
Geosci. Model Dev., 15, 9015–9029, 2022
https://doi.org/10.5194/gmd-15-9015-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperPredicting peak daily maximum 8 h ozone and linkages to emissions
and meteorology in Southern California using machine learning
methods (SoCAB-8HR V1.0)
Ziqi Gao1, Yifeng Wang1, Petros Vasilakos1, Cesunica E. Ivey2,a, Khanh Do2,3, and Armistead G. Russell1
1School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
2Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
3Center for Environmental Research and Technology, University of California, Riverside, Riverside, CA 92521, USA
anow at: Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720, USA

Correspondence: Ziqi Gao (zgao71@gatech.edu)

Received: 24 May 2022 – Discussion started: 28 July 2022
Revised: 24 November 2022 – Accepted: 2 December 2022 – Published: 16 December 2022

Abstract. The growing abundance of data is conducive to us-
ing numerical methods to relate air quality, meteorology and
emissions to address which factors impact pollutant concen-
trations. Often, it is the extreme values that are of interest
for health and regulatory purposes (e.g., the National Ambi-
ent Air Quality Standard for ozone uses the annual maximum
daily fourth highest 8 h average (MDA8) ozone), though such
values are the most challenging to predict using empirical
models. We developed four different computational models,
including the generalized additive model (GAM), multivari-
ate adaptive regression splines, random forest, and support
vector regression, to develop observation-based relationships
between the fourth highest MDA8 ozone in the South Coast
Air Basin and precursor emissions, meteorological factors
and large-scale climate patterns. All models had similar pre-
dictive performance, though the GAM showed a relatively
higher R2 value (0.96) with a lower root mean square error
and mean bias.

1 Introduction

Tropospheric ozone has proven to be one of the most diffi-
cult air pollutants to control, especially in the South Coast
Air Basin (SoCAB) of California, which includes the city of
Los Angeles and parts of four counties with a 2020 popula-
tion exceeding 18 million. Exposure to ozone can be harmful
to human health, leading to a variety of adverse outcomes,
including premature mortality (U.S. EPA, 2020), climate

warming and decreased agricultural production (Ainsworth
et al., 2012; Hong et al., 2020). Ozone is formed by chem-
ical reactions between volatile organic compounds (VOCs)
and nitrogen oxides (NOx) in the presence of sunlight (Se-
infeld and Pandis, 2016). In addition to VOC and NOx
emissions, meteorology and large-scale climate patterns af-
fect ozone (Aw and Kleeman, 2003; Blanchard et al., 2014;
Gorai et al., 2015; Kelley et al., 2020; Kleeman, 2008; Lu
et al., 2019; Mahmud et al., 2010; Mcglynn et al., 2018).
As such, the resulting relationships among ozone, emissions
and meteorology are complex and difficult to model accu-
rately. However, the rise of machine learning methods, along
with an increasingly long observational record, suggests that
observation-based models can be used to understand those
relationships. Since the 17th century statistics have been used
to record information about the wealth and population in Eu-
rope (Porter, 1981). For example, William Petty, a British
scientist and economist, estimated the census data of Ireland
through statistics (Banta, 1987). While the application of
statistics had been restricted to a few fields until the 19th cen-
tury, it gradually extended to other areas since then including
physics, astronomy and recently air quality (Porter, 1995).
At their core, statistical models aim at approximating a rela-
tionship between dependent and independent variables, with
regression being the most commonly used method, a term
that was coined by British statistician Francis Galton back
in 1885 when he studied the trend of heights within families
(Galton, 1889, 1888; Benirschke, 2004). The method how-
ever precedes the name, with the use of regression starting

Published by Copernicus Publications on behalf of the European Geosciences Union.



9016 Z. Gao et al.: Predicting peak daily maximum 8 h ozone, and linkages to emissions and meteorology

years before the term was introduced, dating back to the be-
ginning of the 19th century with linear regression being ap-
plied to questions in astronomy, such as determining orbits of
comets, while the least-squares method attributed to Adrien-
Marie Legendre and Carl Friedrich Gauss was developed in
the early 1800s (Stephen, 1981; Agarwal and Sen, 2014). At
the start of the 20th century, some statisticians introduced the
idea of nonlinear regression, trying to explain more complex
systems (Fisher, 1922). Since then, as computational capac-
ity increased dramatically in the past few decades, regression
analysis has been widely used in most scientific fields.

The US Environmental Protection Agency’s (EPA) Na-
tional Ambient Air Quality Standard (NAAQS) for ozone
is based on the annual maximum daily fourth highest 8 h
average (MDA8) ozone observations, which is an extreme
statistic, and extreme statistics are often difficult to accu-
rately predict using empirical modeling, though different ap-
proaches have been used for various purposes. For example,
the US EPA adjusted the MDA8 ozone predictions with me-
teorological observations using generalized linear modeling
(GLM) with natural spline smoothing functions in the R pro-
gram to develop a generalized additive model (GAM) (Ca-
malier et al., 2007; Wells et al., 2021) that meteorologically
adjusts ozone trends to help isolate the impact of emissions.
The GAM is an extension of the GLM, which was introduced
in 1986 (Hastie and Tibshirani, 1986, 1990). It is more flex-
ible than the GLM due to the smoothing functions on inde-
pendent variables. Previous studies suggested the GAM was
useful to deal with the nonlinear relationship between MDA8
ozone concentrations and meteorological indicators. About
40 % to 90 % of the variance of the MDA8 ozone concen-
trations could be explained at different sites with meteoro-
logically adjusted GAMs (Aldrin and Haff, 2005; Blanchard
et al., 2014, 2019; Camalier et al., 2007; Flynn et al., 2021;
Gong et al., 2018, 2017; Hu et al., 2021; Huang et al., 2020;
Jeong et al., 2020; Ma et al., 2020; McClure and Jaffe, 2018;
Pearce et al., 2011; Gao et al., 2022). GAMs can assess each
independent variable’s contribution to the dependent vari-
able. The multivariate adaptive regression splines (MARS)
model (Friedman, 1991) has been used to model the non-
linear relationship between ozone concentrations and precur-
sors’ concentrations/meteorological factors, including the in-
teractions between the independent indicators (García Nieto
and Álvarez Antón, 2014; Roy et al., 2018). Support vector
regression (SVR) is an extension of the support vector ma-
chine (SVM) (Drucker et al., 1996; Rodríguez-Pérez et al.,
2017; Smola and Schölkopf, 2004). Past studies have shown
that the SVR model with kernel functions can fit the nonlin-
ear relationships between ozone concentrations and meteoro-
logical factors and can obtain accurate predictions (Liu et al.,
2017; Luna et al., 2014; Rybarczyk and Zalakeviciute, 2018;
Sotomayor-Olmedo et al., 2013; Vong et al., 2012). Random
forest (RF) is a machine learning method (Tin Kam, 1995)
derived from the traditional decision tree method. Compared
to the traditional method, it is more accurate because it con-

tains multiple decision trees. The RF model can be used to
fit nonlinear relationships and deal with interaction effects.
It can accurately predict ozone concentrations using mete-
orological variables and emissions and capture about 70 %
to 95 % of the variability in ozone concentrations (Keller and
Evans, 2019; Pernak et al., 2019; Stafoggia et al., 2020; Zhan
et al., 2018). However, most prior empirical-model applica-
tions to simulate peak MDA8 ozone levels were biased low,
especially when considering capturing the fourth highest an-
nual MDA8 ozone concentrations.

In this study, we develop observation-based models
(SoCAB-8HR V1.0) using four different methods (GAM,
RF, SVR and MARS) with a broad range of potential in-
dependent indicators that impact ozone formation (e.g., pre-
cursors emissions, meteorological conditions, large-scale cli-
mate events, chemical reactions, seasonal variations and
weekend effects) to predict the annual fourth highest MDA8
ozone in the SoCAB from 1990 to 2019. We assess and com-
pare model performance and their applicability to help un-
derstand how emissions and meteorology, independently and
combined, impact high ozone levels.

2 Methods and data

2.1 Methods

Brief descriptions of the four methods (GAM, MARS, RF
and SVR) are provided below, and they are described in
greater detail in the referenced material.

2.1.1 Generalized additive model (GAM)

A GAM uses flexible, nonlinear relationships defined be-
tween “knots” in the explanatory variables using smoothing
functions (Hastie and Tibshirani, 1986, 1990). The knot is
the point of the link of two polynomial curves (Wood, 2017).
Since the GAM is an additive model, which means each in-
dicator’s function adds together to form the model equation,
the indicators can have a variety of relationships with the re-
sponse variable. The general form of the GAM is written as
(Hastie and Tibshirani, 1986, 1990; Wood, 2011, 2017)

y = a+

n∑
i=1

f (xi)+ e,

where a is the intercept, e is the error term, x refers to each
independent indicator and f means the function applied to
the predictors.

There are multiple choices of the functions based on the re-
lationship between each independent and dependent variable,
such as splines, linear functions and polynomials. Splines
(often cubic) are commonly applied to capture nonlinear re-
lationships. Cubic splines can provide a comparatively more
flexible curve than low-order splines. In addition, a cubic
spline can avoid overfitting with a smaller curviness and be
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more effective with less computational time than high-order
splines. The basis function of a cubic spline is a third-order
polynomial equation:

yi = ai · x
3
+ bi · x

2
+ ci · x+ di,

where a, b, c and d are the estimated coefficients of each ba-
sis function and the subscript i indicates the number of basis
functions (equal to the number of knots). Based on the num-
ber of knots, several basis functions are built with different
estimated coefficients. Each spline is given by the weighted
sum of the basis functions. Three to five knots typically are
sufficient in practice, and the knots are evenly distributed
based on the percentiles of each indicator (Harrell, 2015).
The “mgcv” package in the R program was used to build the
GAM between the peak MDA8 ozone concentrations and in-
dicators (Hastie, 1991; Hastie and Tibshirani, 1990, 1986;
Wood, 2011, 2017).

2.1.2 Multivariate adaptive regression splines (MARS)

The MARS model is a nonparametric, multivariate, piece-
wise regression model that can be used to develop the non-
linear relationships between the dependent variable and a set
of indicators (Friedman, 1991). Similar to the GAM, linear
splines (referred to as “hinge functions”) are applied to inde-
pendent variables in the MARS model. The resulting model
is formed by a weighted sum of basis functions. The MARS
model can deal with nonlinear relationships and provide a
more flexible curve than simple linear regression models and
polynomial regression models due to the linear splines be-
tween each pair of knots. It is simpler, and the resulting as-
sociations between the dependent and indicator variables are
easier to interpret than the complex machine learning meth-
ods (e.g., random forest and neural network). The general
equation of the MARS model is as follows (Friedman, 1991;
Leathwick et al., 2006; Oduro et al., 2015; Roy et al., 2018):

y = β0+
∑
i=2
βiHi,

where β0 is the intercept, Hi shows hinge functions and βi
is the coefficients of hinge functions. The hinge functions in
the MARS model are pairwise, and the form is

(x− k)+ =max(x− k,0),
(k− x)+ =max(k− x,0),

where k is the knot. When applying the MARS model, a
two-stage approach is used that includes forward and back-
ward stages. The forward stage is similar to the forward step-
wise regression. At first, the model only includes the inter-
cept term. Then, the generated pairwise hinge functions are
added into the model continuously if they can reduce the
residual error of the model. This process will be terminated
when the change of error is small (e.g., less than a thresh-
old) or the model reaches the defined maximum number of

terms. A backward stage is applied to avoid overfitting and
reduce the number of terms, removing terms that do not sig-
nificantly impact the error (Wikipedia Contributors, 2022).
Generalized cross validation (GCV) is used to find the fi-
nal MARS model after obtaining multiple models that have
different terms (Friedman, 1991; Friedman and Silverman,
1989; Hastie and Tibshirani, 1996; Leathwick et al., 2006;
Oduro et al., 2015; Roy et al., 2018). The “earth” package
in R was applied to build the relationship between the top
MDA8 ozone concentrations and independent indicators us-
ing the MARS model (Friedman and Silverman, 1989; Mil-
borrow, 2021; Hastie et al., 2009), and this package chose
the independent variables, the position of the knots and the
interaction of the terms automatically.

2.1.3 Random forest model (RF)

Random forest is a supervised machine learning method that
can be used for regression and classification. It is an ensem-
ble of multiple decision trees. The RF model resolves the
limitation of the decision tree that the model can be overfit-
ting if the depth of the trees is deeper by applying the bag-
ging algorithm. The bagging algorithm effectively reduces
the variance of the model results and makes the RF model
quite stable and robust. In regression, the predicted result of
the RF model is the average of the results of all decision trees.
The total error of RF is computed by the average of the error
of all the decision trees.

Suppose we build a random forest model which contains
m trees (i.e., Tb, b = 1,2, . . .,m) and has a testing point x.
The predicted value of input x would be

1
m

m∑
i=1

Ti(x).

The following steps construct each decision tree in a random
forest model. First, randomly select a subset of the training
dataset with replacement. Then, at each decision node, ran-
domly select a subset of variables. In order to find the opti-
mal variable and its corresponding value that can lead to the
best fit, we usually define a target function and compare all
variables in the subset to find the variable with the lowest or
highest value. Once we find the optimal variable and corre-
sponding value, we next divide the decision node based on
the optimal variable and value. Repeat the previous step un-
til all decision nodes reach the minimal node size. Finally,
for each leaf node, suppose k data points, x1x2, . . .,xk , be-
long to a leaf node and the corresponding response variables
are y1y2, . . .,yk respectively. The predicted result of a testing
point x which falls into this leaf node should be

1
k

k∑
i=1

yi .

We used the “randomForest” package in the R software to
build the RF model (Liaw and Wiener, 2002). RF models can
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select interaction terms between the independent variables
automatically.

2.1.4 Support vector regression (SVR)

The support vector machine (SVM) method is a supervised
machine learning approach that is used for classification. The
SVR model, which is an extension of the SVM, can be used
to describe the nonlinear relationships between the response
variable and independent indicators.

Suppose we have a set of indicators X = {x1x2, . . ., xm}

and a set of response variables Y = {y1y2, . . ., ym}. We need
to find a hyperplane to minimize error and achieve the best
fit, which can be written as wT x+ b. We can define the loss
function as

Loss(xi,yi)=max(0, |wT xi + b− yi | − ε),

where ε (epsilon) is the margin of error, a user-defined vari-
able that can be manipulated to adjust the accuracy of the
model. Then, the problem can be written as

min
w,b

1
2
‖w‖2+C

m∑
i=1

Loss(xi,yi),

where C is the cost, another user-defined variable that deter-
mines the tolerance of the model to points outside the bounds
set by ε, and m is the number of dataset. To let the loss func-
tion result of each training point be 0, we introduced the
slack variables. Then, the development of a nonlinear rela-
tionship between the response variable and indicators can be
converted a Lagrangian dual problem (Schölkopf and Smola,
2001; Smola and Schölkopf, 2004).

We need to consider the interactions among features some-
times when we build computational models, so we need to
map the data into a nonlinear feature space. The nonlinear
feature space increases the dimension of the data space, and
consequently the computational complexity grows dramati-
cally. We introduced a kernel function to account for the in-
teractions and reduce the computational complexity. We used
the package “e1071” in R software to build the SVR model
(Chang and Lin, 2011; Fan et al., 2005).

2.2 Model evaluation

We used the coefficient of determination (R2), mean bias
(MB) and root mean squared error (RMSE) of the observed
and predicted peak MDA8 ozone concentrations from 1990

to 2019 to compare the performance of these four models.

Mean bias=

n∑
i=1
(x̂i − xi)

n
,

RMSE=

√√√√√ n∑
i=1
(xi − x̂i)

2

n
,

where xi and x̂i are the observed and predicted MDA8 ozone
concentrations and n is the total number of measurements. In
addition, we used 10-fold cross validation (CV) to evaluate
the prediction accuracy and stability of these four models.
In the 10-fold CV, the dataset is randomly divided into two
subsets, in which 90 % is used to train the model and 10 % is
the testing dataset. These two subsets are not overlapped, and
this separation process repeats 10 times. The averages of the
R2, MB and RMSE in these 10 runs are the final evaluation
results of numerical models.

2.3 Study domain

The SoCAB includes urban and suburban parts of Los An-
geles County, Riverside County and San Bernardino County
and all of Orange County. This area historically and still ex-
periences some of the worst air quality in the US, and various
air pollutants at multiple sites in the SoCAB do not meet the
NAAQS, even with strict regulations leading to significant
reductions in pollutant emissions. The poor air quality is be-
cause SoCAB is one of the most urbanized and populated
regions in the US and is surrounded by mountains on three
sides, while the Pacific Ocean lies on the west side. Temper-
ature inversions are formed frequently along the coast due to
the warm subsiding air from North Pacific highs, suppressing
vertical mixing. This unique geographical and meteorologi-
cal environment leads to reduced dilution of air pollutants. In
addition, most days in a year are sunny, leading to warm and
dry conditions with high solar radiation, exacerbating the for-
mation of photochemically derived pollutants, such as ozone.

We first focused on the Crestline site to develop the initial
regression models to predict the fourth highest MDA8 ozone
concentrations in the SoCAB. This site had the annual fourth
highest MDA8 ozone concentrations during about 77 % of
this project’s period. The other 23 % of the time, the maxi-
mum site was close to the Crestline site, such as Glendora,
Redlands and Fontana.

2.4 Data

The daily MDA8 ozone concentrations from 1990 to 2019
in the South Coast Air Basin was retrieved from California
Air Resources Board (CARB) archives and EPA Air Quality
System (AQS) pre-generated data files (CARB, 2020). The
total number of days of daily MDA8 ozone levels is 10 957.
We used the top 30 MDA8 ozone days each year to develop
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the models for the fourth highest MDA8 ozone concentra-
tions to build robust computational models, since multiple
factors have impacts on the peak MDA8 ozone concentra-
tions. Significant factors may be missed if only the fourth
highest MDA8 ozone concentrations are considered, such as
the day of the year, day of the week and meteorological-
variable impacts, as there would only be 30 observations for
model training. Furthermore, the size of the 30 years’ fourth
highest MDA8 ozone dataset is too small to have sufficient
statistical power. A small dataset may cause a type II error
(failing to identify a statistically significant effect) for some
significant features, which would then affect the accuracy of
the predictions.

We selected 25 independent indicators, including precur-
sors’ emissions, meteorological factors suggested in previous
studies (Blanchard et al., 2014, 2019; Camalier et al., 2007),
Niño 3.4 monthly indices, the day of the week and the day
of the year. A detailed description of all the variables applied
to test the final computational models is in Table S1 in the
Supplement.

Estimated NOx and VOC emissions in the SoCAB from
2000 to 2019 were acquired from CARB archives using the
emissions in 2012 (Cox et al., 2013). The emissions between
1990 and 2000 were projected with the emissions in 2008
and 2012 (Cox et al., 2009, 2013). The detailed calculation
is in the Supplement.

We included two kinds of meteorological data: surface me-
teorological data and upper-air meteorological data. We ob-
tained the surface meteorological data, including tempera-
ture, wind speed and wind direction at Los Angeles Interna-
tional Airport (LAX) and Barstow-Daggett Airport (Barstow
Airport) from National Oceanic and Atmospheric Adminis-
tration (NOAA) archives and CARB archives (Menne et al.,
2012a, b). The upper-air meteorological data at the Mira-
mar site was provided by NOAA and contains geopotential
height, temperature, dew point temperature, wind speed and
wind direction at 500 and 850 mb (millibar). Using tempera-
ture and dew point temperature, we computed the relative hu-
midity (RH) at 500 and 850 mb with the Clausius–Clapeyron
equation (Alduchov and Eskridge, 1996; Lawrence, 2005).
The height of 500 mb is around 5500 m (NOAA, 2020), and
the 850 mb height is about 1500 m, which is close to the
boundary layer height. The upper-air meteorology is related
to the synoptic-scale weather and has an impact on the sur-
face meteorology (Blanchard et al., 2014; Camalier et al.,
2007).

Past studies have shown there is a relationship between the
El Niño–Southern Oscillation (ENSO) events and the vari-
ability of MDA8 ozone concentrations by affecting the local
meteorology (Lu et al., 2019; Oman et al., 2013, 2011; Xu et
al., 2017). Niño 3.4 monthly indices were obtained from the
Climate Prediction Center (CPC) to represent ENSO events.
To account for the daily variations and weekend effects of
MDA8 ozone levels, we included the day of the week and the
day of the year in the models (Seinfeld and Pandis, 2016).

3 Results

3.1 Model application and performance

3.1.1 GAM model

We combined stepwise regression and F values to assess the
statistical significance of each independent indicator to re-
fine the model equation to provide the smallest Akaike in-
formation criterion (AIC) value after excluding the highly
correlated indicators (Fig. S1) (Pope and Webster, 1972).
However, the stepwise regression may exclude some factors
that are known to be tied to ozone formation from the fi-
nal equation, including VOC emissions, the day of the year
and the day of the week. We used both statistical indicators
and knowledge of important relationships in the final model
to avoid losing significant factors that affect the peak ozone
levels. Furthermore, a limitation of the GAM is that it does
not identify interaction terms, so interaction terms were in-
troduced with the spline function manually in the style of
s(x1,x2).

We applied cubic splines to the emissions and meteoro-
logical variables due to the nonlinear relationship between
peak MDA8 ozone concentrations and meteorology/emis-
sions. Also, the cubic spline was used for the day of the
year to add the daily and seasonal variation of the precur-
sors’ emissions. In addition, we included the day of the
week in a factor style to represent the weekend effect and
Niño 3.4 monthly indices to show the large-scale climate pat-
tern impacts on ozone formation with linear functions. We
used the annual top 30 MDA8 ozone concentrations from
1990 to 2019 on a log scale as the dependent variable at the
Crestline site because the ozone concentrations follow a log-
normal distribution (U.S. EPA, 2020; Henneman et al., 2015;
Hogrefe et al., 2000; Rao et al., 1997; Blanchard et al., 2014;
Camalier et al., 2007).

The final GAM (GAM-SoCAB-8HR V1.0) included emis-
sions, meteorological factors, large-scale climate indices and
temporal variables at the Crestline site from 1990 to 2019
(Eq. 1). The detailed description of each variable is in Ta-
ble 1 (e: error term):

log(MDA8)= a+ dayofweek (factor)+ dayofyear

+ s (TMAXBarstow)+ s(Mir850RH)
+ s(AWNDLAX)+ s(eNOx)+ s(eROG)
+ s(eNOx,TMAXBarstow)
+ s(eROG,TMAXBarstow)
+ s(eNOx,eROG)+ENSOmonthly+ e. (1)

The correlation (R2) between independent variables in the fi-
nal GAM was tested (Fig. 1). The correlation between VOC
and NOx emissions was high at close to 1. However, both
are the precursors of MDA8 ozone, so these factors were not
removed during the model development. Other than emis-
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Figure 1. Correlation value between the independent variables
(only valid for GAM).

sions, the correlation among all the significant independent
variables in the final models is negligible (Fig. 1).

A total of 84 % of the variability of the peak MDA8 ozone
concentrations can be explained using this GAM (Fig. 2a).
The 10-fold validation results show that the R2 value was
0.85 using the testing dataset, only 0.01 higher than the train-
ing dataset. Also, the RMSE of the testing data was only
slightly different from that of the training data (Table S4),
which indicated that this GAM could predict peak MDA8
ozone concentrations stably. This model had an R2 value
equal to 0.96, and RMSE is 11.1 ppbv for the fourth high-
est MDA8 ozone predictions from 1990 to 2019 (Fig. 3a).

3.1.2 MARS model

We used the same dataset as the GAM (GAM-SoCAB-8HR
V1.0) to be comparable with the GAM’s results. The final
model contained six indicators, including the NOx and VOC
emissions, the maximum temperature at Barstow-Daggett
Airport, the average wind speed at LAX, Niño 3.4 monthly
indices, the day of the year and 11 interaction terms between
indicators. Similar to GAM, we applied the log function to
the ozone concentrations (Epa, 2020; Henneman et al., 2015;
Hogrefe et al., 2000; Rao et al., 1997). The final equation
of the MARS model (MARS-SoCAB-8HR V1.0) is shown
below (Eq. 2). A detailed description of each variable is in

Table 1:

log(MDA8)= 4.59+ (1135.1− eNOx)

· (−9.57× 10−4)

+ (eNOx − 1135.1) · (1.55× 10−3)

+ (643.4− eROG) · (2.67× 10−3)

+ (TMAXBarstow− 36.7) · 0.022
+ (1135.1− eNOx) · (eROG− 450.7)

· (4.29× 10−6)+ (eNOx − 1415.8)

· (eROG− 643.4) · (−1.08× 10−6)

+ (eNOx − 1225) · (TMAXBarstow− 36.7)

· (7.21× 10−4)+ (1081.5− eROG)

· (TMAXBarstow− 36.7) · (−2.18× 10−5)

+ (eROG− 1081.5)

· (TMAXBarstow− 36.7) · (−3.95× 10−4)

+ (eROG− 643.4) · (2.8−AWNDLAX)

· (−3.34× 10−4)+ (eROG− 643.4)

· (AWNDLAX− 2.8) · (−4.99× 10−5)

+ (26.91−ENSOmonthly)

· (eROG− 643.4) · (−3.03× 10−4)

+ (28.3−ENSOmonthly)

· (eROG− 1081.5) · (−1.61× 10−3)

+ (28.3−ENSOmonthly)

· (eROG− 982.7) · (1.34× 10−3)

+ (235− dayofyear)

· (TMAXBarstow− 36.7) · (1.22× 10−4).

(2)

The R2 when applied to predict the top 30 MDA8 ozone
predictions was 0.83 and showed no overfitting (Table S4).
The model also had a high R2 (0.95), and RMSE equaled
11.2 ppbv when predicting the fourth highest MDA8 ozone
concentrations (Fig. 3b).

Multiple tests were performed using the different num-
ber of the remaining terms in the output model with 10-
fold CV to improve the MARS model performance. The
best model was obtained when there were 14 terms main-
tained in the MARS model (Fig. S2). The performance of
the MARS model with 14 terms (R2

= 0.83, RMSE= 10.19)
was similar to the MARS model with 16 terms (R2

= 0.83,
RMSE= 10.27).

3.1.3 RF model

We first applied the same indicators and dataset as the GAM
(GAM-SoCAB-8HR V1.0) in order to compare the results of
the above two regression methods. In the base case run, we
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tried 0–500 trees to find the optimal number of trees. Each
tree chose two variables randomly that was equal to one-third
of the total number of variables by default. The optimal num-
ber of trees was 467 based on the RMSE value (Fig. S3).
The majority of the top 30 and fourth highest MDA8 ozone
concentrations can be explained by the RF model (RF-
SoCAB-8HR V1.0) (R2

= 0.81 and RMSE= 10.9 ppbv for
the top 30 MDA8 ozone concentrations and R2

= 0.97 and
RMSE= 14.0 ppbv for the fourth highest MDA8 ozone con-
centration; Figs. 2c and 3c). The R2 and RMSE values of the
10-fold CV results were similar to those using the original
RF model, with only a 0.01 difference in R2 and about a 5 %
reduction of the RMSE value that indicated this RF model
had a high prediction accuracy and no overfitting (Table S4).

Two main hyperparameters affect the performance of RF
models and can be tuned: the number of trees used in the
RF model and the number of random variables in each tree.
To improve the model performance further, we created a grid
with hyperparameters that the number of indicators consid-
ered at each split from 2 to 8, and the number of trees was
1000 to tune the RF. The optimal number of predictors in
each tree was 2 due to the lowest out-of-bag (OOB) error,
the same as the default run. Also, the optimal number of trees
after model tuning was the same as the default run.

Next, we included all the available indicators in the RF
model after excluding the strongly correlated independent
variables. Then we removed the statistically insignificant in-
dicators based on the p value and the variable importance
to find the optimal combination of independent variables in
the RF model. The final model contained two more variables
than the one above: maximum solar radiation and height at
850 mb. The importance of the additional variables was mi-
nor and had negligible impacts on the model performance
(Fig. 4c). The optimal number of trees was equal to 495. The
R2 and RMSE values for the top 30 MDA8 ozone predictions
were similar to those using the RF model with fewer vari-
ables, although the mean bias was reduced (Table S3). In ad-
dition, the model performance for the fourth highest MDA8
ozone predictions was worse than that using the RF model
with the same variables as GAM (Table 2). Therefore, the
RF model with the same GAM’s variables fit the peak and
the annual fourth highest MDA8 ozone concentrations well.

3.1.4 SVR model

We first built the SVR model (SVR-SoCAB-8HR V1.0) us-
ing the same variables as the built GAM (GAM-SoCAB-
8HR V1.0) above with the default setting (the cost was 1,
and epsilon was 0.1). We used kernel functions to consider
the interactions between the independent indicators. Several
kernel functions have been used in machine learning models,
including the linear kernel, polynomial kernel, radial kernel,
etc. In practice, we used the linear kernel for the linear re-
lationship and the radial kernel for the nonlinear relation-
ship. Owing to the nonlinear relationship between the peak

MDA8 ozone levels and emissions/meteorology, we applied
the radial kernel to the independent variables. The regression
method we used was epsilon regression, and the epsilon value
is related to the margin tolerance.

The R2 and RMSE values of the top 30 MDA8 ozone pre-
dictions were very similar to the RF model’s results, but the
MB was larger than that of the RF model (Table S3). Results
for predicting the fourth highest MDA8 ozone predictions
found that the method did not capture the variability as well
as the other methods (R2

= 0.89 and RMSE= 14.0 ppbv).
The CV results indicated that this SVR model is stable and
has no overfitting (Table S4).

Two parameters significantly impact the improvement of
predictions and can be defined by users: the value of cost and
epsilon. So we ran the SVR model with a hyperparameter
grid with the cost value from 1 to 512 and the epsilon from 0
to 1 with an interval of 0.1. The model achieved the best per-
formance when the epsilon was 0.3, and the cost was 1. The
predicted top 30 and fourth highest MDA8 ozone concentra-
tions were similar to those using the built SVR with default
settings (Tables 2 and S3, Fig. S5).

We then built the SVR model with all the independent vari-
ables we had and removed the insignificant variables using
the p value and variable importance. The optimal SVR model
(SVRoptimal-SoCAB-8HR V1.0) contained the variables in
the above GAM and height at 850 mb and maximum solar
radiation. The ideal epsilon value was 0.1, and the cost value
was 1, the same as the default setting. Though the importance
of these two additional variables was close to 0, the model
performance of simulations of the top 30 MDA8 ozone
days improved slightly (R2

= 0.83 and RMSE= 10.4 ppbv)
(Fig. 4d and Table S3). However, the fourth highest MDA8
ozone predictions were less accurate compared to the R2 and
RMSE using this SVR model (SVRoptimal-SoCAB-8HR
V1.0) and the SVR model (SVR-SoCAB-8HR V1.0) with
the same GAM variables (R2

= 0.87 and RMSE= 14.3 ppbv
for the SVRoptimal-SoCAB-8HR V1.0 and R2

= 0.89 and
RMSE= 14.0 ppbv for the SVR-SoCAB-8HR V1.0) (Ta-
ble 2).

3.2 Comparisons among the nonlinear methods

3.2.1 Statistical results and computational time
(efficiency)

We compared the R2, MB and RMSE of the peak and fourth
highest MDA8 ozone predictions using all these four mod-
els. The statistical results of simulations of the top 30 MDA8
ozone days showed that all these four methods explain most
of the variability of observations, especially the GAM (Ta-
ble S3). The GAM (GAM-SoCAB-8HR V1.0) had the low-
est MB and RMSE and the highest R2 for the top 30 MDA8
ozone simulations among all these four methods. Also, the
GAM (GAM-SoCAB-8HR V1.0) showed the best stability
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Figure 2. Comparison between the top 30 observed and predicted MDA8 ozone concentrations using the GAM-SoCAB-8HR V1.0 model (a),
MARS-SoCAB-8HR V1.0 model (b), RF-SoCAB-8HR V1.0 model (c), SVR-SoCAB-8HR V1.0 model (d) and the SVRoptimal-SoCAB-
8HR V1.0 model (e).
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Table 1. Predictors used in the GAM and MARS model equations.

Variable Abbreviation Unit

Day of the week (factor, from Monday to Sunday) dayofweek None
Day of the year (from 1 to 365/366) dayofyear None
Daily maximum surface temperature at the Barstow Airport site TMAXBarstow ◦C
Daily average wind speed at the LAX site AWNDLAX m s−1

Daily RH at 850 mb Mir850RH %
Monthly Niño 3.4 indices ENSOmonthly ◦C
Annual averaged NOx emissions eNOx t d−1

Annual averaged VOC emissions eROG t d−1

Figure 3. Comparison between the fourth highest observed and pre-
dicted MDA8 ozone concentrations using the GAM model built for
the top 30 MDA8 ozone days at the Crestline site using the GAM-
SoCAB-8HR V1.0 model (blue), MARS-SoCAB-8HR V1.0 model
(orange), RF-SoCAB-8HR V1.0 model (green), SVR-SoCAB-8HR
V1.0 model (red) and SVRoptimal-SoCAB-8HR V1.0 model (pur-
ple).

of the top 30 MDA8 ozone predictions based on CV results
(Table S4).

In addition, these four numerical methods can capture
the fourth highest MDA8 ozone variations well. The RF
model using the same variables as the built GAM (RF-
SoCAB-8HR V1.0) of the fourth highest MDA8 ozone
predictions with an R2 of 0.97, MB of −12.53 ppbv and
RMSE of 14.02 ppbv showed a lower model performance
when compared to the GAM whose R2 equaled 0.96, MB
was −9.71 ppbv and RMSE was 11.07 ppbv. The R2 for
the MARS model (MARS-SoCAB-8HR V1.0) equaled 0.95
with an MB of −9.28 ppbv and RMSE of 11.16 ppbv. In
comparison to the performance of the GAM, the MARS

Table 2. Summary of statistical results of the fourth MDA8 ozone
predictions using four methods at the Crestline site.

Method Mean bias R2 RMSE
(ppbv) (ppbv)

GAM −9.71 0.96 11.1
MARS model −9.28 0.95 11.2
RF modela −12.5 0.97 14.0
RF modelb −12.7 0.95 14.5
SVR modela −10.6 0.89 14.0
SVR modela+ tune −10.3 0.89 13.7
SVR modelb −10.4 0.87 14.3

a,b RF/SVR model with the same variables as the GAM
(GAM-SoCAB-8HR V1.0) and RF/SVR model with the optimal
combination of the indicators.

model had a better MB value but a worse R2 and RMSE
value. The SVR model (SVR-SoCAB-8HR V1.0) showed
the highest MB and RMSE value and lowest R2 among all
these four methods, implying that the SVR model predictions
gave the highest variations and lowest prediction accuracy. In
general, all these four methods showed a similar performance
to the fourth highest MDA8 ozone predictions. The predicted
fourth highest MDA8 ozone levels with RF and SVR using
the optimal variable combination had a lower R2 and higher
MB and RMSE than those using the same variables as the
GAM. Therefore, the variables used in the GAM (GAM-
SoCAB-8HR V1.0) were the best combination to build the
models for peak ozone levels.

The statistical results and computational time need to be
considered together to compare the model performance of
all the models, especially for a large size dataset. There were
no significant differences among these four methods in terms
of the top 30 and the annual fourth highest ozone predictions.
The GAM was marginally better compared to the other three
models outside of cost effectiveness. The computational re-
quirements for each model in this work is small due to the
small dataset size (Table 3). If computational time is a key
factor, the MARS model can be a good choice for a larger
dataset (Table 3).

https://doi.org/10.5194/gmd-15-9015-2022 Geosci. Model Dev., 15, 9015–9029, 2022



9024 Z. Gao et al.: Predicting peak daily maximum 8 h ozone, and linkages to emissions and meteorology

Table 3. Summary of the computational time of each model.

Method Computational time (s)

GAM 14
MARS model 0.04
RF model 1.2
SVR model 4.9

Table 4. Summary of statistical results of the fourth MDA8 ozone
predictions after applying the two-step method using four methods
at the Crestline site.

Method Mean bias R2 RMSE
(ppbv) (ppbv)

GAM 0 0.98 3.85
MARS model 0 0.97 4.54
RF model 0 0.97 4.55
SVR model 0 0.90 8.75

3.2.2 Two-step method

The R2 values of the fourth highest MDA8 ozone predictions
using these four regression methods were similar and agreed
with the observations, but the RMSE and MB values were
larger than desired. In order to reduce the bias, we applied a
two-step method using the least-squares method to the fourth
highest MDA8 ozone predictions. The steps are shown be-
low:

1. Predict the top 30 MDA8 ozone concentrations from
1990 to 2019 using the models built in Sect. 3.1.

2. Extract the annual predicted fourth highest MDA8
ozone concentrations based on the date of the observa-
tions.

3. Apply the regression equation derived using the obser-
vations and the predictions in step 2 to the fourth max-
imum value in each year’s top 30 MDA8 ozone predic-
tions (as the response variable) to get the updated fourth
highest MDA8 ozone predictions.

4. Use the regression equation from step 3 with the up-
dated predictions to get the improved fourth highest
MDA8 ozone predictions.

The mean bias of the improved predictions was removed; the
R2 value was increased; and the RMSE was reduced. Af-
ter applying the two-step method, the GAM showed the best
model performance among all the models with the highest
R2 and lowest RMSE value. The performance of the MARS
model and RF model were almost the same. The improved
SVR model results were still the least accurate due to the
lowest R2 and highest MB and RMSE.

3.2.3 Relative importance of the independent variables

There are multiple methods to determine the importance of
each independent variable of computational models, but the
differences among all the methods are negligible. The al-
gorithms used to calculate the variable importance of the
GAM, the RF model and the SVR model are similar, based
on the differences between the simulations using the original
dataset and the dataset with one indicator’s value randomly
permutated. If the change of the simulations is significant,
then that indicator is important or vice versa. The variable
importance shown is 1− r (r: the Pearson correlation coeffi-
cient between the simulations using the original and random-
permutation datasets) when the GAM is used. The RF and
SVR model used the change of mean square error between
the simulations using the original and random-permutation
datasets. The MARS model computed the variable impor-
tance by adding the indicator into the model and evaluating
the error changes by GCV.

The precursors’ emissions routinely are the most impor-
tant indicators among all the variables in these four models
that indicate that the emissions have more impact on the peak
MDA8 ozone formation than the meteorology in the SoCAB.
The maximum temperature is quite significant among all the
meteorological factors. The GAM and the MARS model also
included the interaction terms between the emissions and
maximum temperature, which capture more variability of the
peak MDA8 ozone concentrations. The maximum tempera-
ture is related to solar radiation, which has an influence on the
rate of photolysis reactions. RH at 850 mb showed relatively
high importance in the RF and SVR models. It had a negative
correlation with peak MDA8 ozone concentrations because
of its relationship with precipitation and cloud cover and, in
consequence, reduced solar radiation and affected photolysis
reactions.

3.3 Limitations

There are several limitations in the comparisons among these
four models. Some significant factors to the fourth highest
MDA8 ozone concentrations may be excluded from the mod-
els due to the relatively small dataset that can consequently
affect the prediction accuracy of the models; adding more
available meteorological factors (e.g., cloud coverage, plan-
etary boundary layer, surface wind direction and solar irra-
diance) and other large-scale climate indices (e.g., Atlantic
Multidecadal Oscillation (AMO) and tropical Pacific sea sur-
face temperature anomalies (TROP)), we can expect an im-
provement in the model performance, albeit at the cost of
performance. Second, the running time of these four mod-
els with a small dataset does not show any significant differ-
ences. The computational time, however, will be a key cri-
terion if the dataset is quite large and may affect the best
model choice. Third, since we included the local meteoro-
logical variables in the model equations and the models were
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Figure 4. Variable importance for simulations of the top 30 MDA8 ozone days using the GAM-SoCAB-8HR V1.0 model (a), MARS-
SoCAB-8HR V1.0 model (b), RF-SoCAB-8HR V1.0 model (c) and SVR-SoCAB-8HR V1.0 model (d). The variable importance for each
model is calculated with different methods (see text). SR: solar radiation.

developed for the Crestline site, these models may not of-
fer the same performance with the peak ozone levels at other
sites in the SoCAB. Given that Crestline is downwind of Los
Angeles, which then is bordered by the Pacific Ocean, the
models using SoCAB emissions capture the upwind condi-
tions. In other regions, such models could be expanded to
include both local emissions and upwind states’ emissions.
Previous studies showed the emissions, maximum tempera-
ture, RH, wind speed, wind direction and large-scale climate
patterns have impacts on the daily MDA8 ozone concentra-
tions in different regions in the world (Blanchard et al., 2014,
2019; Camalier et al., 2007; García Nieto and Álvarez An-
tón, 2014; Gong et al., 2018, 2017; Jeong et al., 2020; Jin et
al., 2013; Ling et al., 2013; Liu et al., 2013; Lu and Turco,
1996; Lu et al., 2019; Luna et al., 2014; Ma et al., 2020;
McClure and Jaffe, 2018; Sun et al., 2019). This is simi-
lar to the variable-importance results in this study. In addi-
tion, although the GAM and MARS model outperform the
RF and SVR model in this study, the machine learning meth-
ods (e.g., RF, neural network and SVR) may potentially of-
fer better performance than the GAM and the MARS model
with a significantly larger dataset. Finally, the models were

not developed to predict daily MDA8 ozone concentrations
because they are trained using the highest 30 MDA8 ozone
levels of each year. The relationships between inputs and pre-
dicted ozone are very different at lower ozone levels.

4 Conclusions

This study compared four observation-based approaches to
predict the fourth highest MDA8 ozone concentrations as a
function of emissions, meteorological factors and large-scale
climate patterns. The statistical results showed that these four
models with estimated emissions and observed meteorologi-
cal factors can explain most of the variations of the top 30 and
fourth highest MDA8 ozone concentrations (R2

= 0.81–0.84
for the top 30 MDA8 ozone concentrations and R2

= 0.89–
0.97 for the fourth highest MDA8 ozone concentrations).
Among the top 30 MDA8 ozone models, the GAM (GAM-
SoCAB-8HR V1.0) achieved the highest R2 (0.84) and low-
est RMSE value (9.74 ppbv), and the SVR (SVR-SoCAB-
8HR V1.0) and RF (RF-SoCAB-8HR V1.0) achieved a lower
R2 value (0.81) and a higher RMSE value (10.9 ppbv). So, in
terms of the top 30 highest MDA8 ozone predictions, there
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was little difference among these four models. These models
showed a better performance for predicting the fourth high-
est MDA8 ozone predictions than the peak ozone level. All
models had a high R2 value (close to or higher than 0.9), but
after considering RMSE and MB values, the GAM and the
MARS model described the dataset better and provided a sig-
nificantly better prediction accuracy as compared to the RF
and SVR models. Although the computational time of each
model was small for the dataset employed here, the MARS
model required the least. The order of the variable impor-
tance of the factors of each model was similar. The precur-
sors’ emissions were the most significant factors for indicat-
ing the importance of the emissions impact on peak ozone
levels. Maximum temperature presented relatively high im-
portance among all the meteorological variables.
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