Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5651-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-5651-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
LAND-SUITE V1.0: a suite of tools for statistically based landslide susceptibility zonation
Istituto di Ricerca per la Protezione Idrogeologica, Consiglio
Nazionale delle Ricerche (CNR IRPI), Perugia, 06128, Italy
Txomin Bornaetxea
Departamento de Geologia, Universidad del País Vasco/Euskal
Herriko Unibertsitatea (UPV/EHU), Leioa, 48940, Spain
Paola Reichenbach
Istituto di Ricerca per la Protezione Idrogeologica, Consiglio
Nazionale delle Ricerche (CNR IRPI), Perugia, 06128, Italy
Related authors
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-85, https://doi.org/10.5194/nhess-2024-85, 2024
Preprint under review for NHESS
Short summary
Short summary
This study proposes a novel workflow to precisely model rockfalls. It compares three methods for defining source areas to enhance model accuracy. Identified areas are inputted into a runout model to identify vulnerable zones. A new approach generates probabilistic susceptibility maps using ECDFs. Validation strategies employing various inventory types are included. Comparing six susceptibility maps highlights the impact of source area definition on model precision.
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-29, https://doi.org/10.5194/nhess-2024-29, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
The paper focuses on classifying continuous landslide conditioning factors for susceptibility modelling, which resulted in 54 landslide susceptibility models that tested 11 classification criteria in combination with five statistical methods. The novelty of the research is that using stretched landslide conditioning factor values results in models with higher accuracy and that certain statistical methods are more sensitive to the landslide conditioning factor classification criteria than others.
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023, https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
Luca Schilirò, Mauro Rossi, Federica Polpetta, Federica Fiorucci, Carolina Fortunato, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 23, 1789–1804, https://doi.org/10.5194/nhess-23-1789-2023, https://doi.org/10.5194/nhess-23-1789-2023, 2023
Short summary
Short summary
We present a database of the main scientific articles published on earthquake-triggered landslides in the last 4 decades. To enhance data viewing, the articles were catalogued into a web-based GIS, which was specifically designed to show different types of information, such as bibliometric information, the relevant topic and sub-topic category (or categories), and earthquake(s) addressed. Such information can be useful to obtain a general overview of the topic, especially for a broad readership.
Giuseppe Esposito, Ivan Marchesini, Alessandro Cesare Mondini, Paola Reichenbach, Mauro Rossi, and Simone Sterlacchini
Nat. Hazards Earth Syst. Sci., 20, 2379–2395, https://doi.org/10.5194/nhess-20-2379-2020, https://doi.org/10.5194/nhess-20-2379-2020, 2020
Short summary
Short summary
In this article, we present an automatic processing chain aimed to support the detection of landslides that induce sharp land cover changes. The chain exploits free software and spaceborne SAR data, allowing the systematic monitoring of wide mountainous regions exposed to mass movements. In the test site, we verified a general accordance between the spatial distribution of seismically induced landslides and the detected land cover changes, demonstrating its potential use in emergency management.
Txomin Bornaetxea, Mauro Rossi, Ivan Marchesini, and Massimiliano Alvioli
Nat. Hazards Earth Syst. Sci., 18, 2455–2469, https://doi.org/10.5194/nhess-18-2455-2018, https://doi.org/10.5194/nhess-18-2455-2018, 2018
Short summary
Short summary
While producing a landslide susceptibility map using a fieldwork-based landslide inventory and a logistic regression model, two crucial questions came to our minds. (i) Shall we consider unsurveyed regions of the study area, for which landslide absence is typically assumed? (ii) Which reference mapping unit should be used in our model? So we compared four maps and found that rejecting unsurveyed regions together with slope units as reference mapping unit should be the best option.
Federica Fiorucci, Daniele Giordan, Michele Santangelo, Furio Dutto, Mauro Rossi, and Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 18, 405–417, https://doi.org/10.5194/nhess-18-405-2018, https://doi.org/10.5194/nhess-18-405-2018, 2018
Short summary
Short summary
This paper describes the criteria for the optimal selection of remote sensing images to map event landslides, discussing the ability of monoscopic and stereoscopic VHR satellite images and ultra-high-resolution UAV images to resolve the landslide photographical and morphological signatures. The findings can be useful to decide on the optimal imagery and technique to be used when planning the production of a landslide inventory map.
Liesbet Jacobs, Olivier Dewitte, Jean Poesen, John Sekajugo, Adriano Nobile, Mauro Rossi, Wim Thiery, and Matthieu Kervyn
Nat. Hazards Earth Syst. Sci., 18, 105–124, https://doi.org/10.5194/nhess-18-105-2018, https://doi.org/10.5194/nhess-18-105-2018, 2018
Short summary
Short summary
While country-specific, continental and global susceptibility maps are increasingly available, local and regional susceptibility studies remain rare in remote and data-poor settings. Here, we provide a landslide susceptibility assessment for the inhabited region of the Rwenzori Mountains. We find that higher spatial resolutions do not necessarily lead to better models and that models built for local case studies perform better than aggregated susceptibility assessments on the regional scale.
Maria Elena Martinotti, Luca Pisano, Ivan Marchesini, Mauro Rossi, Silvia Peruccacci, Maria Teresa Brunetti, Massimo Melillo, Giuseppe Amoruso, Pierluigi Loiacono, Carmela Vennari, Giovanna Vessia, Maria Trabace, Mario Parise, and Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 17, 467–480, https://doi.org/10.5194/nhess-17-467-2017, https://doi.org/10.5194/nhess-17-467-2017, 2017
Short summary
Short summary
We studied a period of torrential rain between 1 and 6 September 2014 in the Gargano Promontory, Puglia, southern Italy, which caused a variety of geohydrological hazards, including landslides, flash floods, inundations and sinkholes. We used the rainfall and the landslide information available to us to design and test the new ensemble – non-exceedance probability (E-NEP) algorithm for the quantitative evaluation of the probability of the occurrence of rainfall-induced landslides.
Massimiliano Alvioli, Ivan Marchesini, Paola Reichenbach, Mauro Rossi, Francesca Ardizzone, Federica Fiorucci, and Fausto Guzzetti
Geosci. Model Dev., 9, 3975–3991, https://doi.org/10.5194/gmd-9-3975-2016, https://doi.org/10.5194/gmd-9-3975-2016, 2016
Short summary
Short summary
Slope units are morphological mapping units bounded by drainage and divide lines that maximize within-unit homogeneity and between-unit heterogeneity. We use r.slopeunits, a software for the automatic delination of slope units. We outline an objective procedure to optimize the software input parameters for landslide susceptibility (LS) zonation. Optimization is achieved by maximizing an objective function that simultaneously evaluates terrain aspect segmentation quality and LS model performance.
Mauro Rossi and Paola Reichenbach
Geosci. Model Dev., 9, 3533–3543, https://doi.org/10.5194/gmd-9-3533-2016, https://doi.org/10.5194/gmd-9-3533-2016, 2016
Short summary
Short summary
Landslide susceptibility maps show places where landslides may occur in the future. These maps are prepared using different approaches, information on past landslides distribution and a variety of geo-environmental data. The paper describes LAND-SE (LANDslide Susceptibility Evaluation), an open-source software coded in R for statistically based susceptibility zonation that provides estimates of model performances and uncertainty. A user guide and example data are distributed with the software.
M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti
Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, https://doi.org/10.5194/gmd-7-2969-2014, 2014
Short summary
Short summary
The article deals with strategies to (i) reduce computation time and to (ii) appropriately account for uncertain input parameters when applying an open source GIS sliding surface model to estimate landslide susceptibility for a 90km² study area in central Italy. For (i), the area is split into a large number of tiles, enabling the exploitation of multi-processor computing environments. For (ii), the model is run with various parameter combinations to compute the slope failure probability.
G. Vessia, M. Parise, M. T. Brunetti, S. Peruccacci, M. Rossi, C. Vennari, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 2399–2408, https://doi.org/10.5194/nhess-14-2399-2014, https://doi.org/10.5194/nhess-14-2399-2014, 2014
I. Marchesini, F. Ardizzone, M. Alvioli, M. Rossi, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 2215–2231, https://doi.org/10.5194/nhess-14-2215-2014, https://doi.org/10.5194/nhess-14-2215-2014, 2014
S. Raia, M. Alvioli, M. Rossi, R. L. Baum, J. W. Godt, and F. Guzzetti
Geosci. Model Dev., 7, 495–514, https://doi.org/10.5194/gmd-7-495-2014, https://doi.org/10.5194/gmd-7-495-2014, 2014
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-85, https://doi.org/10.5194/nhess-2024-85, 2024
Preprint under review for NHESS
Short summary
Short summary
This study proposes a novel workflow to precisely model rockfalls. It compares three methods for defining source areas to enhance model accuracy. Identified areas are inputted into a runout model to identify vulnerable zones. A new approach generates probabilistic susceptibility maps using ECDFs. Validation strategies employing various inventory types are included. Comparing six susceptibility maps highlights the impact of source area definition on model precision.
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-29, https://doi.org/10.5194/nhess-2024-29, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
The paper focuses on classifying continuous landslide conditioning factors for susceptibility modelling, which resulted in 54 landslide susceptibility models that tested 11 classification criteria in combination with five statistical methods. The novelty of the research is that using stretched landslide conditioning factor values results in models with higher accuracy and that certain statistical methods are more sensitive to the landslide conditioning factor classification criteria than others.
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023, https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
Luca Schilirò, Mauro Rossi, Federica Polpetta, Federica Fiorucci, Carolina Fortunato, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 23, 1789–1804, https://doi.org/10.5194/nhess-23-1789-2023, https://doi.org/10.5194/nhess-23-1789-2023, 2023
Short summary
Short summary
We present a database of the main scientific articles published on earthquake-triggered landslides in the last 4 decades. To enhance data viewing, the articles were catalogued into a web-based GIS, which was specifically designed to show different types of information, such as bibliometric information, the relevant topic and sub-topic category (or categories), and earthquake(s) addressed. Such information can be useful to obtain a general overview of the topic, especially for a broad readership.
Txomin Bornaetxea, Ivan Marchesini, Sumit Kumar, Rabisankar Karmakar, and Alessandro Mondini
Nat. Hazards Earth Syst. Sci., 22, 2929–2941, https://doi.org/10.5194/nhess-22-2929-2022, https://doi.org/10.5194/nhess-22-2929-2022, 2022
Short summary
Short summary
One cannot know if there is a landslide or not in an area that one has not observed. This is an obvious statement, but when landslide inventories are obtained by field observation, this fact is seldom taken into account. Since fieldwork campaigns are often done following the roads, we present a methodology to estimate the visibility of the terrain from the roads, and we demonstrate that fieldwork-based inventories are underestimating landslide density in less visible areas.
Giuseppe Esposito, Ivan Marchesini, Alessandro Cesare Mondini, Paola Reichenbach, Mauro Rossi, and Simone Sterlacchini
Nat. Hazards Earth Syst. Sci., 20, 2379–2395, https://doi.org/10.5194/nhess-20-2379-2020, https://doi.org/10.5194/nhess-20-2379-2020, 2020
Short summary
Short summary
In this article, we present an automatic processing chain aimed to support the detection of landslides that induce sharp land cover changes. The chain exploits free software and spaceborne SAR data, allowing the systematic monitoring of wide mountainous regions exposed to mass movements. In the test site, we verified a general accordance between the spatial distribution of seismically induced landslides and the detected land cover changes, demonstrating its potential use in emergency management.
Michele Santangelo, Massimiliano Alvioli, Marco Baldo, Mauro Cardinali, Daniele Giordan, Fausto Guzzetti, Ivan Marchesini, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 19, 325–335, https://doi.org/10.5194/nhess-19-325-2019, https://doi.org/10.5194/nhess-19-325-2019, 2019
Short summary
Short summary
The paper discusses the use of rockfall modelling software and photogrammetry applied to images acquired by RPAS to provide support to civil protection agencies during emergency response. The paper focuses on a procedure that was applied to define the residual rockfall risk for a road that was hit by an earthquake-triggered rockfall that occurred during the seismic sequence that hit central Italy on 24 August 2016. Road reopening conditions were decided based on the results of this study.
Txomin Bornaetxea, Mauro Rossi, Ivan Marchesini, and Massimiliano Alvioli
Nat. Hazards Earth Syst. Sci., 18, 2455–2469, https://doi.org/10.5194/nhess-18-2455-2018, https://doi.org/10.5194/nhess-18-2455-2018, 2018
Short summary
Short summary
While producing a landslide susceptibility map using a fieldwork-based landslide inventory and a logistic regression model, two crucial questions came to our minds. (i) Shall we consider unsurveyed regions of the study area, for which landslide absence is typically assumed? (ii) Which reference mapping unit should be used in our model? So we compared four maps and found that rejecting unsurveyed regions together with slope units as reference mapping unit should be the best option.
O. Monserrat, A. Barra, G. Herrera, S. Bianchini, C. Lopez, R. Onori, P. Reichenbach, R. Sarro, R. M. Mateos, L. Solari, S. Ligüérzana, and I. P. Carralero
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W4, 351–355, https://doi.org/10.5194/isprs-archives-XLII-3-W4-351-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W4-351-2018, 2018
Federica Fiorucci, Daniele Giordan, Michele Santangelo, Furio Dutto, Mauro Rossi, and Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 18, 405–417, https://doi.org/10.5194/nhess-18-405-2018, https://doi.org/10.5194/nhess-18-405-2018, 2018
Short summary
Short summary
This paper describes the criteria for the optimal selection of remote sensing images to map event landslides, discussing the ability of monoscopic and stereoscopic VHR satellite images and ultra-high-resolution UAV images to resolve the landslide photographical and morphological signatures. The findings can be useful to decide on the optimal imagery and technique to be used when planning the production of a landslide inventory map.
Liesbet Jacobs, Olivier Dewitte, Jean Poesen, John Sekajugo, Adriano Nobile, Mauro Rossi, Wim Thiery, and Matthieu Kervyn
Nat. Hazards Earth Syst. Sci., 18, 105–124, https://doi.org/10.5194/nhess-18-105-2018, https://doi.org/10.5194/nhess-18-105-2018, 2018
Short summary
Short summary
While country-specific, continental and global susceptibility maps are increasingly available, local and regional susceptibility studies remain rare in remote and data-poor settings. Here, we provide a landslide susceptibility assessment for the inhabited region of the Rwenzori Mountains. We find that higher spatial resolutions do not necessarily lead to better models and that models built for local case studies perform better than aggregated susceptibility assessments on the regional scale.
Maria Elena Martinotti, Luca Pisano, Ivan Marchesini, Mauro Rossi, Silvia Peruccacci, Maria Teresa Brunetti, Massimo Melillo, Giuseppe Amoruso, Pierluigi Loiacono, Carmela Vennari, Giovanna Vessia, Maria Trabace, Mario Parise, and Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 17, 467–480, https://doi.org/10.5194/nhess-17-467-2017, https://doi.org/10.5194/nhess-17-467-2017, 2017
Short summary
Short summary
We studied a period of torrential rain between 1 and 6 September 2014 in the Gargano Promontory, Puglia, southern Italy, which caused a variety of geohydrological hazards, including landslides, flash floods, inundations and sinkholes. We used the rainfall and the landslide information available to us to design and test the new ensemble – non-exceedance probability (E-NEP) algorithm for the quantitative evaluation of the probability of the occurrence of rainfall-induced landslides.
Massimiliano Alvioli, Ivan Marchesini, Paola Reichenbach, Mauro Rossi, Francesca Ardizzone, Federica Fiorucci, and Fausto Guzzetti
Geosci. Model Dev., 9, 3975–3991, https://doi.org/10.5194/gmd-9-3975-2016, https://doi.org/10.5194/gmd-9-3975-2016, 2016
Short summary
Short summary
Slope units are morphological mapping units bounded by drainage and divide lines that maximize within-unit homogeneity and between-unit heterogeneity. We use r.slopeunits, a software for the automatic delination of slope units. We outline an objective procedure to optimize the software input parameters for landslide susceptibility (LS) zonation. Optimization is achieved by maximizing an objective function that simultaneously evaluates terrain aspect segmentation quality and LS model performance.
Mauro Rossi and Paola Reichenbach
Geosci. Model Dev., 9, 3533–3543, https://doi.org/10.5194/gmd-9-3533-2016, https://doi.org/10.5194/gmd-9-3533-2016, 2016
Short summary
Short summary
Landslide susceptibility maps show places where landslides may occur in the future. These maps are prepared using different approaches, information on past landslides distribution and a variety of geo-environmental data. The paper describes LAND-SE (LANDslide Susceptibility Evaluation), an open-source software coded in R for statistically based susceptibility zonation that provides estimates of model performances and uncertainty. A user guide and example data are distributed with the software.
R. Schlögel, J.-P. Malet, P. Reichenbach, A. Remaître, and C. Doubre
Nat. Hazards Earth Syst. Sci., 15, 2369–2389, https://doi.org/10.5194/nhess-15-2369-2015, https://doi.org/10.5194/nhess-15-2369-2015, 2015
Short summary
Short summary
The paper proposes an approach to prepare a multi-date landslide inventory for the Ubaye valley (French Alps), a complex mountainous area affected by several landslide types with different degrees of activity. The inventory covering the period 1956-2010 have been analysed in order to quantify the uncertainties associated to the mapping, to measure the evolution of morphological indicators and to estimate temporal occurrence. Evolution of landslide activity is compared to other inventory sources.
M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti
Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, https://doi.org/10.5194/gmd-7-2969-2014, 2014
Short summary
Short summary
The article deals with strategies to (i) reduce computation time and to (ii) appropriately account for uncertain input parameters when applying an open source GIS sliding surface model to estimate landslide susceptibility for a 90km² study area in central Italy. For (i), the area is split into a large number of tiles, enabling the exploitation of multi-processor computing environments. For (ii), the model is run with various parameter combinations to compute the slope failure probability.
G. Vessia, M. Parise, M. T. Brunetti, S. Peruccacci, M. Rossi, C. Vennari, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 2399–2408, https://doi.org/10.5194/nhess-14-2399-2014, https://doi.org/10.5194/nhess-14-2399-2014, 2014
I. Marchesini, F. Ardizzone, M. Alvioli, M. Rossi, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 2215–2231, https://doi.org/10.5194/nhess-14-2215-2014, https://doi.org/10.5194/nhess-14-2215-2014, 2014
S. Raia, M. Alvioli, M. Rossi, R. L. Baum, J. W. Godt, and F. Guzzetti
Geosci. Model Dev., 7, 495–514, https://doi.org/10.5194/gmd-7-495-2014, https://doi.org/10.5194/gmd-7-495-2014, 2014
Related subject area
Earth and space science informatics
GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
Remote sensing-based high-resolution mapping of the forest canopy height: some models are useful, but might they be even more if combined?
Consistency-Checking 3D Geological Models
Accelerating Lagrangian transport simulations on graphics processing units: performance optimizations of Massive-Parallel Trajectory Calculations (MPTRAC) v2.6
The effect of lossy compression of numerical weather prediction data on data analysis: a case study using enstools-compression 2023.11
Focal-TSMP: deep learning for vegetation health prediction and agricultural drought assessment from a regional climate simulation
Tomofast-x 2.0: an open-source parallel code for inversion of potential field data with topography using wavelet compression
Functional analysis of variance (ANOVA) for carbon flux estimates from remote sensing data
The 4D reconstruction of dynamic geological evolution processes for renowned geological features
Moving beyond post-hoc XAI: Lessons learned from dynamical climate modeling
Machine learning for numerical weather and climate modelling: a review
Overcoming barriers to enable convergence research by integrating ecological and climate sciences: the NCAR–NEON system Version 1
Ensemble of optimised machine learning algorithms for predicting surface soil moisture content at a global scale
Hazard assessment modeling and software development of earthquake-triggered landslides in the Sichuan–Yunnan area, China
A generalized spatial autoregressive neural network method for three-dimensional spatial interpolation
The Common Community Physics Package (CCPP) Framework v6
Causal deep learning models for studying the Earth system
A methodological framework for improving the performance of data-driven models: a case study for daily runoff prediction in the Maumee domain, USA
SHAFTS (v2022.3): a deep-learning-based Python package for simultaneous extraction of building height and footprint from sentinel imagery
Bayesian atmospheric correction over land: Sentinel-2/MSI and Landsat 8/OLI
Twenty-five years of the IPCC Data Distribution Centre at the DKRZ and the Reference Data Archive for CMIP data
Effectiveness and computational efficiency of absorbing boundary conditions for full-waveform inversion
Towards physics-inspired data-driven weather forecasting: integrating data assimilation with a deep spatial-transformer-based U-NET in a case study with ERA5
Fast infrared radiative transfer calculations using graphics processing units: JURASSIC-GPU v2.0
CSDMS: a community platform for numerical modeling of Earth surface processes
A new methodological framework for geophysical sensor combinations associated with machine learning algorithms to understand soil attributes
Model calibration using ESEm v1.1.0 – an open, scalable Earth system emulator
Turbidity maximum zone index: a novel model for remote extraction of the turbidity maximum zone in different estuaries
dh2loop 1.0: an open-source Python library for automated processing and classification of geological logs
Copula-based synthetic data augmentation for machine-learning emulators
Automated geological map deconstruction for 3D model construction using map2loop 1.0 and map2model 1.0
A spatially explicit approach to simulate urban heat mitigation with InVEST (v3.8.0)
S-SOM v1.0: a structural self-organizing map algorithm for weather typing
Using Shapley additive explanations to interpret extreme gradient boosting predictions of grassland degradation in Xilingol, China
Current status on the need for improved accessibility to climate models code
ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
A spatiotemporal weighted regression model (STWR v1.0) for analyzing local nonstationarity in space and time
A new end-to-end workflow for the Community Earth System Model (version 2.0) for the Coupled Model Intercomparison Project Phase 6 (CMIP6)
HyLands 1.0: a hybrid landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution
Comparative analysis of atmospheric radiative transfer models using the Atmospheric Look-up table Generator (ALG) toolbox (version 2.0)
Fast domain-aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model
VISIR-1.b: ocean surface gravity waves and currents for energy-efficient navigation
Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets
Global hydro-climatic biomes identified via multitask learning
A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications
An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1.0) and its application to mineral prospectivity mapping
High-performance software framework for the calculation of satellite-to-satellite data matchups (MMS version 1.2)
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024, https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary
Short summary
In geography, understanding how relationships between different factors change over time and space is crucial. This study implements two neural-network-based spatiotemporal regression models and an open-source Python package named Geographically Neural Network Weighted Regression to capture relationships between factors. This makes it a valuable tool for researchers in fields such as environmental science, urban planning, and public health.
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024, https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
Short summary
Spatial proxies, such as coordinates and distances, are often used as predictors in random forest models for predictive mapping. In a simulation and two case studies, we investigated the conditions under which their use is appropriate. We found that spatial proxies are not always beneficial and should not be used as a default approach without careful consideration. We also provide insights into the reasons behind their suitability, how to detect them, and potential alternatives.
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024, https://doi.org/10.5194/gmd-17-5939-2024, 2024
Short summary
Short summary
With ERA5 hourly data, we show spatiotemporal characteristics of pressure and zenith wet delay (ZWD) and propose an empirical global pressure and ZWD grid model with a broader operating space which can provide accurate pressure, ZWD, zenith hydrostatic delay, and zenith tropospheric delay estimates for any selected time and location over globe. IGPZWD will be of great significance for the tropospheric augmentation in real-time GNSS positioning and atmospheric water vapor remote sensing.
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024, https://doi.org/10.5194/gmd-17-5897-2024, 2024
Short summary
Short summary
Estimation of map accuracy based on cross-validation (CV) in spatial modelling is pervasive but controversial. Here, we build upon our previous work and propose a novel, prediction-oriented k-fold CV strategy for map accuracy estimation in which the distribution of geographical distances between prediction and training points is taken into account when constructing the CV folds. Our method produces more reliable estimates than other CV methods and can be used for large datasets.
Nikola Besic, Nicolas Picard, Cédric Vega, Lionel Hertzog, Jean-Pierre Renaud, Fajwel Fogel, Agnès Pellissier-Tanon, Gabriel Destouet, Milena Planells-Rodriguez, and Philippe Ciais
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-95, https://doi.org/10.5194/gmd-2024-95, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The creation of advanced mapping models for forest attributes, utilizing remote sensing data and incorporating machine or deep learning methods, has become a key area of interest in the domain of forest observation and monitoring. This paper introduces a method where we blend and collectively interpret five models dedicated to estimating forest canopy height. We achieve this through Bayesian model averaging, offering a comprehensive approach to height estimation in forest ecosystems.
Marion N. Parquer, Eric A. de Kemp, Boyan Brodaric, and Michael J. Hillier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1326, https://doi.org/10.5194/egusphere-2024-1326, 2024
Short summary
Short summary
This is a proof-of-concept paper outlining a general approach to how 3D geological models would be checked to be geologically 'reasonable'. We do this with a consistency checking tool that looks at geological feature pairs and their spatial, temporal and internal polarity characteristics. The idea is to assess if geological relationships from a specific 3D geological model matches what is allowed in the real world, from the perspective of geological principals.
Lars Hoffmann, Kaveh Haghighi Mood, Andreas Herten, Markus Hrywniak, Jiri Kraus, Jan Clemens, and Mingzhao Liu
Geosci. Model Dev., 17, 4077–4094, https://doi.org/10.5194/gmd-17-4077-2024, https://doi.org/10.5194/gmd-17-4077-2024, 2024
Short summary
Short summary
Lagrangian particle dispersion models are key for studying atmospheric transport but can be computationally intensive. To speed up simulations, the MPTRAC model was ported to graphics processing units (GPUs). Performance optimization of data structures and memory alignment resulted in runtime improvements of up to 75 % on NVIDIA A100 GPUs for ERA5-based simulations with 100 million particles. These optimizations make the MPTRAC model well suited for future high-performance computing systems.
Oriol Tintó Prims, Robert Redl, Marc Rautenhaus, Tobias Selz, Takumi Matsunobu, Kameswar Rao Modali, and George Craig
EGUsphere, https://doi.org/10.5194/egusphere-2024-753, https://doi.org/10.5194/egusphere-2024-753, 2024
Short summary
Short summary
Advanced compression techniques can drastically reduce the size of meteorological datasets (by 5x to 150x) without compromising the data's scientific value. We developed a user-friendly tool called 'enstools-compression' that makes this compression simple for Earth scientists. This tool works seamlessly with common weather and climate data formats. Our work shows that lossy compression can significantly improve how researchers store and analyze large meteorological datasets.
Mohamad Hakam Shams Eddin and Juergen Gall
Geosci. Model Dev., 17, 2987–3023, https://doi.org/10.5194/gmd-17-2987-2024, https://doi.org/10.5194/gmd-17-2987-2024, 2024
Short summary
Short summary
In this study, we use deep learning and a climate simulation to predict the vegetation health as it would be observed from satellites. We found that the developed model can help to identify regions with a high risk of agricultural drought. The main applications of this study are to estimate vegetation products for periods where no satellite data are available and to forecast the future vegetation response to climate change based on climate scenarios.
Vitaliy Ogarko, Kim Frankcombe, Taige Liu, Jeremie Giraud, Roland Martin, and Mark Jessell
Geosci. Model Dev., 17, 2325–2345, https://doi.org/10.5194/gmd-17-2325-2024, https://doi.org/10.5194/gmd-17-2325-2024, 2024
Short summary
Short summary
We present a major release of the Tomofast-x open-source gravity and magnetic inversion code that is enhancing its performance and applicability for both industrial and academic studies. We focus on real-world mineral exploration scenarios, while offering flexibility for applications at regional scale or for crustal studies. The optimisation work described in this paper is fundamental to allowing more complete descriptions of the controls on magnetisation, including remanence.
Jonathan Hobbs, Matthias Katzfuss, Hai Nguyen, Vineet Yadav, and Junjie Liu
Geosci. Model Dev., 17, 1133–1151, https://doi.org/10.5194/gmd-17-1133-2024, https://doi.org/10.5194/gmd-17-1133-2024, 2024
Short summary
Short summary
The cycling of carbon among the land, oceans, and atmosphere is a closely monitored process in the global climate system. These exchanges between the atmosphere and the surface can be quantified using a combination of atmospheric carbon dioxide observations and computer models. This study presents a statistical method for investigating the similarities and differences in the estimated surface–atmosphere carbon exchange when different computer model assumptions are invoked.
Jiateng Guo, Zhibin Liu, Xulei Wang, Lixin Wu, Shanjun Liu, and Yunqiang Li
Geosci. Model Dev., 17, 847–864, https://doi.org/10.5194/gmd-17-847-2024, https://doi.org/10.5194/gmd-17-847-2024, 2024
Short summary
Short summary
This study proposes a 3D and temporally dynamic (4D) geological modeling method. Several simulation and actual cases show that the 4D spatial and temporal evolution of regional geological formations can be modeled easily using this method with smooth boundaries. The 4D modeling system can dynamically present the regional geological evolution process under the timeline, which will be helpful to the research and teaching on the formation of typical and complex geological features.
Ryan O'Loughlin, Dan Li, and Travis O'Brien
EGUsphere, https://doi.org/10.5194/egusphere-2023-2969, https://doi.org/10.5194/egusphere-2023-2969, 2024
Short summary
Short summary
We draw from traditional climate modeling practices to make recommendations for AI-driven climate science. In particular, we show how component-level understanding–which is obtained when scientists can link model behavior to parts within the overall model–should guide the development and evaluation of AI models. Better understanding can lead to a stronger basis for trust in these models. We highlight several examples to demonstrate.
Catherine O. de Burgh-Day and Tennessee Leeuwenburg
Geosci. Model Dev., 16, 6433–6477, https://doi.org/10.5194/gmd-16-6433-2023, https://doi.org/10.5194/gmd-16-6433-2023, 2023
Short summary
Short summary
Machine learning (ML) is an increasingly popular tool in the field of weather and climate modelling. While ML has been used in this space for a long time, it is only recently that ML approaches have become competitive with more traditional methods. In this review, we have summarized the use of ML in weather and climate modelling over time; provided an overview of key ML concepts, methodologies, and terms; and suggested promising avenues for further research.
Danica L. Lombardozzi, William R. Wieder, Negin Sobhani, Gordon B. Bonan, David Durden, Dawn Lenz, Michael SanClements, Samantha Weintraub-Leff, Edward Ayres, Christopher R. Florian, Kyla Dahlin, Sanjiv Kumar, Abigail L. S. Swann, Claire M. Zarakas, Charles Vardeman, and Valerio Pascucci
Geosci. Model Dev., 16, 5979–6000, https://doi.org/10.5194/gmd-16-5979-2023, https://doi.org/10.5194/gmd-16-5979-2023, 2023
Short summary
Short summary
We present a novel cyberinfrastructure system that uses National Ecological Observatory Network measurements to run Community Terrestrial System Model point simulations in a containerized system. The simple interface and tutorials expand access to data and models used in Earth system research by removing technical barriers and facilitating research, educational opportunities, and community engagement. The NCAR–NEON system enables convergence of climate and ecological sciences.
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Xiaoyi Shao, Siyuan Ma, and Chong Xu
Geosci. Model Dev., 16, 5113–5129, https://doi.org/10.5194/gmd-16-5113-2023, https://doi.org/10.5194/gmd-16-5113-2023, 2023
Short summary
Short summary
Scientific understandings of the distribution of coseismic landslides, followed by emergency and medium- and long-term risk assessment, can reduce landslide risk. The aim of this study is to propose an improved three-stage spatial prediction strategy and develop corresponding hazard assessment software called Mat.LShazard V1.0, which provides a new application tool for coseismic landslide disaster prevention and mitigation in different stages.
Junda Zhan, Sensen Wu, Jin Qi, Jindi Zeng, Mengjiao Qin, Yuanyuan Wang, and Zhenhong Du
Geosci. Model Dev., 16, 2777–2794, https://doi.org/10.5194/gmd-16-2777-2023, https://doi.org/10.5194/gmd-16-2777-2023, 2023
Short summary
Short summary
We develop a generalized spatial autoregressive neural network model used for three-dimensional spatial interpolation. Taking the different changing trend of geographic elements along various directions into consideration, the model defines spatial distance in a generalized way and integrates it into the process of spatial interpolation with the theories of spatial autoregression and neural network. Compared with traditional methods, the model achieves better performance and is more adaptable.
Dominikus Heinzeller, Ligia Bernardet, Grant Firl, Man Zhang, Xia Sun, and Michael Ek
Geosci. Model Dev., 16, 2235–2259, https://doi.org/10.5194/gmd-16-2235-2023, https://doi.org/10.5194/gmd-16-2235-2023, 2023
Short summary
Short summary
The Common Community Physics Package is a collection of physical atmospheric parameterizations for use in Earth system models and a framework that couples the physics to a host model’s dynamical core. A primary goal for this effort is to facilitate research and development of physical parameterizations and physics–dynamics coupling methods while offering capabilities for numerical weather prediction operations, for example in the upcoming implementation of the Global Forecast System (GFS) v17.
Tobias Tesch, Stefan Kollet, and Jochen Garcke
Geosci. Model Dev., 16, 2149–2166, https://doi.org/10.5194/gmd-16-2149-2023, https://doi.org/10.5194/gmd-16-2149-2023, 2023
Short summary
Short summary
A recent statistical approach for studying relations in the Earth system is to train deep learning (DL) models to predict Earth system variables given one or several others and use interpretable DL to analyze the relations learned by the models. Here, we propose to combine the approach with a theorem from causality research to ensure that the deep learning model learns causal rather than spurious relations. As an example, we apply the method to study soil-moisture–precipitation coupling.
Yao Hu, Chirantan Ghosh, and Siamak Malakpour-Estalaki
Geosci. Model Dev., 16, 1925–1936, https://doi.org/10.5194/gmd-16-1925-2023, https://doi.org/10.5194/gmd-16-1925-2023, 2023
Short summary
Short summary
Data-driven models (DDMs) gain popularity in earth and environmental systems, thanks in large part to advancements in data collection techniques and artificial intelligence (AI). The performance of these models is determined by the underlying machine learning (ML) algorithms. In this study, we develop a framework to improve the model performance by optimizing ML algorithms and demonstrate the effectiveness of the framework using a DDM to predict edge-of-field runoff in the Maumee domain, USA.
Ruidong Li, Ting Sun, Fuqiang Tian, and Guang-Heng Ni
Geosci. Model Dev., 16, 751–778, https://doi.org/10.5194/gmd-16-751-2023, https://doi.org/10.5194/gmd-16-751-2023, 2023
Short summary
Short summary
We developed SHAFTS (Simultaneous building Height And FootprinT extraction from Sentinel imagery), a multi-task deep-learning-based Python package, to estimate average building height and footprint from Sentinel imagery. Evaluation in 46 cities worldwide shows that SHAFTS achieves significant improvement over existing machine-learning-based methods.
Feng Yin, Philip E. Lewis, and Jose L. Gómez-Dans
Geosci. Model Dev., 15, 7933–7976, https://doi.org/10.5194/gmd-15-7933-2022, https://doi.org/10.5194/gmd-15-7933-2022, 2022
Short summary
Short summary
The proposed SIAC atmospheric correction method provides consistent surface reflectance estimations from medium spatial-resolution satellites (Sentinel 2 and Landsat 8) with per-pixel uncertainty information. The outputs from SIAC have been validated against a wide range of ground measurements, and it shows that SIAC can provide accurate estimations of both surface reflectance and atmospheric parameters, with meaningful uncertainty information.
Martina Stockhause and Michael Lautenschlager
Geosci. Model Dev., 15, 6047–6058, https://doi.org/10.5194/gmd-15-6047-2022, https://doi.org/10.5194/gmd-15-6047-2022, 2022
Short summary
Short summary
The Data Distribution Centre (DDC) of the Intergovernmental Panel on Climate Change (IPCC) celebrates its 25th anniversary in 2022. DDC Partner DKRZ has supported the IPCC Assessments and preserved the quality-assured, citable climate model data underpinning the Assessment Reports over these years over the long term. With the introduction of the IPCC FAIR Guidelines into the current AR6, the value of DDC services has been recognized. However, DDC sustainability remains unresolved.
Daiane Iglesia Dolci, Felipe A. G. Silva, Pedro S. Peixoto, and Ernani V. Volpe
Geosci. Model Dev., 15, 5857–5881, https://doi.org/10.5194/gmd-15-5857-2022, https://doi.org/10.5194/gmd-15-5857-2022, 2022
Short summary
Short summary
We investigate and compare the theoretical and computational characteristics of several absorbing boundary conditions (ABCs) for the full-waveform inversion (FWI) problem. The different ABCs are implemented in an optimized computational framework called Devito. The computational efficiency and memory requirements of the ABC methods are evaluated in the forward and adjoint wave propagators, from simple to realistic velocity models.
Ashesh Chattopadhyay, Mustafa Mustafa, Pedram Hassanzadeh, Eviatar Bach, and Karthik Kashinath
Geosci. Model Dev., 15, 2221–2237, https://doi.org/10.5194/gmd-15-2221-2022, https://doi.org/10.5194/gmd-15-2221-2022, 2022
Short summary
Short summary
There is growing interest in data-driven weather forecasting, i.e., to predict the weather by using a deep neural network that learns from the evolution of past atmospheric patterns. Here, we propose three components to add to the current data-driven weather forecast models to improve their performance. These components involve a feature that incorporates physics into the neural network, a method to add data assimilation, and an algorithm to use several different time intervals in the forecast.
Paul F. Baumeister and Lars Hoffmann
Geosci. Model Dev., 15, 1855–1874, https://doi.org/10.5194/gmd-15-1855-2022, https://doi.org/10.5194/gmd-15-1855-2022, 2022
Short summary
Short summary
The efficiency of the numerical simulation of radiative transport is shown on modern server-class graphics cards (GPUs). The low-cost prefactor on GPUs compared to general-purpose processors (CPUs) enables future large retrieval campaigns for multi-channel data from infrared sounders aboard low-orbit satellites. The validated research software JURASSIC is available in the public domain.
Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, https://doi.org/10.5194/gmd-15-1413-2022, 2022
Short summary
Short summary
Scientists use computer simulation models to understand how Earth surface processes work, including floods, landslides, soil erosion, river channel migration, ocean sedimentation, and coastal change. Research benefits when the software for simulation modeling is open, shared, and coordinated. The Community Surface Dynamics Modeling System (CSDMS) is a US-based facility that supports research by providing community support, computing tools and guidelines, and educational resources.
Danilo César de Mello, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Raul Roberto Poppiel, Diego Ribeiro Oquendo Cabrero, Luis Augusto Di Loreto Di Raimo, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes Filho, Emilson Pereira Leite, and José Alexandre Melo Demattê
Geosci. Model Dev., 15, 1219–1246, https://doi.org/10.5194/gmd-15-1219-2022, https://doi.org/10.5194/gmd-15-1219-2022, 2022
Short summary
Short summary
We used soil parent material, terrain attributes, and geophysical data from the soil surface to test and compare different and unprecedented geophysical sensor combination, as well as different machine learning algorithms to model and predict several soil attributes. Also, we analyzed the importance of pedoenvironmental variables. The soil attributes were modeled throughout different machine learning algorithms and related to different geophysical sensor combinations.
Duncan Watson-Parris, Andrew Williams, Lucia Deaconu, and Philip Stier
Geosci. Model Dev., 14, 7659–7672, https://doi.org/10.5194/gmd-14-7659-2021, https://doi.org/10.5194/gmd-14-7659-2021, 2021
Short summary
Short summary
The Earth System Emulator (ESEm) provides a fast and flexible framework for emulating a wide variety of Earth science datasets and tools for constraining (or tuning) models of any complexity. Three distinct use cases are presented that demonstrate the utility of ESEm and provide some insight into the use of machine learning for emulation in these different settings. The open-source Python package is freely available so that it might become a valuable tool for the community.
Chongyang Wang, Li Wang, Danni Wang, Dan Li, Chenghu Zhou, Hao Jiang, Qiong Zheng, Shuisen Chen, Kai Jia, Yangxiaoyue Liu, Ji Yang, Xia Zhou, and Yong Li
Geosci. Model Dev., 14, 6833–6846, https://doi.org/10.5194/gmd-14-6833-2021, https://doi.org/10.5194/gmd-14-6833-2021, 2021
Short summary
Short summary
The turbidity maximum zone (TMZ) is a special phenomenon in estuaries worldwide. However, the extraction methods and criteria used to describe the TMZ vary significantly both spatially and temporally. This study proposes an new index, the turbidity maximum zone index, based on the corresponding relationship of total suspended solid concentration and Chl a concentration, which could better extract TMZs in different estuaries and on different dates.
Ranee Joshi, Kavitha Madaiah, Mark Jessell, Mark Lindsay, and Guillaume Pirot
Geosci. Model Dev., 14, 6711–6740, https://doi.org/10.5194/gmd-14-6711-2021, https://doi.org/10.5194/gmd-14-6711-2021, 2021
Short summary
Short summary
We have developed a software that allows the user to extract and standardize drill hole information from legacy datasets and/or different drilling campaigns. It also provides functionality to upscale the lithological information. These functionalities were possible by developing thesauri to identify and group geological terminologies together.
David Meyer, Thomas Nagler, and Robin J. Hogan
Geosci. Model Dev., 14, 5205–5215, https://doi.org/10.5194/gmd-14-5205-2021, https://doi.org/10.5194/gmd-14-5205-2021, 2021
Short summary
Short summary
A major limitation in training machine-learning emulators is often caused by the lack of data. This paper presents a cheap way to increase the size of training datasets using statistical techniques and thereby improve the performance of machine-learning emulators.
Mark Jessell, Vitaliy Ogarko, Yohan de Rose, Mark Lindsay, Ranee Joshi, Agnieszka Piechocka, Lachlan Grose, Miguel de la Varga, Laurent Ailleres, and Guillaume Pirot
Geosci. Model Dev., 14, 5063–5092, https://doi.org/10.5194/gmd-14-5063-2021, https://doi.org/10.5194/gmd-14-5063-2021, 2021
Short summary
Short summary
We have developed software that allows the user to extract sufficient information from unmodified digital maps and associated datasets that we are able to use to automatically build 3D geological models. By automating the process we are able to remove human bias from the procedure, which makes the workflow reproducible.
Martí Bosch, Maxence Locatelli, Perrine Hamel, Roy P. Remme, Jérôme Chenal, and Stéphane Joost
Geosci. Model Dev., 14, 3521–3537, https://doi.org/10.5194/gmd-14-3521-2021, https://doi.org/10.5194/gmd-14-3521-2021, 2021
Short summary
Short summary
The article presents a novel approach to simulate urban heat mitigation from land use/land cover data based on three biophysical mechanisms: tree shade, evapotranspiration and albedo. An automated procedure is proposed to calibrate the model parameters to best fit temperature observations from monitoring stations. A case study in Lausanne, Switzerland, shows that the approach outperforms regressions based on satellite data and provides valuable insights into design heat mitigation policies.
Quang-Van Doan, Hiroyuki Kusaka, Takuto Sato, and Fei Chen
Geosci. Model Dev., 14, 2097–2111, https://doi.org/10.5194/gmd-14-2097-2021, https://doi.org/10.5194/gmd-14-2097-2021, 2021
Short summary
Short summary
This study proposes a novel structural self-organizing map (S-SOM) algorithm. The superiority of S-SOM is that it can better recognize the difference (or similarity) among spatial (or temporal) data used for training and thus improve the clustering quality compared to traditional SOM algorithms.
Batunacun, Ralf Wieland, Tobia Lakes, and Claas Nendel
Geosci. Model Dev., 14, 1493–1510, https://doi.org/10.5194/gmd-14-1493-2021, https://doi.org/10.5194/gmd-14-1493-2021, 2021
Short summary
Short summary
Extreme gradient boosting (XGBoost) can provide alternative insights that conventional land-use models are unable to generate. Shapley additive explanations (SHAP) can interpret the results of the purely data-driven approach. XGBoost achieved similar and robust simulation results. SHAP values were useful for analysing the complex relationship between the different drivers of grassland degradation.
Juan A. Añel, Michael García-Rodríguez, and Javier Rodeiro
Geosci. Model Dev., 14, 923–934, https://doi.org/10.5194/gmd-14-923-2021, https://doi.org/10.5194/gmd-14-923-2021, 2021
Short summary
Short summary
This work shows that it continues to be hard, if not impossible, to obtain some of the most used climate models worldwide. We reach this conclusion through a systematic study and encourage all development teams and research centres to make public the models they use to produce scientific results.
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021, https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
Short summary
Detecting extreme weather events is a crucial step in understanding how they change due to climate change. Deep learning (DL) is remarkable at pattern recognition; however, it works best only when labeled datasets are available. We create
ClimateNet– an expert-labeled curated dataset – to train a DL model for detecting weather events and predicting changes in extreme precipitation. This work paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data.
Xiang Que, Xiaogang Ma, Chao Ma, and Qiyu Chen
Geosci. Model Dev., 13, 6149–6164, https://doi.org/10.5194/gmd-13-6149-2020, https://doi.org/10.5194/gmd-13-6149-2020, 2020
Short summary
Short summary
This paper presents a spatiotemporal weighted regression (STWR) model for exploring nonstationary spatiotemporal processes in nature and socioeconomics. A value change rate is introduced in the temporal kernel, which presents significant model fitting and accuracy in both simulated and real-world data. STWR fully incorporates observed data in the past and outperforms geographic temporal weighted regression (GTWR) and geographic weighted regression (GWR) models in several experiments.
Sheri Mickelson, Alice Bertini, Gary Strand, Kevin Paul, Eric Nienhouse, John Dennis, and Mariana Vertenstein
Geosci. Model Dev., 13, 5567–5581, https://doi.org/10.5194/gmd-13-5567-2020, https://doi.org/10.5194/gmd-13-5567-2020, 2020
Short summary
Short summary
Every generation of MIP exercises introduces new layers of complexity and an exponential growth in the amount of data requested. CMIP6 required us to develop a new tool chain and forced us to change our methodologies. The new methods discussed in this paper provided us with an 18 times faster speedup over our existing methods. This allowed us to meet our deadlines and we were able to publish more than half a million data sets on the Earth System Grid Federation (ESGF) for the CMIP6 project.
Benjamin Campforts, Charles M. Shobe, Philippe Steer, Matthias Vanmaercke, Dimitri Lague, and Jean Braun
Geosci. Model Dev., 13, 3863–3886, https://doi.org/10.5194/gmd-13-3863-2020, https://doi.org/10.5194/gmd-13-3863-2020, 2020
Short summary
Short summary
Landslides shape the Earth’s surface and are a dominant source of terrestrial sediment. Rivers, then, act as conveyor belts evacuating landslide-produced sediment. Understanding the interaction among rivers and landslides is important to predict the Earth’s surface response to past and future environmental changes and for mitigating natural hazards. We develop HyLands, a new numerical model that provides a toolbox to explore how landslides and rivers interact over several timescales.
Jorge Vicent, Jochem Verrelst, Neus Sabater, Luis Alonso, Juan Pablo Rivera-Caicedo, Luca Martino, Jordi Muñoz-Marí, and José Moreno
Geosci. Model Dev., 13, 1945–1957, https://doi.org/10.5194/gmd-13-1945-2020, https://doi.org/10.5194/gmd-13-1945-2020, 2020
Short summary
Short summary
The modeling of light propagation through the atmosphere is key to process satellite images and to understand atmospheric processes. However, existing atmospheric models can be complex to use in practical applications. Here we aim at providing a new software tool to facilitate using advanced models and to generate large databases of simulated data. As a test case, we use this tool to analyze differences between several atmospheric models, showing the capabilities of this open-source tool.
Jiali Wang, Prasanna Balaprakash, and Rao Kotamarthi
Geosci. Model Dev., 12, 4261–4274, https://doi.org/10.5194/gmd-12-4261-2019, https://doi.org/10.5194/gmd-12-4261-2019, 2019
Short summary
Short summary
Parameterizations are frequently used in models representing physical phenomena and are often the computationally expensive portions of the code. Using model output from simulations performed using a weather model, we train deep neural networks to provide an accurate alternative to a physics-based parameterization. We demonstrate that a domain-aware deep neural network can successfully simulate the entire diurnal cycle of the boundary layer physics and the results are transferable.
Gianandrea Mannarini and Lorenzo Carelli
Geosci. Model Dev., 12, 3449–3480, https://doi.org/10.5194/gmd-12-3449-2019, https://doi.org/10.5194/gmd-12-3449-2019, 2019
Short summary
Short summary
The VISIR ship-routing model is updated in order to deal with ocean currents.
The optimal tracks we computed through VISIR in the Atlantic ocean show great seasonal and regional variability, following a variable influence of surface gravity waves and currents. We assess how these tracks contribute to voyage energy-efficiency gains through a standard indicator (EEOI) of the International Maritime Organization. Also, the new model features are validated against an exact analytical benchmark.
Grzegorz Muszynski, Karthik Kashinath, Vitaliy Kurlin, Michael Wehner, and Prabhat
Geosci. Model Dev., 12, 613–628, https://doi.org/10.5194/gmd-12-613-2019, https://doi.org/10.5194/gmd-12-613-2019, 2019
Short summary
Short summary
We present the automated method for recognizing atmospheric rivers in climate data, i.e., climate model output and reanalysis product. The method is based on topological data analysis and machine learning, both of which are powerful tools that the climate science community often does not use. An advantage of the proposed method is that it is free of selection of subjective threshold conditions on a physical variable. This method is also suitable for rapidly analyzing large amounts of data.
Christina Papagiannopoulou, Diego G. Miralles, Matthias Demuzere, Niko E. C. Verhoest, and Willem Waegeman
Geosci. Model Dev., 11, 4139–4153, https://doi.org/10.5194/gmd-11-4139-2018, https://doi.org/10.5194/gmd-11-4139-2018, 2018
Short summary
Short summary
Common global land cover and climate classifications are based on vegetation–climatic characteristics derived from observational data, ignoring the interaction between the local climate and biome. Here, we model the interplay between vegetation and local climate by discovering spatial relationships among different locations. The resulting global
hydro-climatic biomescorrespond to regions of coherent climate–vegetation interactions that agree well with traditional global land cover maps.
Wendy Sharples, Ilya Zhukov, Markus Geimer, Klaus Goergen, Sebastian Luehrs, Thomas Breuer, Bibi Naz, Ketan Kulkarni, Slavko Brdar, and Stefan Kollet
Geosci. Model Dev., 11, 2875–2895, https://doi.org/10.5194/gmd-11-2875-2018, https://doi.org/10.5194/gmd-11-2875-2018, 2018
Short summary
Short summary
Next-generation geoscientific models are based on complex model implementations and workflows. Next-generation HPC systems require new programming paradigms and code optimization. In order to meet the challenge of running complex simulations on new massively parallel HPC systems, we developed a run control framework that facilitates code portability, code profiling, and provenance tracking to reduce both the duration and the cost of code migration and development, while ensuring reproducibility.
Daojun Zhang, Na Ren, and Xianhui Hou
Geosci. Model Dev., 11, 2525–2539, https://doi.org/10.5194/gmd-11-2525-2018, https://doi.org/10.5194/gmd-11-2525-2018, 2018
Short summary
Short summary
Geographically weighted regression is a widely used method to deal with spatial heterogeneity, which is common in geostatistics. However, most existing software does not support logistic regression and cannot deal with missing data, which exist extensively in mineral prospectivity mapping. This work generalized logistic regression to spatial statistics based on a spatially weighted technique. The new model also supports an anisotropic local window, which is another innovative point.
Thomas Block, Sabine Embacher, Christopher J. Merchant, and Craig Donlon
Geosci. Model Dev., 11, 2419–2427, https://doi.org/10.5194/gmd-11-2419-2018, https://doi.org/10.5194/gmd-11-2419-2018, 2018
Short summary
Short summary
For calibration and validation purposes it is necessary to detect simultaneous data acquisitions from different spaceborne platforms. We present an algorithm and a software system which implements a general approach to resolve this problem. The multisensor matchup system (MMS) can detect simultaneous acquisitions in a large dataset (> 100 TB) and extract data for matching locations for further analysis. The MMS implements a flexible software infrastructure and allows for high parallelization.
Cited articles
Aleotti, P. and Chowdhury, R.: Landslide hazard assessment: summary review
and new perspectives, B. Eng. Geol. Environ.,
58, 21–44, 1999.
Amorim, S. F.: Estudio comparativo de métodos para la evaluación de
la susceptibilidad del terreno a la formación de deslizamientos
superficiales: Aplicación al Pirineo Oriental, PhD, Universidad
Politécnica de Catalunya, Barcelona, http://futur.upc.edu/10953986 (last access: 6 July 2022),
2012.
Baum, R. L., Savage, W. Z., and Godt, J. W.: TRIGRS: a Fortran program for
transient rainfall infiltration and grid-based regional slope-stability
analysis, version 2.0, Reston, VA, USA: US Geological
Survey, 2008–1159, 2008.
Belsley, D. A.: A guide to using the collinearity diagnostics, Comput. Sci. Eco. Manage., 4, 33–50, 1991.
Belsley, D. A., Kuh, E., and Welsch, R. E. (Eds.): Regression Diagnostics,
John Wiley and Sons, New York, https://doi.org/10.1002/0471725153, 1980.
Bonham-Carter, G. F.: Geographic information systems for
geoscientists-modeling with GIS, Comput. Meth. Geosci., 13,
398 pp., 1994.
Bornaetxea, T., Rossi, M., Marchesini, I., and Alvioli, M.: Effective surveyed area and its role in statistical landslide susceptibility assessments, Nat. Hazards Earth Syst. Sci., 18, 2455–2469, https://doi.org/10.5194/nhess-18-2455-2018, 2018.
Bragagnolo, L., da Silva, R. V., and Grzybowski, J. M. V.: Landslide
susceptibility mapping with r, landslide: A free open-source GIS-integrated
tool based on Artificial Neural Networks, Environ. Modell. Softw., 123, 104565, https://doi.org/10.1016/j.envsoft.2019.104565, 2020.
Brenning, A.: Statistical geocomputing combining R and SAGA: The example of
landslide susceptibility analysis with generalized additive models, in:
SAGA–Seconds Out, Hamburger Beiträge Zur Physischen Geographie und
Landschaftsökologie, Vol. 19, edited by: Böhner, J., Blaschke, T.,
Montanarella, L., 23–32, 2008.
Chacón, J., Irigaray, C., Fernandez, T., and El Hamdouni, R.:
Engineering geology maps: landslides and geographical information systems,
Bull. Eng. Geol. Environ., 65, 341–411,
https://doi.org/10.1007/s10064-006-0064-z, 2006.
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., and Savage,
W. Z.: Guidelines for landslide susceptibility, hazard and risk zoning for
land-use planning, Eng. Geol., 102, 99–111, 2008.
Dietrich, W. E. and Montgomery, D. R.: SHALSTAB: a digital terrain model
for mapping shallow landslide potential, University of California, http://calm.geo.berkeley.edu/geomorph/shalstab/index.htm (last access: 7 July 2022), 1998.
González-Hidalgo, J. C., Brunetti, M., and de Luis, M.: A new tool for
monthly precipitation analysis in Spain: MO-PREDAS database (monthly
precipitation trends December 1945–November 2005), Int. J. Climatol., 31,
715–731, https://doi.org/10.1002/joc.2115, 2011.
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., and Ardizzone, F.:
Probabilistic landslide hazard assessment at the basin scale, Geomorphology,
72, 272–299, https://doi.org/10.1016/j.geomorph.2005.06.002, 2005.
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., and Galli, M.:
Estimating the quality of landslide susceptibility models, Geomorphology,
81, 166–184, https://doi.org/10.1016/j.geomorph.2006.04.007, 2006.
Huabin, W., Gangjun, L., Weiya, X., and Gonghui, W.: GIS-based landslide
hazard assessment: an overview. Prog. Phys. Geogr., 29,
548–567, 2005.
Kanungo, D. P., Arora, M. K., Sarkar, S. and Gupta, R. P.: Landslide Susceptibility Zonation (LSZ) mapping – A Review, J. South Asia Disaster Studies, 2, 81–105, 2009.
Lee, S. and Min, K.: Statistical analysis of landslide susceptibility at
Yongin, Korea, Environ. Geol., 40, 1095–1113,
https://doi.org/10.1007/s002540100310, 2001.
Lee, S., Chwae, U., and Min, K.: Landslide susceptibility mapping by
correlation between topography and geological structure: the Janghung area,
Korea, Geomorphology, 46, 149–162,
https://doi.org/10.1016/S0169-555X(02)00057-0 2002.
Mergili, M., Marchesini, I., Alvioli, M., Metz, M., Schneider-Muntau, B., Rossi, M., and Guzzetti, F.: A strategy for GIS-based 3-D slope stability modelling over large areas, Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, 2014.
Mücher, C. A., Klijn, J. A., Wascher, D. M., and Scham-inée, J. H.:
A new European Landscape Classification (LAN-MAP): A transparent, flexible
and user-oriented method-ology to distinguish landscapes, Ecol. Indic., 10,
87–103, https://doi.org/10.1016/j.ecolind.2009.03.018, 2010.
Osna, T., Sezer, E. A., and Akgun, A.: GeoFIS: an integrated tool for the
assessment of landslide susceptibility, Comput. Geosci., 66,
20–30, https://doi.org/10.1016/j.cageo.2013.12.016, 2014.
Pack, R. T., Tarboton, D. G., and Goodwin, C. N.: The SINMAP approach to
terrain stability mapping, https://digitalcommons.usu.edu/cee_facpub/2583/ (last access: 6 July 2022), 1998.
Pardeshi, S. D., Autade, S. E., and Pardeshi, S. S.: Landslide hazard
assessment: recent trends and techniques, Springer Plus, 2, 1–11, 2013.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/, last access: 20 September 2021.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A
review of statistically based landslide susceptibility models, Earth-Sci.
Rev., 180, 60–91, https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.
Rossi, G., Catani, F., Leoni, L., Segoni, S., and Tofani, V.: HIRESSS: a physically based slope stability simulator for HPC applications, Nat. Hazards Earth Syst. Sci., 13, 151–166, https://doi.org/10.5194/nhess-13-151-2013, 2013.
Rossi, M. and Bornaetxea, T.: LAND-SUITE V1.0: a suite of tools for statistically-based landslide susceptibility zonation, Zenodo [code], https://doi.org/10.5281/ZENODO.5650810, 2021.
Rossi, M. and Reichenbach, P.: LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0, Geosci. Model Dev., 9, 3533–3543, https://doi.org/10.5194/gmd-9-3533-2016, 2016.
Rossi, M., Guzzetti F., Reichenbach P., Mondini A. C., and Peruccacci S.:
Optimal landslide susceptibility zonation based on multiple forecasts,
Geomorphology, 114, 129–142,
https://doi.org/10.1016/j.geomorph.2009.06.020, 2010.
Rossi, M., Sarro, R., Reichenbach, P., and Mateos, R. M.: Probabilistic
identification of rockfall source areas at regional scale in El Hierro
(Canary Islands, Spain), Geomorphology, 381, 107661,
https://doi.org/10.1016/j.geomorph.2021.107661, 2021.
Santacana Quintas, N.: Análisis de la susceptibilidad del terreno a la
formación de deslizamientos superficiales y grandes deslizamientos
mediante el uso de sistemas de información geográfica,
Aplicación a la cuenca alta del río Llobregat, PhD, Universitat
Politècnica de Catalunya, Barcelona,
https://www.tdx.cat/handle/10803/6213, 2001.
Sahin, E. K., Colkesen, I., Acmali, S. S., Akgun, A., and Aydinoglu, A. C.:
Developing comprehensive geocomputation tools for landslide susceptibility
mapping: LSM tool pack, Comput. Geosci., 144, 104592,
https://doi.org/10.1016/j.cageo.2020.104592, 2020.
Simoni, S., Zanotti, F., Bertoldi, G., and Rigon, R.: Modelling the
probability of occurrence of shallow landslides and channelized debris flows
using GEOtop-FS, Hydrol. Process., 22,
532–545, 2008.
van Westen, C. J.: Statistical landslide hazard analysis, ILWIS 2.1 for
Windows application guide, ITC publication, 2, 73–84, 1997.
van Westen, C. J., Castellanos, E., and Kuriakose, S. L.: Spatial data for
landslide susceptibility, hazard, and vulnerability assessment: An overview,
Eng. Geol.,, 102, 112–131, 2008.
Short summary
LAND-SUITE is a software package designed to support landslide susceptibility zonation. The software integrates, extends, and completes LAND-SE (Rossi et al., 2010; Rossi and Reichenbach, 2016). The software is implemented in R, a free software environment for statistical computing and graphics, and gives expert users the possibility to perform easier, more flexible, and more informed statistically based landslide susceptibility applications and zonations.
LAND-SUITE is a software package designed to support landslide susceptibility zonation. The...