Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3421-2021
https://doi.org/10.5194/gmd-14-3421-2021
Model description paper
 | 
08 Jun 2021
Model description paper |  | 08 Jun 2021

Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping

Zhenjiao Jiang, Dirk Mallants, Lei Gao, Tim Munday, Gregoire Mariethoz, and Luk Peeters

Related authors

High-resolution paleovalley classification from airborne electromagnetic imaging and deep neural network training using digital elevation model data
Zhenjiao Jiang, Dirk Mallants, Luk Peeters, Lei Gao, Camilla Soerensen, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 23, 2561–2580, https://doi.org/10.5194/hess-23-2561-2019,https://doi.org/10.5194/hess-23-2561-2019, 2019
Short summary

Related subject area

Solid Earth
Empirical modeling of tropospheric delays with uncertainty
Jungang Wang, Junping Chen, and Yize Zhang
Geosci. Model Dev., 18, 1487–1504, https://doi.org/10.5194/gmd-18-1487-2025,https://doi.org/10.5194/gmd-18-1487-2025, 2025
Short summary
CitcomSVE-3.0: a three-dimensional finite-element software package for modeling load-induced deformation and glacial isostatic adjustment for an Earth with a viscoelastic and compressible mantle
Tao Yuan, Shijie Zhong, and Geruo A
Geosci. Model Dev., 18, 1445–1461, https://doi.org/10.5194/gmd-18-1445-2025,https://doi.org/10.5194/gmd-18-1445-2025, 2025
Short summary
NSOAS24: a new global marine gravity model derived from multi-satellite sea surface slopes
Shengjun Zhang, Xu Chen, Runsheng Zhou, and Yongjun Jia
Geosci. Model Dev., 18, 1221–1239, https://doi.org/10.5194/gmd-18-1221-2025,https://doi.org/10.5194/gmd-18-1221-2025, 2025
Short summary
GEOMAPLEARN 1.2: detecting structures from geological maps with machine learning – the case of geological folds
David Oakley, Christelle Loiselet, Thierry Coowar, Vincent Labbe, and Jean-Paul Callot
Geosci. Model Dev., 18, 939–960, https://doi.org/10.5194/gmd-18-939-2025,https://doi.org/10.5194/gmd-18-939-2025, 2025
Short summary
Accelerated pseudo-transient method for elastic, viscoelastic, and coupled hydromechanical problems with applications
Yury Alkhimenkov and Yury Y. Podladchikov
Geosci. Model Dev., 18, 563–583, https://doi.org/10.5194/gmd-18-563-2025,https://doi.org/10.5194/gmd-18-563-2025, 2025
Short summary

Cited articles

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., and Isard, M.: Tensorflow: a system for large-scale machine learning, 12th USENIX Symposium on Operating Systems Design and Implementation, 265–283, 2016. 
Alley, N., Ckarjet, T., Macphail, M., and Truswell, E.: Sedimentary infillings and development of major Tertiary palaeodrainage systems of south-central Australia, in: Palaeoweathering, palaeosurfaces and related continental deposits, John Wiley and Sons, Hoboken, US, 73, 337, 2009. 
Amit, S. N. K. B., Shiraishi, S., Inoshita, T., and Aoki, Y.: Analysis of satellite images for disaster detection, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 5189–5192, 2016. 
Davis, A., Macaulay, S., Munday, T., Sorensen, C., Shudra, J., and Ibrahimi, T.: Uncovering the groundwater resource potential of Murchison Region in Western Australia through targeted application of airborne electromagnetics, ASEG Extended Abstracts, 2016, 1–6, 2016. 
de Marsily, G., Delay, F., Gonçalvès, J., Renard, P., Teles, V., and Violette, S.: Dealing with spatial heterogeneity, Hydrogeol. J., 13, 161–183, 2005. 
Short summary
Fast and reliable tools are required to extract hidden information from big geophysical and remote sensing data. A deep-learning model in 3D image construction from 2D image(s) is here developed for paleovalley mapping from globally available digital elevation data. The outstanding performance for 3D subsurface imaging gives confidence that this generic novel tool will make better use of existing geophysical and remote sensing data for improved management of limited earth resources.
Share