Articles | Volume 15, issue 7
https://doi.org/10.5194/gmd-15-3121-2022
https://doi.org/10.5194/gmd-15-3121-2022
Development and technical paper
 | 
18 Apr 2022
Development and technical paper |  | 18 Apr 2022

Predicting global terrestrial biomes with the LeNet convolutional neural network

Hisashi Sato and Takeshi Ise

Related authors

Impact of changes in climate and CO2 on the carbon storage potential of vegetation under limited water availability using SEIB-DGVM version 3.02
Shanlin Tong, Weiguang Wang, Jie Chen, Chong-Yu Xu, Hisashi Sato, and Guoqing Wang
Geosci. Model Dev., 15, 7075–7098, https://doi.org/10.5194/gmd-15-7075-2022,https://doi.org/10.5194/gmd-15-7075-2022, 2022
Short summary
Understanding the uncertainty in global forest carbon turnover
Thomas A. M. Pugh, Tim Rademacher, Sarah L. Shafer, Jörg Steinkamp, Jonathan Barichivich, Brian Beckage, Vanessa Haverd, Anna Harper, Jens Heinke, Kazuya Nishina, Anja Rammig, Hisashi Sato, Almut Arneth, Stijn Hantson, Thomas Hickler, Markus Kautz, Benjamin Quesada, Benjamin Smith, and Kirsten Thonicke
Biogeosciences, 17, 3961–3989, https://doi.org/10.5194/bg-17-3961-2020,https://doi.org/10.5194/bg-17-3961-2020, 2020
Short summary
The GRENE-TEA model intercomparison project (GTMIP) Stage 1 forcing data set
T. Sueyoshi, K. Saito, S. Miyazaki, J. Mori, T. Ise, H. Arakida, R. Suzuki, A. Sato, Y. Iijima, H. Yabuki, H. Ikawa, T. Ohta, A. Kotani, T. Hajima, H. Sato, T. Yamazaki, and A. Sugimoto
Earth Syst. Sci. Data, 8, 1–14, https://doi.org/10.5194/essd-8-1-2016,https://doi.org/10.5194/essd-8-1-2016, 2016
Short summary
The GRENE-TEA model intercomparison project (GTMIP): overview and experiment protocol for Stage 1
S. Miyazaki, K. Saito, J. Mori, T. Yamazaki, T. Ise, H. Arakida, T. Hajima, Y. Iijima, H. Machiya, T. Sueyoshi, H. Yabuki, E. J. Burke, M. Hosaka, K. Ichii, H. Ikawa, A. Ito, A. Kotani, Y. Matsuura, M. Niwano, T. Nitta, R. O'ishi, T. Ohta, H. Park, T. Sasai, A. Sato, H. Sato, A. Sugimoto, R. Suzuki, K. Tanaka, S. Yamaguchi, and K. Yoshimura
Geosci. Model Dev., 8, 2841–2856, https://doi.org/10.5194/gmd-8-2841-2015,https://doi.org/10.5194/gmd-8-2841-2015, 2015
Short summary

Related subject area

Biogeosciences
Global agricultural ammonia emissions simulated with the ORCHIDEE land surface model
Maureen Beaudor, Nicolas Vuichard, Juliette Lathière, Nikolaos Evangeliou, Martin Van Damme, Lieven Clarisse, and Didier Hauglustaine
Geosci. Model Dev., 16, 1053–1081, https://doi.org/10.5194/gmd-16-1053-2023,https://doi.org/10.5194/gmd-16-1053-2023, 2023
Short summary
ForamEcoGEnIE 2.0: incorporating symbiosis and spine traits into a trait-based global planktic foraminiferal model
Rui Ying, Fanny M. Monteiro, Jamie D. Wilson, and Daniela N. Schmidt
Geosci. Model Dev., 16, 813–832, https://doi.org/10.5194/gmd-16-813-2023,https://doi.org/10.5194/gmd-16-813-2023, 2023
Short summary
FABM-NflexPD 2.0: testing an instantaneous acclimation approach for modeling the implications of phytoplankton eco-physiology for the carbon and nutrient cycles
Onur Kerimoglu, Markus Pahlow, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 16, 95–108, https://doi.org/10.5194/gmd-16-95-2023,https://doi.org/10.5194/gmd-16-95-2023, 2023
Short summary
Evaluating the vegetation–atmosphere coupling strength of ORCHIDEE land surface model (v7266)
Yuan Zhang, Devaraju Narayanappa, Philippe Ciais, Wei Li, Daniel Goll, Nicolas Vuichard, Martin G. De Kauwe, Laurent Li, and Fabienne Maignan
Geosci. Model Dev., 15, 9111–9125, https://doi.org/10.5194/gmd-15-9111-2022,https://doi.org/10.5194/gmd-15-9111-2022, 2022
Short summary
Non-Redfieldian carbon model for the Baltic Sea (ERGOM version 1.2) – implementation and budget estimates
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022,https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary

Cited articles

Benkendorf, D. J. and Hawkins, C. P.: Effects of sample size and network depth on a deep learning approach to species distribution modeling, Ecol. Inform., 60, 101137, https://doi.org/10.1016/j.ecoinf.2020.101137, 2020. 
Bond, W. J., Midgley, G. F., and Woodward, F. I.: The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas, Global Change Biol., 9, 973–982, https://doi.org/10.1046/j.1365-2486.2003.00577.x, 2003. 
Botella, C., Joly, A., Bonnet, P., Monestiez, P., and Munoz, F.: A Deep Learning Approach to Species Distribution Modelling, in: Multimedia Tools and Applications for Environmental & Biodiversity Informatics, edited by: Joly, A., Vrochidis, S., Karatzas, K., Karppinen, A., and Bonnet, P., Springer Switzerland, 169–199, https://doi.org/10.1007/978-3-319-76445-0_10, 2018. 
Box, E. O.: Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography, Tasks for Vegetation Science, 1, Springer Netherlands, https://doi.org/10.1007/978-94-009-8680-0, 1981. 
Breshears, D. D., Cobb, N. S., Rich, P. M., Price, K. P., Allen, C. D., Balice, R. G., Romme, W. H., Kastens, J. H., Floyd, M. L., Belnap, J., Anderson, J. J., Myers, O. B., and Meyer, C. W.: Regional vegetation die-off in response to global-change-type drought, P. Natl. Acad. Sci. USA, 102, 15144–15148, https://doi.org/10.1073/pnas.0505734102, 2005. 
Download
Short summary
Accurately predicting global coverage of terrestrial biome is one of the earliest ecological concerns, and many empirical schemes have been proposed to characterize their relationship. Here, we demonstrate an accurate and practical method to construct empirical models for operational biome mapping via a convolutional neural network (CNN) approach.