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Abstract. A biome is a major regional ecological community
characterized by distinctive life forms and principal plants.
Many empirical schemes such as the Holdridge life zone
(HLZ) system have been proposed and implemented to pre-
dict the global distribution of terrestrial biomes. Knowledge
of physiological climatic limits has been employed to pre-
dict biomes, resulting in more precise simulation; however,
this requires different sets of physiological limits for different
vegetation classification schemes. Here, we demonstrate an
accurate and practical method to construct empirical models
for biome mapping: a convolutional neural network (CNN)
was trained by an observation-based biome map, as well as
images depicting air temperature and precipitation. Unlike
previous approaches, which require assumption(s) of envi-
ronmental constrain for each biome, this method automati-
cally extracts non-linear seasonal patterns of climatic vari-
ables that are relevant in biome classification. The trained
model accurately simulated a global map of current terres-
trial biome distribution. Then, the trained model was applied
to climate scenarios toward the end of the 21st century, pre-
dicting a significant shift in global biome distribution with
rapid warming trends. Our results demonstrate that the pro-
posed CNN approach can provide an efficient and objective
method to generate preliminary estimations of the impact of
climate change on biome distribution. Moreover, we antici-
pate that our approach could provide a basis for more general
implementations to build empirical models of other climate-
driven categorical phenomena.

1 Introduction

Terrestrial biomes and climate are among the earliest known
ecological concerns, and many empirical schemes have been
proposed to characterize their relationship (Prentice and Lee-
mans, 1990). One of the best known of these schemes is
the Holdridge life zone (HLZ) system (Holdridge, 1947),
which classifies vegetation distribution using only two in-
dependent variables: the annual mean precipitation and the
bio-temperature (i.e. mean of above-freezing air tempera-
ture). Due to its simplicity, this scheme has been exten-
sively implemented in numerous studies (Emanuel et al.,
1985; Henderson-Sellers, 1991; Lugo et al., 1999; Monserud
and Leemans, 1992; Prentice, 1990). For example, Elsen et
al. (2021) applied historical climatologies and climate pro-
jections to the HLZ system for determining potential changes
in global life zone distributions under changing climates.

Despite its relative simplicity, the HLZ scheme accounts
well for ecophysiological constraints. This scheme is based
on bio-temperatures, given that plant productivity becomes
negligible at temperatures below 0 ◦C. Furthermore, it em-
ploys logarithmic conversions to better depict the relation-
ship between climatic parameters and life zone boundaries
in quantitative recognition of the temperature control of
metabolic processes. However, since the HLZ scheme only
considers annual climate means, it cannot account for cli-
matic tolerance (e.g. minimum and maximum temperatures)
nor the occurrence and extent of drought seasons, both of
which substantially affect biome distribution (Prentice et al.,
1992).

Efforts have been made to develop biome-mapping
schemes that incorporate these environmental constraints.
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These implementations are considered to have clear physio-
logical bases (Prentice et al., 1992; Woodward and Williams,
1987), and their predictions simulate present-day distribu-
tions of vegetation more accurately than the HLZ scheme.
However, an important drawback of this type of approach is
that it requires absolute physiological limits for each vege-
tation type or plant functional type (PFT), for which there
is still insufficient comprehensive information, as this can-
not be estimated from the geographical distribution of the
vegetation (Lavorel et al., 2007). Making matters more dif-
ficult, researchers do not share the same classification crite-
ria for terrestrial biomes, and the number of vegetation types
or PFTs varies widely from five (Henderson-Sellers, 1991)
to almost 100 (Box, 1981), depending on the research pur-
pose and the geographical scale studied. By contrast, empir-
ical approaches like the HLZ scheme do not require detailed
physiological data and thus have the advantage of being eas-
ily applicable to any given vegetation classification criteria.
Recently, empirical models for biome mapping using various
types of environmental data have been developed by employ-
ing multinomial logistic regression (Levavasseur et al., 2012,
2013) and machine learning algorithms (Hengl et al., 2018).

A convolutional neural network (CNN) has been success-
fully adapted for use in species distribution modelling at re-
gional scales (Benkendorf and Hawkins, 2020; Botella et
al., 2018); however, it has not been used to develop global
biome models. A CNN is an algorithm for machine learning
in which a model learns to conduct classification tasks di-
rectly from training data. Model training of a CNN is based
on finding patterns in the spatial organization of the training
data (typically images) that recognizes its classification well.
Unlike other conventional algorithms for machine learning,
CNN learns directly from training data without a requirement
for manual feature extraction.

Indeed, Botella et al. (2018) empirically demonstrated that
a CNN model performed better at reconstructing species dis-
tributions than the popular species distribution modelling
method, MAXENT (Phillips et al., 2006). This higher per-
formance was attributed to CNN’s efficient use of spatial pat-
terns in environmental variables, which often control species
distribution. MAXENT ignores these spatial patterns. A sec-
ond explanation for the improved performance is that CNN
can treat high-order interaction effects between input vari-
ables, whereas MAXENT, like the majority of other methods,
only represents interactions between environmental variables
by the products of variable pairs.

Using a CNN approach, we demonstrate an accurate and
practical method to construct empirical models for opera-
tional global biome mapping. After evaluating the accuracy
of the biome map reconstructed by this method, we applied
the trained CNN to climatic scenarios toward the end of the
21st century to demonstrate a possible model’s application
to predict the shift in the global biome map under chang-
ing climate. To the best of our knowledge, this is the first
application of CNN to reconstruct a global biome map. We

only employed a small number of climatic variables for input
to examine how CNN improves the reconstruction accuracy
compared to the classical HLZ scheme.

We follow Ise and Oba (2019) and Ise and Oba (2020)
for training CNN with input variables. This method repre-
sents climatic conditions using graphical images and em-
ploys them as training data for CNN models. To account for
seasonal variability, previous correlative climate–vegetation
models needed to pre-define representative variables. For ex-
ample, Levavasseur et al. (2013) divided each climatic vari-
able into four “seasonal” predictors by averaging data cor-
responding 3-month periods (i.e. DJF for winter, MAM for
spring, JJA for summer and SON for fall). By contrast, the
method we employed can automatically extract non-linear
seasonal patterns for climatic variables that are relevant in
biome classification. In other words, it enables CNNs to learn
the seasonal pattern of multiple climatic variables without
any indexical expression, which would reduce the amount of
information and add a source of arbitration.

2 Methods

2.1 Data

For training the CNN model, we employed potential land
cover types and the monthly climate information from the
ISLSCP2 Potential Natural Vegetation Cover (Ramankutty
and Foley, 2010) and CRU TS4.00 (Harris and Jones, 2017)
datasets, respectively. Both datasets have a 0.5◦ global sur-
face grid resolution. The ISLSCP2 dataset is an observation-
based biome map which classifies the global land surface
into 15 vegetation types (Fig. 1a). The ISLSCP2 dataset rep-
resents the world’s vegetation cover that would most likely
exist now in equilibrium with present-day climate and natu-
ral disturbance in the absence of human activities. The CRU
TS4.00 is based on an archive of climatic conditions ob-
served in more than 4000 weather stations distributed world-
wide. Climatic conditions between 1971 and 1980 were se-
lected for CNN training since this time period is just before
the beginning of a clear global warming trend (Rood, 2015),
and the number of meteorological stations that contributed to
the dataset remained relatively stable (Harris et al., 2014).

In machine learning experiments, a fraction of the train-
ing data is typically divided randomly into two subsets, of
which one is used for model training, and the other is then
used to validate the trained model. This study used the CRU
TS4.00 climate data as training data, which was generated by
interpolating data from weather stations, meaning that val-
ues in each grid are not independent of those in nearby grids.
Under these circumstances, validation using the typical pro-
cedures described above would risk overfitting (i.e. training
the model too closely or exactly to a particular set of data,
thereby creating a model that may fail to fit additional data
or reliably predict future observations) (Leinweber, 2007).
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Figure 1. Comparison of global biome distributions used to evaluate the training accuracies of the convolutional neural network (CNN)
model. (a) An observation-based biome map of the ISLSCP2. (b) Biome map derived from the CNN model that was trained with images of
annual mean climate. (c) Biome map derived from a CNN model trained with images of monthly mean climate.

Therefore, other climate datasets were used for validating the
trained model: NCEP/NCAR reanalysis (Kalnay et al., 1996)
and the HadGEM2-ES (Collins et al., 2011) and MIROC-
ESM datasets (Watanabe et al., 2011). Notably, the nature
of these three datasets is different from that of the CRU
TS4.00; the NCEP/NCAR consists of reanalysis data that in-
corporates observed and weather model output data, while
the other two datasets were derived only from climate mod-
els. Details of these climate datasets are available in Table S1.
To be consistent with the training data, the spatial resolutions
of the validation data were linearly interpolated to a 0.5◦ grid
mesh, and climatic conditions from 1971 to 1980 were em-
ployed.

In this study, the accuracy when the model was applied
to the training climate dataset (i.e. the CRU dataset) is re-
ferred to as the “training accuracy”, which shows how well
the model was trained to extract common features of each
category from images. The accuracy for the validation cli-
mate dataset (i.e. the NCEP/NCAR reanalysis, Had2GEM-
ES and MIROC-ESM datasets) is referred to as the “test ac-
curacy”, which shows how the model is robust against inde-
pendent input data.

2.2 Visualization of climate data for machine learning

We graphically represented the standardized air temperature
and precipitation data on a grid using R statistical com-
puting software version 3.3.3 (R-Core-Team, 2018). These
images will be referred to hereafter as visualized climatic
environments (VCEs). For efficient machine learning, cli-

mate data were standardized prior to visualization. The −20–
30 ◦C monthly mean air temperature range and 8–400 mm
per month precipitation range were log transformed to 0.01–
1.00. Values below and above these ranges were, respec-
tively, treated as 0.00 and 1.00. To evaluate how seasonal-
ity of climate regulates the biome, we also conducted CNN
training with annual mean air temperature and annual pre-
cipitation. For this analysis, an annual mean bio-temperature
range of 0–30 ◦C and an annual precipitation range of 80–
4000 mm yr−1 were used. Here, bio-temperature was defined
as the mean of above-freezing monthly air temperatures. Us-
ing the annual mean bio-temperature and annual precipita-
tion, we first evaluated how different representations of the
VCEs influenced the training and found no major differences
(Table S2), and hence the most compact VCE with the small-
est computation time requirement, the RGB colour tile, was
used for this entire study.

In the VCE of the RGB colour tile, up to three climate
variables can be represented by RGB channels. To find the
optimal combination of climatic variables, we systemati-
cally evaluated the model performance of 14 combinations
of climatic variable experiments for both annual and monthly
means (Tables S3 and S4, respectively). Downward short-
wave radiation and humidity were added for this evaluation,
as all of the climate datasets contain these. Generally, train-
ing accuracy increases with the number of climatic variables;
however, the test accuracy does not increase further after two
climatic variables. This suggests that models with three cli-
matic variables are at risk of overfitting. Amongst the models
of annual and monthly means of climatic variables, the model
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with monthly mean air temperature and monthly precipita-
tion had the highest test accuracy. Therefore, models that
combined air temperature (bio-temperature for the model of
annual mean climate) and precipitation were employed for
the entire study.

We also evaluated the influence of different transforma-
tions of climatic variables (Table S5) and assignment patterns
of air temperature and precipitation to RGB colour channels
of the VCE (Table S6) on the resulting accuracy. Based on
these evaluations, we settled on models with a combination
of air temperature (bio-temperature for the model of annual
mean climate) and precipitation, both of which are log trans-
formed, and assigned to the blue and red channels, respec-
tively, of the colour tile VCE representation. Examples of
VCEs of annual mean climate and monthly mean climate are
shown in Figs. S1 and S2, respectively.

2.3 Training of the CNN model

The LeNet (LeCun et al., 1998), which is the world’s first
CNN, was employed for this study. The computer employed
to execute the learning had Ubuntu 16.04 LTS installed as
the operating system and was equipped with an Intel core
i7-8700 CPU, 16 GB of RAM and an NVIDIA GeForce
GTX1080Ti graphics card, which accelerates the learning
procedure. On the computer, the NVIDIA DIGITS 6.0.0 soft-
ware (Caffe version 0.15.14) served as the basis for CNN ex-
ecution, and LeNet was employed to train the CNN via the
TensorFlow library. To see how DIGITS actually implements
the CNN, its internal code can be viewed using the DIGITS
menu (on the “New image model” screen, click the “Cus-
tom Network tab” and select “TensorFlow”). A description
of the CNN model and its parameter settings are available
in the Supplement, Sect. S1. To train the CNN model, 10
VCEs corresponding to years 1971–1980 were generated for
each grid using the CRU data, resulting in 572 640 VCEs
(i.e. 10 × 57264 grids). These VCEs were assigned to 15
categories according to the observation-based biome of the
grid, and the CNN model was trained to determine biomes
from the VCEs. The numbers of training VCEs for each
biome ranged from 4490 (comprising temperate broadleaf
evergreen forest and woodland areas) to 91 740 (comprising
evergreen and deciduous mixed forest area). The training was
conducted for each of the annual and monthly sets of VCEs,
and their computation times for training completion were 109
and 132 min, respectively. The annual and monthly climate
training procedures are identical except for its VCEs.

2.4 Validation of the trained model

To validate the trained CNN model, a VCE of the average
climate conditions from 1971 to 1980 was obtained for each
grid and each validation climate dataset. These VCEs were
applied to the trained CNN model and were classified by
their most plausible biome. It took roughly 8 min to complete

the VCE classification (i.e. 57 264 in total) for each climate
dataset. Then, the computed biome distributions were vali-
dated by quantitative comparison with the observation-based
biome map of ISLSCP2.

For comparing the differences and similarities between
two biome maps, cross-tabulation matrices were obtained for
each comparison. Tables S7 and S8 show cross-tabulation
matrices of training accuracies as examples. Using these ma-
trices, the differences between the two biome maps were sep-
arated into two components: quantity disagreement and allo-
cation disagreement (Pontius and Millones, 2011). Here, a
quantity disagreement indicates a discrepancy between the
proportions of the categories (i.e. the biome), while an al-
location disagreement indicates a discrepancy in the spatial
allocation of the categories under a given set of category pro-
portions in the reference and comparison maps.

The use of one particular climatic dataset for training and
three different climatic datasets for validation introduces a
source of arbitrary error. To examine the dependency of cli-
matic datasets for training and reconstructing performance,
an experiment was performed wherein training and recon-
struction of the same biome map was conducted using all
combinations of the four historical climatic datasets, and then
the reconstructive accuracies were compared.

Overall, 10 years of climate data may be insufficient to
accurately train the model. We therefore conducted a sen-
sitivity test in which performance was compared among
models trained on monthly climate data averaged over 10-
year (1971–1980; control), 20-year (1961–1980) and 30-year
(1951–1980) periods. Validation datasets for each model
were averaged over the same periods as the training data.

We used different climate datasets for training and vali-
dating the models to avoid overfitting that may be caused
by dependencies in values among nearby grids in the train-
ing data (CRU TS4.0). To assess the effects of overfitting, we
compared performance among four models that differed with
respect to the grain size of training data. Nearby grid cells
(0.5◦) of the CRU dataset were aggregated by one of four
grain sizes: 1 × 1 (0.5◦), 2 × 2 (1.0◦), 4 × 4 (2.0◦) and 8 × 8
(4.0◦). For each grain size group, 70 % of grains were ran-
domly selected for model training, and the remaining were
assigned to validation. Validation with coarser grains should
be less impacted by overfitting. In addition to the extent of
overfitting, grain size may also influence training efficiency,
because a coarser grain may skew the allocation ratio of mi-
nor biomes between training and validation subgroups, es-
pecially when these biomes have clumped distributions. To
assess this possibility, validation was also conducted using
other climate datasets.

Finally, we conducted an additional experiment for com-
paring the accuracy of potential natural vegetation (PNV)
map reconstruction between the HLZ scheme and our
method using common training dataset. We developed a
look-up table of the most common PNV for each combina-
tion of annual mean bio-temperature class and annual pre-
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cipitation class, consistent with the HLZ scheme. The bin
sizes of the HLZ scheme are six for the annual mean bio-
temperature class and eight for the annual precipitation class.
As these coarse-grained bin sizes would potentially depress
the accuracy of the PNV simulation, we also developed look-
up tables of 12 × 16, 24 × 32 and 48 × 64 bin sizes to ensure
that the comparison between our model and the HLZ scheme
is as fair as possible. Note that the HLZ scheme employs
a hexagon table, but we employed a cross-tabulation table
for simplicity. CRU annual climate and the ISLSCP2 PNV
map were used for generating the table. Then the table was
applied to all climatic datasets we employed in this study,
drawing reconstructed PNV maps for comparison.

2.5 Application of the CNN model to future climate
scenarios

Following validation, the CNN model trained with monthly
mean climate data was used to predict future biome distri-
bution maps by applying climate scenarios for the 21st cen-
tury. These predictions were conducted in combinations of
two general circulation models (GCMs) (i.e. MIROC-ESM
and HadGEM2-ES) and two Representative Concentration
Pathways (RCPs; i.e. RCP2.6 and RCP8.5). These RCPs rep-
resent the atmospheric greenhouse gas (GHG) concentra-
tion forecasts adopted by the IPCC for its fifth Assessment
Report (AR5) in 2014. RCP2.6 assumes that global annual
GHG emissions will peak between 2010 and 2020 and de-
cline substantially afterwards. By contrast, RCP8.5 assumes
that emissions will continue to rise throughout the 21st cen-
tury. The scenarios RCP2.6 and RCP8.5, respectively, project
that atmospheric CO2 could reach 421 ppm and 936 ppm by
the end of the 21st century (IPCC, 2013).

3 Results and Discussion

3.1 Reconstruction of the current biome distribution
with the CNN model

A comparison of the training accuracies between the annual
climate model and the monthly climate model demonstrated
that simulation of some biomes largely depended on climate
seasonality (Figs. 1 and 2). Besides the most plausible biome,
the CNN outputs its certainty, which is the probability (in %)
of the classification judged by the CNN. Geographical distri-
bution of the certainty clearly showed considering seasonal-
ity improves the certainty except in the northern parts of the
South American and African continents where no apparent
seasonality exists (Fig. S3). These results are consistent with
Prentice et al. (1992), demonstrating that global biome dis-
tribution is under substantial controls of climatic tolerance
and the occurrence and extent of drought seasons. In fact,
seasonality significantly improved the average training ac-
curacies from 3.5 % to 61.9 % for tropical deciduous forests,
0.4 % to 54.8 % for temperate broadleaf evergreen forests and

Table 1. CNN model accuracies for biome distribution simulations.
These accuracies were obtained using the model trained by the cli-
matic dataset on the row, with the climate dataset on the column as
an input reconstruction. Therefore, the italic values show the accu-
racy when the climate datasets for training and reconstruction were
identical. For each climate dataset, the monthly mean temperature
and monthly precipitation during 1971 to 1980 were standardized
and log transformed, then used for drawing the RGB colour tile
VCEs.

CRU NCEP/NCAR MIROC-ESM HadGEM2-ES

CRU 0.736 0.559 0.478 0.512
NCEP/NCAR 0.553 0.704 0.431 0.485
MIROC-ESM 0.540 0.394 0.701 0.417
HadGEM2-ES 0.430 0.505 0.450 0.712

24.5 % to 79.0 % for boreal deciduous forests (Tables S7 and
S8). The same pattern can be observed in test accuracy com-
parisons (Figs. 2, 3 and S3), although temperate broadleaf
evergreen and boreal deciduous forests were largely absent
from Had2GEM-ES and MIROC-ESM, respectively (Fig. 2).
These absences would be due to differences in the recon-
structed current climate among datasets (Fig. S4). Overall,
for all climatic datasets examined, better training and test ac-
curacies were consistently obtained in CNN models trained
with monthly mean climate data than in those trained with
annual mean climate data (Fig. 4). Thus, the CNN model
trained with monthly mean climate data was used for anal-
ysis with the climate scenarios in the 21st century.

For all combinations of CNN models and climatic data,
the allocation disagreement was much larger than the quan-
tity disagreement: while the allocation disagreement ranged
from 0.227 to 0.392, the quantity disagreement varied from
0.037 to 0.200 (Fig. 4). The larger allocation disagreement
can be explained by the tendency of observation-based biome
distributions to be fragmented over areas with similar cli-
matic conditions (Fig. 1a), while model-reconstructed biome
distributions had more continuous structures (Figs. 1b–c and
3) (for example, the Australian continent). The probability
of the most plausible biome tended to be lower for these
fragmented regions (Fig. S3), suggesting these regions have
climatic conditions suitable for multiple potential biomes.
The lower quantity disagreement demonstrated that the CNN
model reconstructed the fraction of the global biome compo-
sition under the current climatic conditions well. As the main
purpose of this research is to develop an empirical model of
climatic controls on biome distribution, this would indicate
that the reconstructions of biome maps with the CNN models
are actually much more accurate for their particular purpose
than implied by the accuracies found from the simple map
comparison.

Table 1 compares the dependence of reconstruction accu-
racy on combinations of climate datasets for training and test
climate datasets. Accuracies were higher and less variable
when the climate dataset for training and testing were identi-
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Figure 2. Global biome compositions of the observation-based map (a) and simulated maps from CNN models trained by monthly mean
climate (b) and annual mean climate (c) of CRU climate data spanning from 1971 to 1980. These CNN models were adapted to four climatic
datasets (CRU, NCEP, Had2GEM-ES and MIROC-ESM) spanning the same period of the training data.

Figure 3. Test accuracies representing how the trained CNN models simulate a biome map with climatic conditions spanning from 1971
to 1980. (a, c, e) Biome map generated by the CNN model that was trained with annual mean climate images from the CRU dataset. (b,
d, f) Biome map generated by the CNN model that was trained by monthly mean climate images from the CRU dataset. Three climatic
datasets, which were not involved during the training process, were employed to generate these maps. (a, b) NCEP/NCAR reanalysis data;
(c, d) output of the Had2GEM-ES dataset; and (e, f) output of the MIROC-ESM dataset. Colour definitions are available in Fig. 1.
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Figure 4. Fractions of agreement and disagreement between observation-based biome map and simulated biome maps trained by monthly
mean climate or annual mean climate from CRU climate data spanning from 1971 to 1980. These CNN models were adapted to one of
the four climatic datasets (CRU, NCEP, Had2GEM-ES and MIROC-ESM) spanning the same period of the training data. The fraction of
agreement of the CRU corresponds to the training accuracy, while that of other climate data corresponds to the test accuracy.

cal (0.701–0.734), compared to when these datasets were dif-
ferent (0.394–0.559). These results suggest that uncertainty
in historical climate reconstruction and overfitting are more
significant sources of failure in reconstructing biome distri-
bution than the dependency of training on a particular climate
dataset.

No major trends were observed in test accuracies in the
sensitivity test, which compared performance among mod-
els trained using monthly climate averaged over 10-, 20- and
30-year periods (Table S9). This indicates that climate data
averaged over a 10-year period are sufficient for model train-
ing. However, long-term climatic conditions are important in
controlling biome distribution via extreme climates, which
may cause complete reorganization of systems and commu-
nities and may provide important opportunities for, and con-
straints to, plant recruitment. For example, in response to
an anomalous drought during 2002–2003, regional-scale die-
off of overstorey woody plants was observed across south-
western North American woodlands (Breshears et al., 2005).
Considering the effects of extreme climates in the model
would be an interesting topic for future study.

Grain size of the training and validation data did not result
in noticeable differences in training and test accuracies, with
the exception of the CRU dataset (Table S10), demonstrating
that the influence of grain size on training efficiency is neg-
ligible. In contrast, test accuracies of the CRU dataset were
lower at coarser grain sizes, at 80.4 %, 78.2 %, 76.1 % and
72.2 % for the 1 × 1, 2 × 2, 4 × 4 and 8 × 8 grain sizes, re-
spectively. These results suggest that dependencies in values
among nearby grids in the CRU dataset resulted in overfit-
ting. However, the effect of overfitting appears to have been

Table 2. CNN model and HLZ models accuracies for biome dis-
tribution simulations. CNN model corresponds to the top row
model of Table S2 (a RGB colour tile). Four HLZ models have
different bin sizes for climate classifications (bio-temperature
class × precipitation class). Each model was trained with the CRU
dataset and adapted to the all-climate datasets (i.e. agreements of
the CRU dataset correspond to the training accuracy, while other
climate data correspond to the test accuracy). In addition, for each
climate dataset, the annual mean bio-temperature and annual pre-
cipitation from 1971 to 1980 were log transformed before use.

CNN model HLZ models

6 × 8 12 × 16 24 × 32 48 × 64

CRU 58.3 % 50.0 % 54.9 % 58.1 % 60.4 %
NCEP/NCAR 45.6 % 43.2 % 45.8 % 44.9 % 44.0 %
MIROC-ESM 48.6 % 44.7 % 46.8 % 48.2 % 46.9 %
HadGEM2-ES 41.3 % 37.2 % 40.1 % 40.8 % 39.5 %

much smaller than that of systematic differences among cli-
mate datasets (Fig. S4); irrespective of grain size, test effi-
ciencies of the CRU dataset were least 19.5 % higher than
those of other datasets. Therefore, our validation method,
which suffers from the systematic differences among climate
datasets, should underestimates the actual performance of
the models, and performance would be much better than we
demonstrated in this paper.

Accuracies of PNV reconstructions using the HLZ look-up
tables for each climate dataset increase with the resolution
of bin sizes for climate classifications (Table 2). It reaches
quasi-equilibrium at 24 bio-temperature classes ×32 precipi-
tation classes, which delivers nearly identical results with the
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CNN model. This result demonstrates that our VCE method
extracts the best possible distribution of the most plausible
PNV in a two-dimensional space of climatic variables.

3.2 Prediction of biome distribution with the CNN
model

The applications of the CNN model to the climate scenar-
ios predicted a significant shift in global biome distribu-
tions (Fig. 5) and area coverage (Fig. S5) under rapid warm-
ing trends (Figs. S6 and S7). For both GCM outputs, more
intense biome shifts were predicted for RCP8.5 than for
RCP2.6, but the shift trends remained consistent. The most
visible change was the expansion of temperate forests over
boreal forests in both North America and Eurasia. Boreal
and cold vegetation shrank and its composition changed;
tundra areas gave way to boreal forests, while boreal ever-
green forests became confined to a narrow strip at higher lat-
itudes. Tropical vegetation remained relatively unchanged,
but nearly all tropical deciduous forests in the Southern
Hemisphere were substituted by savanna, which coincided
with a reduction in annual precipitation (Figs. S6 and S7).

Given the uncertainty of the climatic predictions derived
from the Earth system models (ESMs) and RCP scenarios,
our analysis of the climate change effect only indicates the
potential for considerable changes in biome distribution at
the end of the 21st century. Besides, changes in the expected
biome, which is an equilibrium state of vegetation cover-
age, are not always accompanied by immediate changes in
actual vegetation. In fact, these time lags can be very long
(i.e. decades to millennia) because the adjustment of veg-
etation to new climate conditions entails a series of plant
population dynamics processes, such as seed dispersal, es-
tablishment, competition against other existing plants and
reproduction (Sato and Ise, 2012). Even present-day plant
species distributions are considered not in equilibrium with
present-day climates (e.g. Woodward, 1990). Our study can-
not infer such transient changes in vegetation; however, cur-
rent process base approaches are also not a reliable option
for reconstructing plant population dynamic processes at the
global scale; biome map predictions under common chang-
ing climate scenarios differ significantly from state-of-the-art
dynamic global vegetation models (DGVMs) (Pugh et al.,
2020). Hence, empirical and top-down approaches, like our
simulation, should still have an important role to play in ap-
proximate mapping of biomes under changing climatic con-
ditions.

3.3 Limitations and future directions of our approach

There are two types of approach to mapping biomes: the cor-
relative climate–vegetation approach and process-based ap-
proach (Notaro et al., 2012; Yates et al., 2009). We employed
the former, which has advantages and disadvantages com-
pared to the latter. An advantage of the correlative approach

is that it is relatively straightforward and may be rapidly ap-
plied to different climate change scenarios. Indeed, models
using the correlative approach are a common tool for predict-
ing the impacts of climate change on biodiversity for conser-
vation planning, because they can be easily used to simulta-
neously assess large numbers of species (e.g. Thomas et al.,
2004).

An important disadvantage of the correlative method is
that extrapolating current correlations between climate and
biome distributions into the future may lead to seriously bi-
ased predictions; strong performance in the present climate
does not guarantee similar performance under a new set of
climatic conditions that may occur in the future. However,
neither Had2GEM-ES (Figs. S3f and S8a–b) nor MIROC-
ESM (Figs. S3h and S8c and d) showed apparent expansions
of biome uncertainty in projected climatic conditions at the
end of the 21st century. This may suggest outside the envi-
ronmental space of the training data is not conspicuous at
the global scale. For quantifying methodological uncertainty
might also result from comparing performance between cor-
relative and process-based models in “unsuitable” conditions
outside the environmental space of the training data (Yates et
al., 2009).

A second disadvantage of the correlative approach is that it
cannot infer impacts of elevated atmospheric CO2 on biome
distribution. An increase in CO2 may favour forests over
grasslands due to the advantage that C3 plants may gain over
C4 plants under such conditions (Bond et al., 2003). Notably,
palaeoecological studies have demonstrated that C4 ecosys-
tems were more extensive during the Last Glacial Max-
imum and decreased in abundance following deglaciation
in response to increased atmospheric CO2 concentrations
(Ehleringer et al., 1997). Besides, projections of atmospheric
CO2 have significant divergence among socioeconomic sce-
narios from 421 ppm (RCP2.6) to 936 ppm (RCP8.5) at the
end of the 21st century.

DGVMs, which use process-based approaches, may fa-
cilitate the identification of areas where elevated CO2 may
affect biome distribution under projected climates. Indeed,
the third phase of the Inter-sectoral Impact Model Inter-
comparison Project, now in progress (Warszawski et al.,
2014), includes a sensitivity test for CO2 in which biome
distribution is compared between scenarios of both climate
and CO2 change, and scenarios of climate change only. We
should note, however, that even for current state-of-the-art
process-based models, incorporating effects of elevated CO2
is not straightforward due to their complexity; effects appear
to be taxon specific, to interact strongly with soil type and
climate and to be highly dependent on nitrogen availability
(Korner, 2003; Spinnler et al., 2002).

We must also keep in mind that the correlative climate–
vegetation approach ignores feedbacks between vegetation
and climate, which are known to influence vegetation dis-
tribution at equilibrium (Pitman, 2003). Both Had2GEM-ES
and MIROC-ESM explicitly consider climate–vegetation in-
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Figure 5. Predicted biome maps under climatic scenarios from 2091 to 2100. Monthly means of four sets of forecasted climatic conditions
derived from combinations of two climate models (i.e. Had2GEM-ES and MIROC-ESM) and two RCP scenarios (i.e. RCP2.6 and RCP8.5).
These means were applied to the CNN model that was trained by the current biome distribution map, as well as the present climatic condition
derived from the CRU dataset. Colour definitions are available in Fig. 1.

teractions, including dynamic adjustment of biome distribu-
tion, and hence its projected climates are the outcomes of
such interactions. However, due to the difference in projected
distributions of biomes among models, some regions should
have mismatched reconstructions of the interactions. Imple-
menting the CNN model with Earth system models to dy-
namically adjust biome distribution to simulated climate dis-
tribution would address this issue.

The CNN model was trained with an observation-based
biome map, which is composed of natural vegetation only.
However, the impact of human activity on ecosystems is now
so prevalent, and hence predicting ecosystem changes with-
out explicit consideration of socioeconomic systems would
be challenging (Ellis, 2015). Therefore, future research might
address how current patterns of human activity interact with
projected biome changes to reveal regions where these inter-
active agents align and amplify one another.

This study only considers biome distribution at the 0.5◦

scale. At this scale, climate can be regarded as the dominant
factor that determines vegetation composition, and hence the
correlative climate–vegetation approach fits well in identify-
ing vegetation distribution. However, at more local scales,
topography, soil type and fine-scale biotic and abiotic inter-
actions (e.g. habitat structure, fire, storms) become increas-
ingly important (Willis and Whittaker, 2002). One possible
extension of our study is integrating these factors, acting at
different spatial scales, into a hierarchical modelling frame-
work (Pearson and Dawson, 2003). Another possible exten-

sion is simply adding one more variable that tightly controls
PNV at subgrid scales (such as altitude, slope, or slope as-
pect) into the VCE because one of the three RGB channels
is empty in our model. For example, for geographically ex-
trapolating flux data observed at flux tower sites, Gerken et
al. (2019) trained artificial neural networks (ANNs) using the
elevation of each tower site.

Our study adopted the LeNet architecture implementation,
which has six hidden layers, to create CNN models. Botella
et al. (2018) found that a deep network (six hidden layers)
outperformed a shallow network (one hidden layer) for build-
ing species distribution models; however, Benkendorf and
Hawkins (2020) found that using more than two hidden lay-
ers was of no benefit and argued that the usefulness of deeper
networks depends on the size of the training dataset. There-
fore, carefully selecting the approximate complexity of ar-
chitecture implementation may improve model accuracy. We
compared the performance of models trained by four differ-
ent types of VCE representation of annual precipitation and
average annual bio-temperature, and all models have an al-
most equal performance (Table S2). This result might indi-
cate that LeNet perfectly extracts at least two variables irre-
spective of how visualized. Lastly, the default parameters in
NVIDIA DIGITS 6.0 remained largely unchanged. Our ap-
proach was kept relatively simple to demonstrate the robust-
ness of our concept; however, further improvements to the
scheme could be explored by selecting other implementation
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architectures and systematically testing the effect of parame-
ter modulation.

4 Conclusion

Regardless of the limitations discussed above, this study pro-
vides an efficient and practical method for generating pre-
liminary estimations of the potentially dramatic impact of
climate change on biome distributions. Since this method
is simply an application of image classification AI, it de-
mands much less technical skill and computer resources. Re-
construction of global biome distribution substantially im-
proved when climate seasonality was taken into considera-
tion, demonstrating that the method successfully extracted
seasonal patterns of climatic variables that are relevant in
biome classification. This method could also be applied to
building empirical models of other climate-driven phenom-
ena such as cropping systems and the spread of vector-borne
diseases and hence has potential to be a de facto standard
for building empirical models across a range of research and
application fields.
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