Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5651-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-5651-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
LAND-SUITE V1.0: a suite of tools for statistically based landslide susceptibility zonation
Istituto di Ricerca per la Protezione Idrogeologica, Consiglio
Nazionale delle Ricerche (CNR IRPI), Perugia, 06128, Italy
Txomin Bornaetxea
Departamento de Geologia, Universidad del País Vasco/Euskal
Herriko Unibertsitatea (UPV/EHU), Leioa, 48940, Spain
Paola Reichenbach
Istituto di Ricerca per la Protezione Idrogeologica, Consiglio
Nazionale delle Ricerche (CNR IRPI), Perugia, 06128, Italy
Related authors
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci., 25, 1459–1479, https://doi.org/10.5194/nhess-25-1459-2025, https://doi.org/10.5194/nhess-25-1459-2025, 2025
Short summary
Short summary
This study proposes a novel systematic workflow that integrates source area identification, deterministic runout modelling, the classification of runout outputs to derive susceptibility zonation, and robust procedures for validation and comparison. The proposed approach enables the integration and comparison of different modelling, introducing a robust and consistent workflow/methodology that allows us to derive and verify rockfall susceptibility zonation, considering different steps.
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025, https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary
Short summary
The paper focuses on classifying continuous landslide conditioning factors for susceptibility modelling, which resulted in 54 landslide susceptibility models that tested 11 classification criteria in combination with 5 statistical methods. The novelty of the research is that using stretched landslide conditioning factor values results in models with higher accuracy and that certain statistical methods are more sensitive to the landslide conditioning factor classification criteria than others.
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023, https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
Luca Schilirò, Mauro Rossi, Federica Polpetta, Federica Fiorucci, Carolina Fortunato, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 23, 1789–1804, https://doi.org/10.5194/nhess-23-1789-2023, https://doi.org/10.5194/nhess-23-1789-2023, 2023
Short summary
Short summary
We present a database of the main scientific articles published on earthquake-triggered landslides in the last 4 decades. To enhance data viewing, the articles were catalogued into a web-based GIS, which was specifically designed to show different types of information, such as bibliometric information, the relevant topic and sub-topic category (or categories), and earthquake(s) addressed. Such information can be useful to obtain a general overview of the topic, especially for a broad readership.
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci., 25, 1459–1479, https://doi.org/10.5194/nhess-25-1459-2025, https://doi.org/10.5194/nhess-25-1459-2025, 2025
Short summary
Short summary
This study proposes a novel systematic workflow that integrates source area identification, deterministic runout modelling, the classification of runout outputs to derive susceptibility zonation, and robust procedures for validation and comparison. The proposed approach enables the integration and comparison of different modelling, introducing a robust and consistent workflow/methodology that allows us to derive and verify rockfall susceptibility zonation, considering different steps.
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025, https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary
Short summary
The paper focuses on classifying continuous landslide conditioning factors for susceptibility modelling, which resulted in 54 landslide susceptibility models that tested 11 classification criteria in combination with 5 statistical methods. The novelty of the research is that using stretched landslide conditioning factor values results in models with higher accuracy and that certain statistical methods are more sensitive to the landslide conditioning factor classification criteria than others.
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023, https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
Luca Schilirò, Mauro Rossi, Federica Polpetta, Federica Fiorucci, Carolina Fortunato, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 23, 1789–1804, https://doi.org/10.5194/nhess-23-1789-2023, https://doi.org/10.5194/nhess-23-1789-2023, 2023
Short summary
Short summary
We present a database of the main scientific articles published on earthquake-triggered landslides in the last 4 decades. To enhance data viewing, the articles were catalogued into a web-based GIS, which was specifically designed to show different types of information, such as bibliometric information, the relevant topic and sub-topic category (or categories), and earthquake(s) addressed. Such information can be useful to obtain a general overview of the topic, especially for a broad readership.
Txomin Bornaetxea, Ivan Marchesini, Sumit Kumar, Rabisankar Karmakar, and Alessandro Mondini
Nat. Hazards Earth Syst. Sci., 22, 2929–2941, https://doi.org/10.5194/nhess-22-2929-2022, https://doi.org/10.5194/nhess-22-2929-2022, 2022
Short summary
Short summary
One cannot know if there is a landslide or not in an area that one has not observed. This is an obvious statement, but when landslide inventories are obtained by field observation, this fact is seldom taken into account. Since fieldwork campaigns are often done following the roads, we present a methodology to estimate the visibility of the terrain from the roads, and we demonstrate that fieldwork-based inventories are underestimating landslide density in less visible areas.
Cited articles
Aleotti, P. and Chowdhury, R.: Landslide hazard assessment: summary review
and new perspectives, B. Eng. Geol. Environ.,
58, 21–44, 1999.
Amorim, S. F.: Estudio comparativo de métodos para la evaluación de
la susceptibilidad del terreno a la formación de deslizamientos
superficiales: Aplicación al Pirineo Oriental, PhD, Universidad
Politécnica de Catalunya, Barcelona, http://futur.upc.edu/10953986 (last access: 6 July 2022),
2012.
Baum, R. L., Savage, W. Z., and Godt, J. W.: TRIGRS: a Fortran program for
transient rainfall infiltration and grid-based regional slope-stability
analysis, version 2.0, Reston, VA, USA: US Geological
Survey, 2008–1159, 2008.
Belsley, D. A.: A guide to using the collinearity diagnostics, Comput. Sci. Eco. Manage., 4, 33–50, 1991.
Belsley, D. A., Kuh, E., and Welsch, R. E. (Eds.): Regression Diagnostics,
John Wiley and Sons, New York, https://doi.org/10.1002/0471725153, 1980.
Bonham-Carter, G. F.: Geographic information systems for
geoscientists-modeling with GIS, Comput. Meth. Geosci., 13,
398 pp., 1994.
Bornaetxea, T., Rossi, M., Marchesini, I., and Alvioli, M.: Effective surveyed area and its role in statistical landslide susceptibility assessments, Nat. Hazards Earth Syst. Sci., 18, 2455–2469, https://doi.org/10.5194/nhess-18-2455-2018, 2018.
Bragagnolo, L., da Silva, R. V., and Grzybowski, J. M. V.: Landslide
susceptibility mapping with r, landslide: A free open-source GIS-integrated
tool based on Artificial Neural Networks, Environ. Modell. Softw., 123, 104565, https://doi.org/10.1016/j.envsoft.2019.104565, 2020.
Brenning, A.: Statistical geocomputing combining R and SAGA: The example of
landslide susceptibility analysis with generalized additive models, in:
SAGA–Seconds Out, Hamburger Beiträge Zur Physischen Geographie und
Landschaftsökologie, Vol. 19, edited by: Böhner, J., Blaschke, T.,
Montanarella, L., 23–32, 2008.
Chacón, J., Irigaray, C., Fernandez, T., and El Hamdouni, R.:
Engineering geology maps: landslides and geographical information systems,
Bull. Eng. Geol. Environ., 65, 341–411,
https://doi.org/10.1007/s10064-006-0064-z, 2006.
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., and Savage,
W. Z.: Guidelines for landslide susceptibility, hazard and risk zoning for
land-use planning, Eng. Geol., 102, 99–111, 2008.
Dietrich, W. E. and Montgomery, D. R.: SHALSTAB: a digital terrain model
for mapping shallow landslide potential, University of California, http://calm.geo.berkeley.edu/geomorph/shalstab/index.htm (last access: 7 July 2022), 1998.
González-Hidalgo, J. C., Brunetti, M., and de Luis, M.: A new tool for
monthly precipitation analysis in Spain: MO-PREDAS database (monthly
precipitation trends December 1945–November 2005), Int. J. Climatol., 31,
715–731, https://doi.org/10.1002/joc.2115, 2011.
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., and Ardizzone, F.:
Probabilistic landslide hazard assessment at the basin scale, Geomorphology,
72, 272–299, https://doi.org/10.1016/j.geomorph.2005.06.002, 2005.
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., and Galli, M.:
Estimating the quality of landslide susceptibility models, Geomorphology,
81, 166–184, https://doi.org/10.1016/j.geomorph.2006.04.007, 2006.
Huabin, W., Gangjun, L., Weiya, X., and Gonghui, W.: GIS-based landslide
hazard assessment: an overview. Prog. Phys. Geogr., 29,
548–567, 2005.
Kanungo, D. P., Arora, M. K., Sarkar, S. and Gupta, R. P.: Landslide Susceptibility Zonation (LSZ) mapping – A Review, J. South Asia Disaster Studies, 2, 81–105, 2009.
Lee, S. and Min, K.: Statistical analysis of landslide susceptibility at
Yongin, Korea, Environ. Geol., 40, 1095–1113,
https://doi.org/10.1007/s002540100310, 2001.
Lee, S., Chwae, U., and Min, K.: Landslide susceptibility mapping by
correlation between topography and geological structure: the Janghung area,
Korea, Geomorphology, 46, 149–162,
https://doi.org/10.1016/S0169-555X(02)00057-0 2002.
Mergili, M., Marchesini, I., Alvioli, M., Metz, M., Schneider-Muntau, B., Rossi, M., and Guzzetti, F.: A strategy for GIS-based 3-D slope stability modelling over large areas, Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, 2014.
Mücher, C. A., Klijn, J. A., Wascher, D. M., and Scham-inée, J. H.:
A new European Landscape Classification (LAN-MAP): A transparent, flexible
and user-oriented method-ology to distinguish landscapes, Ecol. Indic., 10,
87–103, https://doi.org/10.1016/j.ecolind.2009.03.018, 2010.
Osna, T., Sezer, E. A., and Akgun, A.: GeoFIS: an integrated tool for the
assessment of landslide susceptibility, Comput. Geosci., 66,
20–30, https://doi.org/10.1016/j.cageo.2013.12.016, 2014.
Pack, R. T., Tarboton, D. G., and Goodwin, C. N.: The SINMAP approach to
terrain stability mapping, https://digitalcommons.usu.edu/cee_facpub/2583/ (last access: 6 July 2022), 1998.
Pardeshi, S. D., Autade, S. E., and Pardeshi, S. S.: Landslide hazard
assessment: recent trends and techniques, Springer Plus, 2, 1–11, 2013.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/, last access: 20 September 2021.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A
review of statistically based landslide susceptibility models, Earth-Sci.
Rev., 180, 60–91, https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.
Rossi, G., Catani, F., Leoni, L., Segoni, S., and Tofani, V.: HIRESSS: a physically based slope stability simulator for HPC applications, Nat. Hazards Earth Syst. Sci., 13, 151–166, https://doi.org/10.5194/nhess-13-151-2013, 2013.
Rossi, M. and Bornaetxea, T.: LAND-SUITE V1.0: a suite of tools for statistically-based landslide susceptibility zonation, Zenodo [code], https://doi.org/10.5281/ZENODO.5650810, 2021.
Rossi, M. and Reichenbach, P.: LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0, Geosci. Model Dev., 9, 3533–3543, https://doi.org/10.5194/gmd-9-3533-2016, 2016.
Rossi, M., Guzzetti F., Reichenbach P., Mondini A. C., and Peruccacci S.:
Optimal landslide susceptibility zonation based on multiple forecasts,
Geomorphology, 114, 129–142,
https://doi.org/10.1016/j.geomorph.2009.06.020, 2010.
Rossi, M., Sarro, R., Reichenbach, P., and Mateos, R. M.: Probabilistic
identification of rockfall source areas at regional scale in El Hierro
(Canary Islands, Spain), Geomorphology, 381, 107661,
https://doi.org/10.1016/j.geomorph.2021.107661, 2021.
Santacana Quintas, N.: Análisis de la susceptibilidad del terreno a la
formación de deslizamientos superficiales y grandes deslizamientos
mediante el uso de sistemas de información geográfica,
Aplicación a la cuenca alta del río Llobregat, PhD, Universitat
Politècnica de Catalunya, Barcelona,
https://www.tdx.cat/handle/10803/6213, 2001.
Sahin, E. K., Colkesen, I., Acmali, S. S., Akgun, A., and Aydinoglu, A. C.:
Developing comprehensive geocomputation tools for landslide susceptibility
mapping: LSM tool pack, Comput. Geosci., 144, 104592,
https://doi.org/10.1016/j.cageo.2020.104592, 2020.
Simoni, S., Zanotti, F., Bertoldi, G., and Rigon, R.: Modelling the
probability of occurrence of shallow landslides and channelized debris flows
using GEOtop-FS, Hydrol. Process., 22,
532–545, 2008.
van Westen, C. J.: Statistical landslide hazard analysis, ILWIS 2.1 for
Windows application guide, ITC publication, 2, 73–84, 1997.
van Westen, C. J., Castellanos, E., and Kuriakose, S. L.: Spatial data for
landslide susceptibility, hazard, and vulnerability assessment: An overview,
Eng. Geol.,, 102, 112–131, 2008.
Short summary
LAND-SUITE is a software package designed to support landslide susceptibility zonation. The software integrates, extends, and completes LAND-SE (Rossi et al., 2010; Rossi and Reichenbach, 2016). The software is implemented in R, a free software environment for statistical computing and graphics, and gives expert users the possibility to perform easier, more flexible, and more informed statistically based landslide susceptibility applications and zonations.
LAND-SUITE is a software package designed to support landslide susceptibility zonation. The...