Articles | Volume 9, issue 10
Model description paper
04 Oct 2016
Model description paper |  | 04 Oct 2016

LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0

Mauro Rossi and Paola Reichenbach

Abstract. Landslide susceptibility (LS) assessment provides a relative estimate of landslide spatial occurrence based on local terrain conditions. A literature review revealed that LS evaluation has been performed in many study areas worldwide using different methods, model types, different partition of the territory (mapping units) and a large variety of geo-environmental data. Among the different methods, statistical models have been largely used to evaluate LS, but the minority of articles presents a complete and comprehensive LS assessment that includes model performance analysis, prediction skills evaluation, and estimation of the errors and uncertainty.

The aim of this paper is to describe LAND-SE (LANDslide Susceptibility Evaluation) software that performs susceptibility modelling and zonation using statistical models, quantifies the model performances, and the associated uncertainty. The software is implemented in R, a free software environment for statistical computing and graphics. This provides users with the possibility to implement and improve the code with additional models, evaluation tools, or output types. The paper describes the software structure, explains input and output, and illustrates specific applications with maps and graphs. The LAND-SE script is delivered with a basic user guide and three example data sets.

Short summary
Landslide susceptibility maps show places where landslides may occur in the future. These maps are prepared using different approaches, information on past landslides distribution and a variety of geo-environmental data. The paper describes LAND-SE (LANDslide Susceptibility Evaluation), an open-source software coded in R for statistically based susceptibility zonation that provides estimates of model performances and uncertainty. A user guide and example data are distributed with the software.