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Abstract. In the past 50 years, a large variety of statisti-
cally based models and methods for landslide susceptibility
mapping and zonation have been proposed in the literature.
The methods, which are applicable to a large range of spa-
tial scales, use a large variety of input thematic data, differ-
ent model combinations, and several approaches to evaluate
the models’ performance. Despite the numerous applications
available in the literature, a standard approach for suscepti-
bility modeling and zonation is still missing.

The literature search revealed that several software pro-
gram and tools are available to evaluate regional slope
stability using physically based analysis, but only a few
use statistically based approaches. Among them, LAND-SE
(LANDslide Susceptibility Evaluation) provides the possi-
bility to perform and combine different statistical suscepti-
bility models and to evaluate their performances and asso-
ciated uncertainties. This paper describes the structure and
the functionalities of LAND-SUITE, a suite of tools for sta-
tistically based landslide susceptibility modeling which in-
tegrates LAND-SE. LAND-SUITE completes and extends
LAND-SE, adding functionalities to (i) facilitate input data
preparation, (ii) perform preliminary and exploratory analy-
sis of the available data, and (iii) test different combinations
of variables and select the optimal thematic/explanatory set.
LAND-SUITE provides a tool to assist the user during the
data preparatory phase and to perform diversified statistically
based landslide susceptibility applications.

1 Introduction

Landslide susceptibility measures the degree to which a ter-
rain can be affected by future slope movements and provides
an estimate of where landslides are likely to occur (Chacon
et al., 2006; Guzzetti et al., 2005). A wide variety of sta-
tistically based models and methods for landslide suscepti-
bility mapping and zonation have been proposed in the lit-
erature in the past 50 years (Aleotti and Chowdhury, 1999;
Huabin et al., 2005; Chacón et al., 2006; Fell et al., 2008;
van Westen et al., 2008; Kanungo et al., 2012; Pardeshi et al.,
2013; Reichenbach et al., 2018). Statistically based suscep-
tibility models are applied to identify the functional (statisti-
cal) relationship between instability factors described by sets
of geo-environmental (independent) variables and the known
distribution of landslides, which is taken as the dependent
model variable. This functional relationship is used to ascer-
tain the propensity of the terrain to generate landslides and to
predict susceptibility.

A recent review article published by Reichenbach et
al. (2018) has shown that more than 163 model type names
are listed in the literature by different authors. The mod-
els were classified into 19 groups that allowed highlighting
the fact that logistic regression, neural networks, and data
overlay model are the most often used modeling approaches.
The literature review also revealed a considerable variabil-
ity of landslide and thematic data types, scales selected for
the modeling, and diversified choice of criteria used to eval-
uate the model performances. All these different issues, as
well as their possible combinations, suggest that it is possi-
ble to select and apply a vast and heterogeneous number of
methodologies to assess landslide susceptibility. As a matter
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of fact, a standardized methodology, procedure, and software
for susceptibility assessment are still missing.

As an attempt to fill this gap, Reichenbach et al. (2018)
suggest nine interrelated steps to prepare a reliable landslide
susceptibility assessment and for the proper use of the asso-
ciated terrain zonations (see Table 3 in Reichenbach et al.,
2018). Such a methodological guideline allows for proce-
duralized but flexible susceptibility assessments, although it
assumes basic expertise and skills in geomorphology, data
preparation, data analysis, and geo-computation.

In the literature, several articles describe tools suitable
for the analysis of shallow landslides using physically based
slope stability simulators (for example, SHALSTAB by Di-
etrich and Montgomery, 1998; SINMAP by Pack et al., 1988;
GEOtop-FS by Simoni at al., 2008; HIRESSS by Rossi
et al., 2013; TRIGRS by Baum et al., 2008; https://www.
landslidemodels.org/r.slope.stability/ by Mergili et al., 2014,
last access: 6 July 2022), but very few articles propose soft-
ware for statistically based landslide susceptibility zonation.
Among them, Brenning et al. (2008) provide an example of
how GIS-based tools can be combined with powerful sta-
tistical models. Osna et al. (2014) implemented GeoFIS, a
tool developed with MATLAB, for the assessment of land-
slide susceptibility. GeoFIS includes two main open-source
libraries, one for GIS operations and the other for creating a
Mamdani fuzzy inference system. Bragagnolo et al. (2020)
developed r.landslide, a free and open-source add-on to the
open-source GRASS software for landslide susceptibility
mapping. The tool is written in the Python language and
works on top of an artificial neural network fed with environ-
mental parameters and landslide databases. In 2020, Sahin et
al. (2020) proposed a tool package called the Landslide Sus-
ceptibility Mapping Tool Pack (LSM Tool Pack) for produc-
ing landslide susceptibility maps based on integrating R with
ArcMap Software.

Rossi and Reichenbach (2016), following the previous ex-
perience described in Rossi et al. (2010), proposed LAND-
SE (LANDslide Susceptibility Evaluation), which is soft-
ware designed to perform susceptibility modeling and zona-
tion using different statistical models, combining ensem-
bles of models, and quantifying their performances and the
associated uncertainties. The software, coded in R, is re-
leased with an open-source license and has the main intent
to distribute a widely accessible and repeatable tool to gen-
erate high-ranked quality landslide susceptibility zonation
(Guzzetti et al., 2006; Reichenbach et al., 2018).

Despite this effort, the quality of the zonations produced
with LAND-SE is still extremely variable, with the main
sources of errors and uncertainty coming from the landslide
susceptibility assessment preparatory phases (Reichenbach
et al., 2018). Indeed, great complexity and a number of obsta-
cles are present in these apparently basic but highly relevant
steps for susceptibility evaluations.

To better support the overall landslide susceptibility as-
sessment process, we have designed and implemented the

LAND-SUITE software (LANDslide – SUsceptibility In-
ferential Tool Evaluator), which integrates LAND-SE, able
to execute different susceptibility model types and evaluate
their performance and uncertainty. LAND-SUITE completes
and extends LAND-SE, adding functionalities to (i) facili-
tate input data preparation, (ii) perform preliminary and ex-
ploratory analysis of the available data, and (iii) test differ-
ent combinations of variables and select the optimal themat-
ic/explanatory set. In synthesis, LAND-SUITE provides the
user with the possibility to perform easier, more flexible, and
more informed statistically based landslide susceptibility ap-
plications and zonations.

The article illustrates the major functionalities offered by
LAND-SUITE, including inputs and outputs. Section 2 de-
scribes the main software data requirements and specifica-
tions. Section 3 describes the software modules and their
functionalities, providing a basic background for their usage
and/or interpretation, Sect. 4 illustrates the tool application
in a test area, and Sect. 5 formalizes some final remarks. We
have introduced a test area only for the purpose of showing
the most relevant results and outputs in a real application, but
the critical analysis and discussion of the results are out of the
scope of the article. The paper is completed by a Supplement
containing the software code and a user guide.

2 Software description and data requirements

LAND-SUITE is a suite of R (R Core Team, 2021) tools
aimed to support the landslide susceptibility inference pro-
cess. It basically extends the LAND-SE software (Rossi and
Reichenbach, 2016), which is mainly designed to perform
statistically based susceptibility modeling.

LAND-SUITE requires different input data:

i. a landslide inventory map (e.g., historical, geomorpho-
logical, event, and multi-temporal landslide inventories)
used as a dependent or grouping variable in the suscep-
tibility analysis and

ii. a set of thematic maps to be used as independent ex-
planatory variables that can be continuous (e.g., slope,
elevation) or categorical (e.g., lithology, land use).

The maximum extension of the study area and the relative
calculation times are strongly controlled by the data size and
resolution and by the hardware characteristics, chiefly the
RAM size and CPU speed. The code, which is essentially
an R script, is executed in memory. During the execution and
computations, the data are converted in a tabular format and
stored at intermediate software execution steps in the file sys-
tem in the binary RDATA format.

During the software execution, LAND-SUITE provides
outputs of specific analyses and evaluations in textual or
graphical formats. At the end of the modeling computation,
maps are also available as output in the classical GIS geo-
graphical formats.
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LAND-SUITE is composed of three modules, listed as fol-
lows.

– LAND-SIP: LANDslide – Susceptibility Input Prepara-
tion

– LAND-SVA: LANDslide – Susceptibility Variable
Analysis

– LAND-SE: LANDslide – Susceptibility Evaluation

The three modules are coded as separate R script files and
can be executed under different operating systems (Fig. 1).

The common LAND-SUITE run starts with LAND-SIP,
which is able to execute LAND-SVA and successively
LAND-SE in cascade. Alternatively, only one of these last
two modules can be executed after LAND-SIP, depending
on the user needs and on the type of software applications.
The three modules can also be executed separately, as long
as the user is able to provide the appropriate data input.

2.1 LAND-SIP: LANDslide – Susceptibility Input
Preparation

LAND-SIP is designed for input preparation and has high
relevance for susceptibility analysis because its main purpose
is the subdivision and preparation of the training and valida-
tion datasets that will be used by the other two modules.

The dataset partition is controlled and customized by the
user, who can select the type of the mapping unit (i.e., raster
or polygons), choose the appropriate combination of vari-
ables, define the extent (i.e., using a mask) of the training
and the validation areas, and choose the output types. This
large number of options allows the user to decide and per-
form largely diversified types of susceptibility applications.
LAND-SIP allows the user to select different functionalities
and criteria to partition the training and validation datasets.

– Balanced or unbalanced random sampling. In the bal-
anced sampling, an equal number of mapping units with
grouping values equal to 0 and 1 are selected randomly.
Conversely, in the unbalanced sampling the proportions
of mapping units with grouping values equal to 0 and 1
is different and is defined by the user. In the raster-based
analyses, the user may choose two ways to select the
mapping units with landslides: (i) pixel sampling based
on a pixel’s random sampling within mapped landslides
and (ii) landslide sampling based on a random landslide
sampling (using an additional landslide vector layer),
whereby all the pixels of a selected landslide are con-
sidered either part of the training or of the validation
datasets.

– Subsampling or sampling reducing partitions. In sub-
sampling the size of the original dataset is randomly re-
duced by the user by specifying the proportion of data

used. This criterion is particularly helpful for prelimi-
nary investigations, in applications with large datasets,
or in the case of limited computation resources.

– Spatially or temporally based datasets partition. This
criterion uses different input layers for the training and
validation.

– Combinations of the criteria described above can also
be used.

The criteria are fully customizable by the user. Once a given
criterion is chosen and training and validation datasets cor-
rectly partitioned, all the subsequent analyses will be per-
formed accordingly. As previously mentioned, such datasets
are always stored in RDATA format to guarantee full data
handling and control. Detailed information on LAND-SIP
configurations can be found in the user guide.

The flexibility of the choices in the configuration phase
allows the user to draw and execute many diversified suscep-
tibility applications. It is out of the scope of this paper, if not
impossible, to identify all the possible potential software ap-
plications. However, in the following, five applications (here-
after referred to as “cases”) are listed and discussed with the
purpose of explaining how LAND-SIP, and in turn LAND-
SUITE, can be configured and used for executing the most
common susceptibility investigations (Fig. 2).

– In Case A the susceptibility modeling is performed by
applying a regular cross-validation approach. A bal-
anced random sampling is used to select the grouping
variable mapping units following the “pixel sampling”
selection criteria, with the size of training and valida-
tion datasets (e.g., 70 % training and 30 % validation)
selected by the user (Fig. 2, Case A). This configuration
is usually applied for exploratory analysis mainly fo-
cused on the preliminary evaluation of the explanatory
variables (see LAND-SVA section) and of the statistical
performance of the model. This execution can be per-
formed by the user to select, add, or remove explanatory
variables before the application of the trained model to
the entire study area (Case C).

– In Case B the application considers a cross-validation
approach similar to Case A, but the training and val-
idation dataset partition uses the “landslide sampling”
selection criteria. As before, a balanced random sam-
pling and a specific size of the training and validation
datasets (e.g., 70 % training and 30 % validation) are
chosen (Fig. 2, Case B). As in Case A, it can be used to
analyze the explanatory variables and to test the model-
ing results as well as its dependency from the selection
of different landslide samples.

– In Case C the training configuration can be similar ei-
ther to Case A or B, but the validation is applied to the
entire study area. This case should be applied when the
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Figure 1. Logical schema of LAND-SUITE software.

definitive set of explanatory variables is selected and the
statistical performance of the model is satisfactory and
acceptable. The validation map will show the suscep-
tibility zonation for the entire extent of the study area
(Fig. 2 Case C).

– Case D performs a temporal validation, applicable when
a geomorphological–historical inventory map is avail-

able to train the model and an event (or a successive)
landslide inventory map is used for validation. In such a
case the landslide event map used for the model valida-
tion may cover only a portion of the study area, with a
spatial extent different from the inventory map used for
the calibration (Fig. 2 Case D). This configuration re-
quires two different mask files, one covering the entire
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Figure 2. Simplified representations of the five LAND-SUITE applications, referred to as “cases” in the figures and text, representing
common susceptibility investigations. Red boxes highlight the cases described in the application (Sect. 4).

study area and the other only the area affected by the
event. The selection of the explanatory variables and the
preliminary evaluation of the model can be performed
by applying Case A or B. The temporal validation may
cover the entire study area when an event inventory is
available for its total extent.

– Case E performs a spatial validation, with the model
calibration performed in a given region of the study
area and the validation in a different one. For exam-
ple, the model training and validation can be performed
in two contiguous but not overlapping river basins. In
such a case, the variable selection and the preliminary
model testing could be performed only in one of the
two basins, similarly to Case A or B. In this case the ex-
planatory variables and landslide inventory map should
be available in the two regions with the same character-
istics (Fig. 2 Case E). This configuration requires two
different landslide inventory maps, two mask files and
two explanatory variables datasets, respectively, for the
calibration and for the validation region.

2.2 LAND-SVA: LANDslide – Susceptibility Variable
Analysis

LAND-SVA is designed for the explorative analysis of the
LAND-SE training and validation input datasets and facili-
tates the selection of the optimal set of variables. The tool
automatically detects continuous or dummy variables (i.e.,
derived from categorical data and normally represented with

numerical discrete values) and selects the outputs accord-
ingly. All the analyses are performed separately for the train-
ing and validation datasets, with the main purpose of provid-
ing the possibility to analyze and control the dataset differ-
ences.

In this step, the user may decide whether or not to scale
the variables, and the option is applied jointly to the two
datasets to guarantee the comparability and applicability of
the trained susceptibility model to the validation datasets.
The variable scaling introduces advantages, particularly dur-
ing numerical model convergence, avoiding working with
variables with diversified ranges. However, two susceptibil-
ity analyses, performed with scaled or non-scaled variables,
lead to the same results when both are able to converge. It is
important to note that two analyses performed using scaled
variables in two different areas do not necessarily guarantee
the comparability of the variable coefficients. Similarly, such
comparability does not hold for coefficients of variables de-
rived at different data resolutions (e.g., coefficients of slope
derived using two different DEM resolutions; DEM: digital
elevation model).

LAND-SVA performs the following analyses on continu-
ous and categorical input variables (Figs. 3 and 4, Table 1).

– Conditional density analysis (Fig. 3) includes the fol-
lowing.

– Density plots for continuous variables that show
the distribution of the values of numeric variables,
stratified by the corresponding grouping variable
value (0 and 1). Such plots use a kernel density es-
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timator to show the probability density function of
the variable. It basically corresponds to a smoothed
version of a histogram plot and can be interpreted
similarly.

– Conditional density plots for continuous variables
that examine the proportion of the grouping vari-
able values (0 and 1) against the variation of a given
continuous variable.

– Histogram plots for categorical variables that, sim-
ilarly to density plots, show the distribution of
the values of categorical variables stratified by the
corresponding grouping variable value (0 and 1).
These plots use a normalized histogram counting
to estimate the probability density function.

– Mosaic plots for categorical variables that, simi-
larly to conditional density plots, show the propor-
tion of the grouping variable values (0 and 1) for
different variable categories.

– Pairwise correlation analysis (Fig. 4) of the input vari-
ables: in the analysis a correlogram chart and a corre-
lation matrix are prepared to show pairwise correlation
statistics among the different explanatory variables. The
correlogram shows the following: in the upper triangu-
lar matrix, the values of the Pearson correlation coeffi-
cient for each pair of variables (i.e., R coefficient rang-
ing between −1 and 1, respectively, for a perfect neg-
ative and positive correlation); in the lower triangular
matrix, a graphical representation of the level of corre-
lation (i.e., flattened negatively and positively oriented
ellipses, respectively, for a negative and positive corre-
lation); in the diagonal, the R value for the correlation
of a variable with itself (R= 1). Colors indicate differ-
ent levels of correlation (i.e., white for no correlation,
red and blue, respectively, for negative and positive cor-
relations).

– Multicollinearity test (Table 1) of the input variables:
the analysis follows the diagnostic procedures described
by Belsley et al. (1980), which examines the condition-
ing of the matrix of independent variables by comput-
ing a test statistic called the condition index. In LAND-
SVA, a multicollinearity table is prepared to identify
multicollinearity among the explanatory variables. Mul-
ticollinearity exists whenever a variable is highly corre-
lated with one or more of the other variables and repre-
sents a problem undermining the statistical significance
of the independent variables. Multicollinearity implies
that one variable in a multiple regression model can be
linearly predicted from the others with a substantial de-
gree of accuracy.

Some guidance is provided for the interpretation of the
conditional density outputs shown in Fig. 3. The density and

histogram plots highlight significant numerical and categori-
cal variables when the distributions of the values correspond-
ing to the grouping variable categories (0 or 1) are signif-
icantly different (i.e., different shapes and lack of overlap-
ping). Only under these circumstances, a variable may have
high significance in the modeling. The conditional density
and mosaic plots need to be interpreted considering the vari-
ation and trend of the proportion of the grouping variable cat-
egories (i.e., the proportion of 0 or 1 along the vertical axis)
along with the variable value (i.e., along the horizontal axis).
A distinct increase or decrease in such proportion, along with
a reduced oscillation of it, and without lack of data, is the
expected behavior to identify a variable significantly con-
tributing to the susceptibility zonation. Under these circum-
stances, an independent explanatory variable may have an
unambiguous effect on the dependent grouping variable used
in the modeling (i.e., the presence or absence of landslides in
the mapping unit). Following these considerations, only the
variables A and D should be considered in the susceptibility
modeling (Fig. 3).

The pairwise correlation analysis and multicollinearity test
are easier to interpret. When a significant high correlation is
detected among two or more variables, one or more of the
correlated variables should be excluded from the analysis.
This is relevant for the following reasons.

– The joint use of two or more correlated variables does
not introduce a significant advance for the multivariate
modeling.

– Generally, multivariate models assume independence
among explanatory variables and when correlation ex-
ists, the independence assumption is not verified.

– When the degree of correlation among variables is high,
it can introduce problems during the model fitting and
for the interpretation of the model results.

– Multicollinearity can introduce two main types of prob-
lems: (i) the coefficient estimates can vary largely de-
pending on the other independent variables considered
in the model, with such coefficients’ values becom-
ing very sensitive to small model changes. (ii) Multi-
collinearity may reduce the precision of the estimated
coefficients, weakening the statistical significance of
the model and leading to a limited p-value reliabil-
ity when identifying statistically significant independent
variables.

– When collinearity occurs, the model coefficient values
and their signs may change significantly depending on
the specific variables included in the model, leading
to difficulties evaluating the results. Slightly different
models may lead to different conclusions, making the
actual contribution of variables impossible to under-
stand.
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Figure 3. Example of the conditional density analysis outputs generated by LAND-SVA for five synthetic explanatory variables.

Pairwise correlated variables are those with Pearson R val-
ues in the correlogram matrix close to +1 or −1 (Fig. 4). In-
stead, multicollinearity is detected when the test statistic (i.e.,
the condition index in Table 1) is greater than 30 (Belsley,
1991). When a large condition index (rows with condition in-
dex > 30) is associated with two or more variables with large
variance decomposition proportions (values corresponding to
variables > 0.5), these variables may cause collinearity prob-
lems. Based on the above considerations, the variables B, C,
E, and F show multicollinearity (Table 1) and the correlo-
gram (Fig. 4) helps to identify correlations between B and C
and between E and F. These results suggest alternatively ex-
cluding B or C (negatively correlated) and E or F (positively
correlated).

2.3 LAND-SE: LANDslide – Susceptibility Evaluation

LAND-SE is the module for landslide susceptibility mod-
eling and zonation that is described in detail in Rossi and
Reichenbach (2016). The software holds the possibility to
perform and combine different statistical susceptibility mod-

eling methods, evaluate the results, and estimate the associ-
ated uncertainty. In particular, it allows for (i) the selection
of different combinations of multivariate approaches; (ii) the
evaluation of the model prediction skills and performances
using success contingency matrices and plots, ROC (receiver
operating characteristic) curves, and prediction rate curves;
(iii) the estimation of the associated uncertainty and errors;
(iv) the production of results in standard geographical for-
mats (shapefiles, geotiff); and (v) the usage of additional
computational parameters to tune the calculation procedure
for the analysis of large datasets.

The basic LAND-SE execution flow involves the follow-
ing steps:

– the single susceptibility models’ executions and zona-
tion production;

– the combination of the single susceptibility models us-
ing a logistic regression approach;

– the evaluation of the single and combined susceptibility
models; and

https://doi.org/10.5194/gmd-15-5651-2022 Geosci. Model Dev., 15, 5651–5666, 2022
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Table 1. Example of the table showing the output of the multicollinearity test generated by LAND-SVA.

Condition index Variable coefficients

intercept A B C D E F

1.000 – – – – – – –
1.031 – – – – – – –
1.246 – – – – – – –
1.421 0.999 – – – – – –
1.711 – 0.654 – – 0.654 – –
4.555 – – – – – – –
746 341 312 145 290.375 – – 1.0 1.0 – 1.0 1.0

Figure 4. Example of the graph showing the output of the pairwise
correlation analysis generated by LAND-SVA.

– the estimation of the uncertainty of the single and com-
bined susceptibility models.

Additional details on the LAND-SE tool specifications, con-
figuration, functioning, and scientific assumption can be
found in Rossi and Reichenbach (2016), Rossi et al. (2010),
and the LAND-SUITE user guide.

3 LAND-SUITE application

To better illustrate the LAND-SUITE functionalities, we se-
lected a portion of the study area located in the Gipuzkoa
Province (northern sector of the Iberian Peninsula), where
a landslide inventory and 14 explanatory variables were
mapped (Bornaetxea et al., 2018). This set of thematic data

is used to describe different applications of LAND-SUITE
(i.e., Case A and C in Fig. 2) and to provide examples of the
susceptibility analysis outputs, including plots and maps. The
critical discussion of results and their scientific relevance is
out of the scope of this article and requires dedicated analy-
sis, such as those described by Bornaetxea et al. (2018) and
Rossi et al. (2021).

3.1 Description of the study area and available data

The Gipuzkoa Province is located in the northern part of the
Iberian Peninsula along the western end of the Pyrenees and
covers an area of 1980 km2, with an altitude ranging from
sea level to 1528 m a.s.l. The province, characterized by a
steep morphology, is subdivided into six main watersheds
that drain the territory toward the Cantabrian Sea (Fig. 5).
The investigated area is lithologically heterogeneous, with
materials ranging from Paleozoic rocks to Quaternary de-
posits, corresponding to a hilly and mountainous Atlantic
landscape (Mücher et al., 2010). The average annual precip-
itation is 1597 mm (González-Hidalgo et al., 2011) with two
maximum rainy seasons: November–January and April.

The landslide inventory was prepared by an experienced
geomorphologist during field surveys. The map shows the
location and shape of 793 individual landslides in polygon
format, mainly classified as shallow mass movements. A to-
tal of 14 geo-environmental maps were available as explana-
tory variables. Morphometric variables, such as elevation,
slope, sinusoidal slope (Santacana Quintas, 2001; Amorim,
2012), aspect, surface area ratio (SAR), terrain wetness in-
dex (TWI), curvature, plan curvature, and profile curvature,
were derived from a DEM with a 5 m× 5 m spatial resolu-
tion. Lithology, permeability, regolith thickness, land use,
and vegetation were downloaded from the official spatial
data repository of the Basque Country (GeoEuskadi). Rel-
ative landslide incidence, by means of the frequency ratio
(Bonham-Carter, 1994; Lee et at., 2002), was used to as-
sign a numerical value to each category (hence transformed
into dummy variables). For simplicity, we limited the model
application to the two central and largest watersheds, which
correspond to the Urola and Oria basins.

Geosci. Model Dev., 15, 5651–5666, 2022 https://doi.org/10.5194/gmd-15-5651-2022
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Figure 5. Location of the Gipuzkoa Province study area and the two river basins Urola and Oria.

3.2 LAND-SIP: preparation of the training and
validation datasets

Among all the possible LAND-SUITE applications, we se-
lected the cross-validation approach with the pixel sampling
method (Case A). Moreover, we applied the balanced ran-
dom sampling criteria to select the same number of pixels
with and without landslides for both the training and valida-
tion datasets. The susceptibility model was calibrated using
70 % of the data and validated using the remaining 30 %.

As a first step, using LAND-SVA, we performed a pre-
liminary evaluation of the available data. After the selection
of the most significant explanatory variables, we evaluated
the statistical performance of the calibrated model with the
inspection of the susceptibility outputs produced by LAND-
SE. At the final step, we applied Case C (Fig. 2) to obtain a
susceptibility zonation for the entire area.

3.3 LAND-SVA: variable analysis and selection for the
training and validation datasets

We selected Case A and ran LAND-SVA with the complete
set of variables for the explorative analysis of training and
validation datasets in order to select the optimal combina-
tion of explanatory variables. The multicollinearity table (Ta-
ble 2) shows one condition index larger than 30 and one close
to this value (29 722), with variance decomposition propor-
tion values larger than 0.5. Thereby, the test detected two
groups of variables (group I: curvature, planar curvature, and
profile curvature; group II: SAR, slope, senoidal slope) with
multicollinearity problems.

Inspection of the correlogram (Fig. 6) confirms the pair-
wise correlations within groups I and II and highlights an
additional correlation between vegetation and land use, as-
suming a Pearson R absolute value of 0.5 as a threshold for
detecting correlations.

To obtain additional information on the highly correlated
continuous variables, the relation of each explanatory layer
with the dependent variable was analyzed through the den-
sity plots and conditional density plots reported in Fig. 7.
Similarly, we checked the histogram plots and mosaic plots
(Fig. 8) to analyze the categorical variables. All the remain-
ing outputs of the conditional density analysis were also eval-
uated, to check their relevance for the susceptibility model-
ing.

The evaluation of LAND-SVA outputs allowed the follow-
ing:

– the removal of all the variables in group I due to high
correlation and to the lack of relevant differences be-
tween 1 and 0 in the density plots and conditional plots;

– the selection of slope in group II based on the better
distribution separation and trend shown in the density
and conditional plots; and

– the selection of both vegetation and land use, with a
weak correlation, confirmed by their Pearson R values
only slightly higher than 0.5.
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Figure 6. The figure shows the correlogram obtained by LAND-SVA for the complete set of variables available in the Gipuzkoa study area
(Case A).

3.4 LAND-SE: susceptibility of model execution and
zonation production

After the analysis of the results produced by LAND-SVA,
the final set of explanatory variables used to run LAND-SE
included aspect, land use, lithology, permeability, regolith
thickness, vegetation, elevation, slope, and topographic wet-
ness index. The same training set was used to prepare the
four single landslide susceptibility models and the combined
model (Fig. 9). The figure shows the different landslide zona-
tion maps and the plots (i.e., ROC plot, evaluation plot, suc-
cess rate plot, and contingency or fourfold plot) used to eval-
uate the training performance of the combined model. The
two small maps at the bottom illustrate the errors and un-

certainty values associated with the combined susceptibil-
ity model (Rossi et al, 2010). This set of outputs, restituted
by LAND-SE, is commonly used for the verification and
analysis of the susceptibility zonations obtained by LAND-
SUITE.

4 Scientific contributions and final remarks

LAND-SUITE was developed to support the landslide sus-
ceptibility inference process, which is a complex task.
LAND-SUITE includes a suite of tools for statistically based
landslide susceptibility zonation implemented in R and re-
leased with an open-source license.

Geosci. Model Dev., 15, 5651–5666, 2022 https://doi.org/10.5194/gmd-15-5651-2022
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Figure 7. Density plots and conditional density plots for some continuous explanatory variables available in the Gipuzkoa study area.
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Table 2. Multicollinearity table generated by LAND-SVA for the Gipuzkoa study area.

Conditional index Variable coefficients

Int. a b c d e f g h i j k l m n

1 – – – – – – – – – – – – – – –
1.117 – – – – – – – – – – – – – – –
1.521 – – – – – – – – – – – – – – –
1.583 – – – – – – – – – – – – – – –
1.804 – 0.699 – – – – – – – – – – – – –
1.841 0.997 – – – – – – – – – – – – – –
1.949 – – – – – – – – – – 0.537 – – – –
2.078 – – – – – 0.695 – – – – – – – – –
2.156 – – – – – – – – – – – – – – 0.644
2.453 – – – 0.573 0.669 – – – – – – – – – –
2.799 – – 0.758 – – – 0.692 – – – – – – – –
3.001 – – – – – – – – – – – – – – –
3.637 – – – – – – – – – – – – – – –
29.722 – – – – – – – – – – – 0.892 0.998 0.981 –
323 243.074 – – – – – – – 1 1 1 – – – – –

Int: intercept, a: aspect, b: land use, c: lithology, d: permeability, e: regolith thickness, f: vegetation, g: curvature, h: planar curvature, i: profile curvature, j: elevation, k: SAR, l: slope,
m: senoidal slope, n: TWI.

Figure 8. Histogram plots and mosaic plots for two categorical explanatory variables available in the Gipuzkoa study area.
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Figure 9. Examples of the most relevant outputs of LAND-SE obtained in the Gipuzkoa study area. LDA: linear discriminant analysis; LRM:
logistic regression model; QDA: quadratic discriminant analysis; NNM: neural network analysis; CFM: combined model function.

As highlighted by Reichenbach et al. (2018), there are
only a reduced number of scientific contributions on sta-
tistical landslide susceptibility modeling, properly selecting
and combining the suitable variables, and applying the rel-
evant statistical evaluations for realizing high-quality zona-
tions. This is mainly due to the lack of a comprehensive and
shared approach for susceptibility modeling. LAND-SUITE
can be used for the preparation and selection of the variables
and/or data required for a reliable statistical analysis, and it
is designed to support the geomorphological–geological ex-
perience and competence of the operator. LAND-SUITE fa-

cilitates and simplifies the testing of diversified geomorpho-
logical hypotheses, allowing the verification and discussion
of the initial modeling assumptions, the preparation of less
subjective statistically based susceptibility zonation, and the
evaluation of the quality of the modeling results. A key step
for a reliable landslide susceptibility modeling is the prepara-
tion of robust and unbiased input data, which largely depends
on the user’s skill and experience. In many cases, the data
classification approaches as well as the reliability and repre-
sentativeness of the thematic information are more important
than the statistical methods and tools used for the landslide
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susceptibility estimation. Low-quality output and errors of-
ten derive from incomplete or non-significant data. The tool
has the ambition to help a skilled user with the preparation
of statistically correct and robust models, allowing easily ap-
plying and testing different classical statistical procedures
(e.g., random sampling, data scaling, use of common ma-
chine learning approaches, and commonly used evaluation
metrics).

Using LAND-SUITE, the user can compare results of dif-
ferent mapping units (e.g., pixel, slope units, administrative
units) with distinct configurations and data resolution at di-
verse spatial scales. LAND-SUITE does not consider all the
statistical approaches for landslide susceptibility modeling
and zonation, which can be potentially included in future
software upgrades. Possible LAND-SUITE advancements
can also be achieved by implementing new procedures to
evaluate the variables’ significance across the different sta-
tistical approaches.

The suite has high flexibility and allows performing dif-
ferent partitions of the training and validation dataset as well
as diversified validation tests (e.g., temporal, spatial, cross-
validation), which are relevant evaluation steps to realize ro-
bust scientific susceptibility modeling exercises.

LAND-SUITE can be used to model and evaluate the spa-
tial probability of the occurrence of other types of natural
phenomena (such as floods, forest fires, and rockfall source
areas; see, e.g., Rossi et al., 2021), and this use may highlight
the need for specific code modifications and refinements.

Code availability. LAND-SUITE is composed of three modules
(LAND-SIP, LAND-SVA, LAND-SE) coded as separate R script
files and can be executed under different operating systems. The
software was mainly tested under WindowsOS and LinuxOS, with
the version of R-4.1.1 (64-bit). Some code functionalities of LAND-
SIP require GRASS GIS binding. We tested the script using GRASS
GIS version 7 under WindowsOS and LinuxOS. We recommend
LinuxOS due to the better software integration at a bash script-
ing level. LAND-SUITE is free software; it can be redistributed
or modified under the terms of the GNU General Public (either
version 2 of the license or any later version) as published by
the Free Software Foundation. The program is distributed in the
hope that it will be useful, but without any warranty, without even
the implied warranty of merchantability or fitness for a particu-
lar purpose. See the GNU General Public License for more de-
tails. LAND-SUITE V1.0 is archived in the Zenodo repository
at https://doi.org/10.5281/zenodo.5650810 (Rossi and Bornaetxea,
2021).

Data availability. In this work, example data have been used only
to show different LAND-SUITE applications and they are not
needed to apply LAND-SUITE elsewhere. The software can in fact
be used in other areas using the appropriate input data. Upon re-
quest, the authors can provide the Gipuzkoa data used in the analy-
ses to allow replication of the results.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-5651-2022-supplement.
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