Articles | Volume 15, issue 7
https://doi.org/10.5194/gmd-15-3121-2022
https://doi.org/10.5194/gmd-15-3121-2022
Development and technical paper
 | 
18 Apr 2022
Development and technical paper |  | 18 Apr 2022

Predicting global terrestrial biomes with the LeNet convolutional neural network

Hisashi Sato and Takeshi Ise

Related authors

Predicting dominant terrestrial biomes at a global scale using machine learning algorithms, climate variable indices, and extreme climate indices
Hisashi Sato
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-106,https://doi.org/10.5194/bg-2023-106, 2024
Revised manuscript under review for BG
Short summary
Future prediction of Siberian wildfire and aerosol emissions via the improved fire module of the spatially explicit individual-based dynamic global vegetation model
Reza Kusuma Nurrohman, Tomomichi Kato, Hideki Ninomiya, Lea Végh, Nicolas Delbart, Tatsuya Miyauchi, Hisashi Sato, Tomohiro Shiraishi, and Ryuichi Hirata
EGUsphere, https://doi.org/10.5194/egusphere-2024-105,https://doi.org/10.5194/egusphere-2024-105, 2024
Short summary
Impact of changes in climate and CO2 on the carbon storage potential of vegetation under limited water availability using SEIB-DGVM version 3.02
Shanlin Tong, Weiguang Wang, Jie Chen, Chong-Yu Xu, Hisashi Sato, and Guoqing Wang
Geosci. Model Dev., 15, 7075–7098, https://doi.org/10.5194/gmd-15-7075-2022,https://doi.org/10.5194/gmd-15-7075-2022, 2022
Short summary
Understanding the uncertainty in global forest carbon turnover
Thomas A. M. Pugh, Tim Rademacher, Sarah L. Shafer, Jörg Steinkamp, Jonathan Barichivich, Brian Beckage, Vanessa Haverd, Anna Harper, Jens Heinke, Kazuya Nishina, Anja Rammig, Hisashi Sato, Almut Arneth, Stijn Hantson, Thomas Hickler, Markus Kautz, Benjamin Quesada, Benjamin Smith, and Kirsten Thonicke
Biogeosciences, 17, 3961–3989, https://doi.org/10.5194/bg-17-3961-2020,https://doi.org/10.5194/bg-17-3961-2020, 2020
Short summary
The GRENE-TEA model intercomparison project (GTMIP) Stage 1 forcing data set
T. Sueyoshi, K. Saito, S. Miyazaki, J. Mori, T. Ise, H. Arakida, R. Suzuki, A. Sato, Y. Iijima, H. Yabuki, H. Ikawa, T. Ohta, A. Kotani, T. Hajima, H. Sato, T. Yamazaki, and A. Sugimoto
Earth Syst. Sci. Data, 8, 1–14, https://doi.org/10.5194/essd-8-1-2016,https://doi.org/10.5194/essd-8-1-2016, 2016
Short summary

Related subject area

Biogeosciences
Optimising CH4 simulations from the LPJ-GUESS model v4.1 using an adaptive Markov chain Monte Carlo algorithm
Jalisha T. Kallingal, Johan Lindström, Paul A. Miller, Janne Rinne, Maarit Raivonen, and Marko Scholze
Geosci. Model Dev., 17, 2299–2324, https://doi.org/10.5194/gmd-17-2299-2024,https://doi.org/10.5194/gmd-17-2299-2024, 2024
Short summary
The XSO framework (v0.1) and Phydra library (v0.1) for a flexible, reproducible, and integrated plankton community modeling environment in Python
Benjamin Post, Esteban Acevedo-Trejos, Andrew D. Barton, and Agostino Merico
Geosci. Model Dev., 17, 1175–1195, https://doi.org/10.5194/gmd-17-1175-2024,https://doi.org/10.5194/gmd-17-1175-2024, 2024
Short summary
AgriCarbon-EO v1.0.1: large-scale and high-resolution simulation of carbon fluxes by assimilation of Sentinel-2 and Landsat-8 reflectances using a Bayesian approach
Taeken Wijmer, Ahmad Al Bitar, Ludovic Arnaud, Remy Fieuzal, and Eric Ceschia
Geosci. Model Dev., 17, 997–1021, https://doi.org/10.5194/gmd-17-997-2024,https://doi.org/10.5194/gmd-17-997-2024, 2024
Short summary
SAMM version 1.0: a numerical model for microbial- mediated soil aggregate formation
Moritz Laub, Sergey Blagodatsky, Marijn Van de Broek, Samuel Schlichenmaier, Benjapon Kunlanit, Johan Six, Patma Vityakon, and Georg Cadisch
Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024,https://doi.org/10.5194/gmd-17-931-2024, 2024
Short summary
A model of the within-population variability of budburst in forest trees
Jianhong Lin, Daniel Berveiller, Christophe François, Heikki Hänninen, Alexandre Morfin, Gaëlle Vincent, Rui Zhang, Cyrille Rathgeber, and Nicolas Delpierre
Geosci. Model Dev., 17, 865–879, https://doi.org/10.5194/gmd-17-865-2024,https://doi.org/10.5194/gmd-17-865-2024, 2024
Short summary

Cited articles

Benkendorf, D. J. and Hawkins, C. P.: Effects of sample size and network depth on a deep learning approach to species distribution modeling, Ecol. Inform., 60, 101137, https://doi.org/10.1016/j.ecoinf.2020.101137, 2020. 
Bond, W. J., Midgley, G. F., and Woodward, F. I.: The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas, Global Change Biol., 9, 973–982, https://doi.org/10.1046/j.1365-2486.2003.00577.x, 2003. 
Botella, C., Joly, A., Bonnet, P., Monestiez, P., and Munoz, F.: A Deep Learning Approach to Species Distribution Modelling, in: Multimedia Tools and Applications for Environmental & Biodiversity Informatics, edited by: Joly, A., Vrochidis, S., Karatzas, K., Karppinen, A., and Bonnet, P., Springer Switzerland, 169–199, https://doi.org/10.1007/978-3-319-76445-0_10, 2018. 
Box, E. O.: Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography, Tasks for Vegetation Science, 1, Springer Netherlands, https://doi.org/10.1007/978-94-009-8680-0, 1981. 
Breshears, D. D., Cobb, N. S., Rich, P. M., Price, K. P., Allen, C. D., Balice, R. G., Romme, W. H., Kastens, J. H., Floyd, M. L., Belnap, J., Anderson, J. J., Myers, O. B., and Meyer, C. W.: Regional vegetation die-off in response to global-change-type drought, P. Natl. Acad. Sci. USA, 102, 15144–15148, https://doi.org/10.1073/pnas.0505734102, 2005. 
Download
Short summary
Accurately predicting global coverage of terrestrial biome is one of the earliest ecological concerns, and many empirical schemes have been proposed to characterize their relationship. Here, we demonstrate an accurate and practical method to construct empirical models for operational biome mapping via a convolutional neural network (CNN) approach.