl. Meteorol., 35, 601–609,
https://doi.org/10.1175/1520-0450(1996)035<0601:imfaos>2.0.co;2, 1996.
Aw, J. and Kleeman, M. J.: Evaluating the first-order effect of intraannual
temperature variability on urban air pollution, J. Geophys.
Res., 108, 4365, https://doi.org/10.1029/2002jd002688, 2003.
Banta, J. E.: Sir William Petty: Modern epidemiologist (1623–1687), J. Commun. He., 12, 185–198, https://doi.org/10.1007/bf01323480, 1987.
Benirschke, K.: Francis Galton: Pioneer of Heredity and Biometry, J.
Heredity, 95, 273–273, https://doi.org/10.1093/jhered/esh039, 2004.
Blanchard, C. L., Hidy, G. M., and Tanenbaum, S.: Ozone in the southeastern
United States: An observation-based model using measurements from the SEARCH
network, Atmos. Environ., 88, 192–200, https://doi.org/10.1016/j.atmosenv.2014.02.006, 2014.
Blanchard, C. L., Shaw, S. L., Edgerton, E. S., and Schwab, J. J.: Emission
influences on air pollutant concentrations in New York State: I. ozone,
Atmos. Environ. X, 3, 100033, https://doi.org/10.1016/j.aeaoa.2019.100033, 2019.
Camalier, L., Cox, W., and Dolwick, P.: The effects of meteorology on ozone
in urban areas and their use in assessing ozone trends, Atmos.
Environ., 41, 7127–7137, https://doi.org/10.1016/j.atmosenv.2007.04.061, 2007.
CARB: Air Quality and Meteorological Information System (AQMIS), https://www.arb.ca.gov/aqmis2/aqdselect.php,
last access: 27 May 2020.
Chang, C.-C. and Lin, C.-J.: LIBSVM, ACM Transactions on Intelligent Systems
and Technology, 2, 1–27, https://doi.org/10.1145/1961189.1961199, 2011.
Cox, P., Delao, A., Komorniczak, A., and Weller, R.: The California Almanac of Emissions and Air Quality – 2009 edition, Planning and Technical Support Division California Air Resources Board,
2009.
Cox, P., Delao, A., and Komorniczak, A.: The California Almanac of Emissions and Air Quality – 2013 edition, Air Quality Planning and Science Division California Air Resources Board,
2013.
Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., and Vapnik, V.:
Support vector regression machines, Proceedings of the 9th International
Conference on Neural Information Processing Systems, Denver, Colorado, 1996.
Fan, R.-E., Chen, P.-H., and Lin, C.-J.: Working Set Selection Using Second
Order Information for Training Support Vector Machines, J. Mach. Learn.
Res., 6, 1889–1918, 2005.
Fisher, R. A.: On the mathematical foundations of theoretical statistics,
Philos. T. Roy. Soc. Lond. A, 222, 309–368,
https://doi.org/10.1098/rsta.1922.0009, 1922.
Flynn, M. T., Mattson, E. J., Jaffe, D. A., and Gratz, L. E.: Spatial
patterns in summertime surface ozone in the Southern Front Range of the U.S.
Rocky Mountains, Elementa: Science of the Anthropocene, 9, 00104,
https://doi.org/10.1525/elementa.2020.00104, 2021.
Friedman, J. H.: Multivariate Adaptive Regression Splines, Ann.
Stat., 19, 1–67, https://doi.org/10.1214/aos/1176347963, 1991.
Friedman, J. H. and Silverman, B. W.: Flexible Parsimonious Smoothing and
Additive Modeling, Technometrics, 31, 3–21, https://doi.org/10.2307/1270359, 1989.
Galton, F.: Co-Relations and Their Measurement, Chiefly from Anthropometric
Data, P. Roy. Soc. Lond., 45, 135–145, 1888.
Galton, F. S.: Natural inheritance, Macmillan, London, https://doi.org/10.5962/bhl.title.32181, 1889.
Gao, Z.: Predicting peak daily maximum 8-hour ozone, and linkages to emissions and meteorology, in Southern California using machine learning methods, Zenodo [code], https://doi.org/10.5281/zenodo.6892066, 2022a.
Gao, Z.: Predicting peak daily maximum 8-hour ozone, and linkages to emissions and meteorology, in Southern California using machine learning methods, Zenodo [data set], https://doi.org/10.5281/zenodo.6892062, 2022b.
Gao, Z., Ivey, C. E., Blanchard, C. L., Do, K., Lee, S.-M., and Russell, A.
G.: Separating emissions and meteorological impacts on peak ozone
concentrations in Southern California using generalized additive modeling,
Environ. Pollut., 307, 119503, https://doi.org/10.1016/j.envpol.2022.119503, 2022.
García Nieto, P. J. and Álvarez Antón, J. C.: Nonlinear air
quality modeling using multivariate adaptive regression splines in Gijón
urban area (Northern Spain) at local scale, Appl. Math.
Comput., 235, 50–65, https://doi.org/10.1016/j.amc.2014.02.096, 2014.
Gong, X., Kaulfus, A., Nair, U., and Jaffe, D. A.: Quantifying O3 Impacts in
Urban Areas Due to Wildfires Using a Generalized Additive Model,
Environ. Sci. Technol., 51, 13216–13223,
https://doi.org/10.1021/acs.est.7b03130, 2017.
Gong, X., Hong, S., and Jaffe, D. A.: Ozone in China: Spatial Distribution
and Leading Meteorological Factors Controlling O3 in 16 Chinese Cities,
Aerosol Air Qual. Res., 18, 2287–2300, https://doi.org/10.4209/aaqr.2017.10.0368,
2018.
Gorai, A. K., Tuluri, F., Tchounwou, P. B., and Ambinakudige, S.: Influence
of local meteorology and NO2 conditions on ground-level ozone concentrations
in the eastern part of Texas, USA, Air Quality, Atmos. He., 8,
81–96, https://doi.org/10.1007/s11869-014-0276-5, 2015.
Harrell, F. E.: General Aspects of Fitting Regression Models, Springer
International Publishing, 13–44, https://doi.org/10.1007/978-3-319-19425-7_2,
2015.
Hastie, T.: Generalized additive models, Chapter 7, in: Statistical Models in S, edited by: Chambers, J. M. and Hastie,
T. J., Wadsworth & Brooks/Cole, 1991.
Hastie, T. and Tibshirani, R.: Generalized Additive Models, Stat.
Sci., 1, 297–310, https://doi.org/10.1214/ss/1177013604, 1986.
Hastie, T. and Tibshirani, R.: Generalized additive models, Chapman &
Hall/CRC, London, 1990.
Hastie, T. and Tibshirani, R.: Discriminant Analysis by Gaussian Mixtures,
J. Roy. Stat. Soc. B, 58,
155–176, 1996.
Hastie, T., Tibshirani, R., and Friedman, J. H.: The elements of statistical
learning: data mining, inference, and prediction, 2nd edn.,
Springer, New York, 2009.
Henneman, L. R. F., Holmes, H. A., Mulholland, J. A., and Russell, A. G.:
Meteorological detrending of primary and secondary pollutant concentrations:
Method application and evaluation using long-term (2000–2012) data in
Atlanta, Atmos. Environ., 119, 201–210, https://doi.org/10.1016/j.atmosenv.2015.08.007, 2015.
Hogrefe, C., Rao, S. T., Zurbenko, I. G., and Porter, P. S.: Interpreting
the Information in Ozone Observations and Model Predictions Relevant to
Regulatory Policies in the Eastern United States, B. Am.
Meteorol. Soc., 81, 2083–2106, https://doi.org/10.1175/1520-0477(2000)081<2083:itiioo>2.3.co;2, 2000.
Hong, C., Mueller, N. D., Burney, J. A., Zhang, Y., AghaKouchak, A., Moore,
F. C., Qin, Y., Tong, D., and Davis, S. J.: Impacts of ozone and climate
change on yields of perennial crops in California, Nature Food, 1, 166–172,
https://doi.org/10.1038/s43016-020-0043-8, 2020.
Hu, C., Kang, P., Jaffe, D. A., Li, C., Zhang, X., Wu, K., and Zhou, M.:
Understanding the impact of meteorology on ozone in 334 cities of China,
Atmos. Environ., 248, 118221, https://doi.org/10.1016/j.atmosenv.2021.118221, 2021.
Huang, X. G., Shao, T. J., Zhao, J. B., Cao, J. J., and Lü, X. H.:
Influencing Factors of Ozone Concentration in Xi'an Based on Generalized
Additive Models, Huan Jing Ke Xue, 41, 1535–1543,
https://doi.org/10.13227/j.hjkx.201906067, 2020.
Jeong, Y., Lee, H. W., and Jeon, W.: Regional Differences of Primary
Meteorological Factors Impacting O3 Variability in South Korea, Atmosphere,
11, 74, https://doi.org/10.3390/atmos11010074, 2020.
Jin, L., Loisy, A., and Brown, N. J.: Role of meteorological processes in
ozone responses to emission controls in California's San Joaquin Valley,
J. Geophys. Res.-Atmos., 118, 8010–8022,
https://doi.org/10.1002/jgrd.50559, 2013.
Keller, C. A. and Evans, M. J.: Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10, Geosci. Model Dev., 12, 1209–1225, https://doi.org/10.5194/gmd-12-1209-2019, 2019.
Kelley, M. C., Brown, M. M., Fedler, C. B., and Ardon-Dryer, K.: Long Term
Measurements of PM2.5 Concentrations in Lubbock, Texas, Aerosol Air
Qual. Res., 20, 1306–1318, https://doi.org/10.4209/aaqr.2019.09.0469, 2020.
Kleeman, M. J.: A preliminary assessment of the sensitivity of air quality
in California to global change, Clim. Change, 87, 273–292,
https://doi.org/10.1007/s10584-007-9351-3, 2008.
Lawrence, M. G.: The Relationship between Relative Humidity and the Dewpoint
Temperature in Moist Air: A Simple Conversion and Applications, B.
Am. Meteorol. Soc., 86, 225–234, https://doi.org/10.1175/BAMS-86-2-225,
2005.
Leathwick, J. R., Elith, J., and Hastie, T.: Comparative performance of
generalized additive models and multivariate adaptive regression splines for
statistical modelling of species distributions, Ecol. Model., 199,
188–196, https://doi.org/10.1016/j.ecolmodel.2006.05.022, 2006.
Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R
News, 2, 18–22, 2002.
Ling, Z. H., Guo, H., Zheng, J. Y., Louie, P. K. K., Cheng, H. R., Jiang,
F., Cheung, K., Wong, L. C., and Feng, X. Q.: Establishing a conceptual
model for photochemical ozone pollution in subtropical Hong Kong,
Atmos. Environ., 76, 208–220, https://doi.org/10.1016/j.atmosenv.2012.09.051, 2013.
Liu, B.-C., Binaykia, A., Chang, P.-C., Tiwari, M. K., and Tsao, C.-C.:
Urban air quality forecasting based on multi-dimensional collaborative
Support Vector Regression (SVR): A case study of
Beijing-Tianjin-Shijiazhuang, PLOS ONE, 12, e0179763,
https://doi.org/10.1371/journal.pone.0179763, 2017.
Liu, T., Li, T. T., Zhang, Y. H., Xu, Y. J., Lao, X. Q., Rutherford, S.,
Chu, C., Luo, Y., Zhu, Q., Xu, X. J., Xie, H. Y., Liu, Z. R., and Ma, W. J.:
The short-term effect of ambient ozone on mortality is modified by
temperature in Guangzhou, China, Atmos. Environ., 76, 59–67,
https://doi.org/10.1016/j.atmosenv.2012.07.011, 2013.
Lu, R. and Turco, R. P.: Ozone distributions over the los angeles basin:
Three-dimensional simulations with the smog model, Atmos. Environ.,
30, 4155–4176, https://doi.org/10.1016/1352-2310(96)00153-7, 1996.
Lu, X., Zhang, L., and Shen, L.: Meteorology and Climate Influences on
Tropospheric Ozone: a Review of Natural Sources, Chemistry, and Transport
Patterns, Current Pollut. Rep., 5, 238–260, https://doi.org/10.1007/s40726-019-00118-3, 2019.
Luna, A. S., Paredes, M. L. L., De Oliveira, G. C. G., and Corrêa, S.
M.: Prediction of ozone concentration in tropospheric levels using
artificial neural networks and support vector machine at Rio de Janeiro,
Brazil, Atmos. Environ., 98, 98–104, https://doi.org/10.1016/j.atmosenv.2014.08.060,
2014.
Ma, Y., Ma, B., Jiao, H., Zhang, Y., Xin, J., and Yu, Z.: An analysis of the
effects of weather and air pollution on tropospheric ozone using a
generalized additive model in Western China: Lanzhou, Gansu, Atmos.
Environ., 224, 117342, https://doi.org/10.1016/j.atmosenv.2020.117342, 2020.
Mahmud, A., Hixson, M., Hu, J., Zhao, Z., Chen, S.-H., and Kleeman, M. J.: Climate impact on airborne particulate matter concentrations in California using seven year analysis periods, Atmos. Chem. Phys., 10, 11097–11114, https://doi.org/10.5194/acp-10-11097-2010, 2010.
McClure, C. D. and Jaffe, D. A.: Investigation of high ozone events due to
wildfire smoke in an urban area, Atmos. Environ., 194, 146–157,
https://doi.org/10.1016/j.atmosenv.2018.09.021, 2018.
McGlynn, D., Mao, H., Sive, B., and Sharac, T.: Understanding Long-Term
Variations in Surface Ozone in United States (U.S.) National Parks,
Atmosphere, 9, 125, https://doi.org/10.3390/atmos9040125, 2018.
Menne, M. J., Durre, I., Korzeniewski, B., McNeal, S., Thomas, K., Yin, X.,
Anthony, S., Ray, R., Vose, R. S., Gleason, B. E., and Houston, T. G.:
Global Historical Climatology Network - Daily (GHCN-Daily), Version 3,
https://doi.org/10.7289/V5D21VHZ, 2012a.
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An
Overview of the Global Historical Climatology Network-Daily Database,
J. Atmos. Ocean. Tech., 29, 897–910,
https://doi.org/10.1175/jtech-d-11-00103.1, 2012b.
Milborrow, S.: Regression Splines,
FIM Forecast Model: 500 mb Wind Speed and 500 mb Height Contours – Real-time:
https://CRAN.R-project.org/package=earth (last access: 13 November 2021),
R program [code], 2021.
NOAA: FIM Forecast Model: 500 mb Wind Speed and 500 mb Height Contours – Real-time, https://sos.noaa.gov/datasets/fim-forecast-model-500mb-wind-speed-and-500mb-height-contours-real-time/ (last access: 23 May 2021), 2020.
Oduro, S. D., Metia, S., Duc, H., Hong, G., and Ha, Q. P.: Multivariate
adaptive regression splines models for vehicular emission prediction,
Visualization in Engineering, 3, 13, https://doi.org/10.1186/s40327-015-0024-4, 2015.
Oman, L. D., Ziemke, J. R., Douglass, A. R., Waugh, D. W., Lang, C.,
Rodriguez, J. M., and Nielsen, J. E.: The response of tropical tropospheric
ozone to ENSO, Geophys. Res. Lett., 38, 13706, https://doi.org/10.1029/2011GL047865, 2011.
Oman, L. D., Douglass, A. R., Ziemke, J. R., Rodriguez, J. M., Waugh, D. W.,
and Nielsen, J. E.: The ozone response to ENSO in Aura satellite
measurements and a chemistry-climate simulation, J. Geophys. Res.-Atmos., 118, 965–976,
https://doi.org/10.1029/2012jd018546, 2013.
Pearce, J. L., Beringer, J., Nicholls, N., Hyndman, R. J., and Tapper, N.
J.: Quantifying the influence of local meteorology on air quality using
generalized additive models, Atmos. Environ., 45, 1328–1336,
https://doi.org/10.1016/j.atmosenv.2010.11.051, 2011.
Pernak, R., Alvarado, M., Lonsdale, C., Mountain, M., Hegarty, J., and
Nehrkorn, T.: Forecasting Surface O3 in Texas Urban Areas Using Random
Forest and Generalized Additive Models, Aerosol Air Qual. Res., 9,
2815–2826, https://doi.org/10.4209/aaqr.2018.12.0464, 2019.
Pope, P. T. and Webster, J. T.: The Use of an F-Statistic in Stepwise
Regression Procedures, Technometrics, 14, 327–340, 1972.
Porter, T. M.: Social Interests and Statistical Theory: Statistics in
Britain, 1865–1930, Science, 214, 784–784,
https://doi.org/10.1126/science.214.4522.784.a, 1981.
Porter, T. M.: Trust in Numbers, Princeton University Press, ISBN 9780691208411, 1995.
Rao, S. T., Zurbenko, I. G., Neagu, R., Porter, P. S., Ku, J. Y., and Henry,
R. F.: Space and Time Scales in Ambient Ozone Data, B. Am.
Meteorol. Soc., 78, 2153–2166, https://doi.org/10.1175/1520-0477(1997)078<2153:satsia>2.0.co;2, 1997.
Rodríguez-Pérez, R., Vogt, M., and Bajorath, J.: Support Vector
Machine Classification and Regression Prioritize Different Structural
Features for Binary Compound Activity and Potency Value Prediction, ACS
Omega, 2, 6371–6379, https://doi.org/10.1021/acsomega.7b01079, 2017.
Roy, S. S., Pratyush, C., and Barna, C.: Predicting Ozone Layer
Concentration Using Multivariate Adaptive Regression Splines, Random Forest
and Classification and Regression Tree, Springer International
Publishing, 140–152, https://doi.org/10.1007/978-3-319-62524-9_11, 2018.
Rybarczyk, Y. and Zalakeviciute, R.: Machine Learning Approaches for Outdoor
Air Quality Modelling: A Systematic Review, Appl. Sci., 8, 2570,
https://doi.org/10.3390/app8122570, 2018.
Schölkopf, B. and Smola, A. J.: Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond, MIT Press, ISBN 9780262536578, 2001.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, Wiley, ISBN 978-1-118-94740-1, 2016.
Smola, A. J. and Schölkopf, B.: A tutorial on support vector regression,
Stat. Comput., 14, 199–222, https://doi.org/10.1023/b:stco.0000035301.49549.88,
2004.
Sotomayor-Olmedo, A., Aceves-Fernández, M. A., Gorrostieta-Hurtado, E.,
Pedraza-Ortega, C., Ramos-Arreguín, J. M., and Vargas-Soto, J. E.:
Forecast Urban Air Pollution in Mexico City by Using Support Vector
Machines: A Kernel Performance Approach, International Journal of
Intelligence Science, 03, 126–135, https://doi.org/10.4236/ijis.2013.33014, 2013.
Stafoggia, M., Johansson, C., Glantz, P., Renzi, M., Shtein, A., De Hoogh,
K., Kloog, I., Davoli, M., Michelozzi, P., and Bellander, T.: A Random
Forest Approach to Estimate Daily Particulate Matter, Nitrogen Dioxide, and
Ozone at Fine Spatial Resolution in Sweden, Atmosphere, 11, 239,
https://doi.org/10.3390/atmos11030239, 2020.
Stephen, M. S.: Gauss and the Invention of Least Squares, Ann.
Stat., 9, 465–474, https://doi.org/10.1214/aos/1176345451, 1981.
Sun, L., Xue, L., Wang, Y., Li, L., Lin, J., Ni, R., Yan, Y., Chen, L., Li, J., Zhang, Q., and Wang, W.: Impacts of meteorology and emissions on summertime surface ozone increases over central eastern China between 2003 and 2015, Atmos. Chem. Phys., 19, 1455–1469, https://doi.org/10.5194/acp-19-1455-2019, 2019.
Tin Kam, H.: Random decision forests, Proceedings of 3rd International
Conference on Document Analysis and Recognition, 14–16 August 1995,
271, 278–282, https://doi.org/10.1109/ICDAR.1995.598994, 1995.
U.S. EPA:
Trends in Ozone Adjusted for Weather Conditions, https://www.epa.gov/air-trends/trends-ozone-adjusted-weather-conditions (last access: 13 November 2021),
U.S. EPA, 2016.
U.S. EPA: Integrated Science Assessment (ISA) for Ozone and Related Photochemical Oxidants (Final Report, Apr 2020), U.S. Environmental Protection Agency, Washington, D.C., EPA/600/R-20/012, 2020.
Vong, C.-M., Ip, W.-F., Wong, P.-K., and Yang, J.-Y.: Short-Term Prediction
of Air Pollution in Macau Using Support Vector Machines, J. Control
Sci. Eng., 2012, 1–11, https://doi.org/10.1155/2012/518032, 2012.
Wells, B., Dolwick, P., Eder, B., Evangelista, M., Foley, K., Mannshardt,
E., Misenis, C., and Weishampel, A.: Improved estimation of trends in U.S.
ozone concentrations adjusted for interannual variability in meteorological
conditions, Atmos. Environ., 248, 118234,
https://doi.org/10.1016/j.atmosenv.2021.118234, 2021.
Wikipedia Contributors: Multivariate adaptive regression spline, https://en.wikipedia.org/w/index.php?title=Multivariate_adaptive_regression_spline&oldid=1083057440, last access: 19 April 2022.
Wood, S. N.: Fast stable restricted maximum likelihood and marginal
likelihood estimation of semiparametric generalized linear models, J. Roy. Statist. Soc. B, 73,
3–36, https://doi.org/10.1111/j.1467-9868.2010.00749.x, 2011.
Wood, S. N.: Generalized Additive Models: An Introduction with R, 2nd edn.,
Chapman and Hall/CRC, ISBN 9781315370279, https://doi.org/10.1201/9781315370279, 2017.
Xu, L., Yu, J.-Y., Schnell, J. L., and Prather, M. J.: The Seasonality and
Geographic Dependence of ENSO Impacts on US Surface Ozone Variability, Geophys. Res. Lett.,
44, 3420–3428,
https://doi.org/10.1002/2017gl073044, 2017.
Zhan, Y., Luo, Y., Deng, X., Grieneisen, M. L., Zhang, M., and Di, B.:
Spatiotemporal prediction of daily ambient ozone levels across China using
random forest for human exposure assessment, Environ. Pollut., 233,
464–473, https://doi.org/10.1016/j.envpol.2017.10.029, 2018.
Short summary
While the national ambient air quality standard of ozone is based on the 3-year average of the fourth highest 8 h maximum (MDA8) ozone concentrations, these predicted extreme values using numerical methods are always biased low. We built four computational models (GAM, MARS, random forest and SVR) to predict the fourth highest MDA8 ozone in Southern California using precursor emissions, meteorology and climatological patterns. All models presented acceptable performance, with GAM being the best.
While the national ambient air quality standard of ozone is based on the 3-year average of the...