the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of the numerical solution approach of a plant hydrodynamic model (v0.1) on vegetation dynamics
L. Ruby Leung
Ryan Knox
Charlie Koven
Ben Bond-Lamberty
Related authors
Climate models are crucial for predicting climate change in detail. This paper proposes a balanced approach to improving their accuracy by combining traditional process-based methods with modern artificial intelligence (AI) techniques while maximizing the resolution to allow for ensemble simulations. The authors propose using AI to learn from both observational and simulated data while incorporating existing physical knowledge to reduce data demands and improve climate prediction reliability.
soil respiration) is a key ecosystem function, especially in systems with permafrost. We find that soil respiration shows a non-linear threshold at permafrost depths > 140 cm and that the number of large trees governs soil respiration. This suggests that remote sensing could be used to estimate spatial variation in soil respiration and (with knowledge of key thresholds) empirically constrain models that predict ecosystem responses to permafrost thaw.
betterin particular circumstances. We also decompose precipitation into a CO2 portion and a non-CO2 portion. The methodologies discussed in this paper can help provide precipitation fields for other models for a wide variety of scenarios of future climate change.
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
Related subject area
Accurate flood risk assessments are crucial for storm protection. To achieve efficiency, computational costs must be minimized. This paper introduces a novel subgrid approach for Linear Inertial Equations (LIE) with bed level and friction variations, implemented in the SFINCS model. Pre-processed lookup tables enhance simulation precision with lower costs. Validations show significant accuracy improvement, even at coarser resolutions.
Ship weather routing has the potential to reduce CO2 emissions, but it currently lacks open and verifiable research. The Python-refactored VISIR-2 model considers currents, waves, and wind to optimise routes. The model was validated, and its computational performance is quasi-linear. For a ferry sailing in the Mediterranean Sea, VISIR-2 yields the largest percentage emission savings for upwind navigation. Given the vessel performance curve, the model is generalisable across various vessel types.
Forecasting tropical cyclones and their flooding impact is challenging. Our research introduces the Tropical Cyclone Forecasting Framework (TC-FF), enhancing cyclone predictions despite uncertainties. TC-FF generates global wind and flood scenarios, valuable even in data-limited regions. Applied to cases like Cyclone Idai, it showcases potential in bettering disaster preparation, marking progress in handling cyclone threats.