Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3421-2021
https://doi.org/10.5194/gmd-14-3421-2021
Model description paper
 | 
08 Jun 2021
Model description paper |  | 08 Jun 2021

Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping

Zhenjiao Jiang, Dirk Mallants, Lei Gao, Tim Munday, Gregoire Mariethoz, and Luk Peeters

Related authors

Can streamflow observations constrain snow mass reconstructions? Lessons from two synthetic numerical experiments
Pau Wiersma, Jan Magnusson, Nadav Peleg, Bettina Schaefli, and Grégoire Mariéthoz
EGUsphere, https://doi.org/10.5194/egusphere-2025-3610,https://doi.org/10.5194/egusphere-2025-3610, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
High-Resolution Snow Water Equivalent Estimation: A Data-Driven Method for Localized Downscaling of Climate Data
Fatemeh Zakeri, Gregoire Mariethoz, and Manuela Girotto
EGUsphere, https://doi.org/10.5194/egusphere-2024-1943,https://doi.org/10.5194/egusphere-2024-1943, 2024
Short summary
Distribution-based pooling for combination and multi-model bias correction of climate simulations
Mathieu Vrac, Denis Allard, Grégoire Mariéthoz, Soulivanh Thao, and Lucas Schmutz
Earth Syst. Dynam., 15, 735–762, https://doi.org/10.5194/esd-15-735-2024,https://doi.org/10.5194/esd-15-735-2024, 2024
Short summary
Future shifting of annual extreme flows under climate change in the Volta River basin
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Proc. IAHS, 385, 121–127, https://doi.org/10.5194/piahs-385-121-2024,https://doi.org/10.5194/piahs-385-121-2024, 2024
Short summary
EUPollMap: the European atlas of contemporary pollen distribution maps derived from an integrated Kriging interpolation approach
Fabio Oriani, Gregoire Mariethoz, and Manuel Chevalier
Earth Syst. Sci. Data, 16, 731–742, https://doi.org/10.5194/essd-16-731-2024,https://doi.org/10.5194/essd-16-731-2024, 2024
Short summary

Cited articles

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., and Isard, M.: Tensorflow: a system for large-scale machine learning, 12th USENIX Symposium on Operating Systems Design and Implementation, 265–283, 2016. 
Alley, N., Ckarjet, T., Macphail, M., and Truswell, E.: Sedimentary infillings and development of major Tertiary palaeodrainage systems of south-central Australia, in: Palaeoweathering, palaeosurfaces and related continental deposits, John Wiley and Sons, Hoboken, US, 73, 337, 2009. 
Amit, S. N. K. B., Shiraishi, S., Inoshita, T., and Aoki, Y.: Analysis of satellite images for disaster detection, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 5189–5192, 2016. 
Davis, A., Macaulay, S., Munday, T., Sorensen, C., Shudra, J., and Ibrahimi, T.: Uncovering the groundwater resource potential of Murchison Region in Western Australia through targeted application of airborne electromagnetics, ASEG Extended Abstracts, 2016, 1–6, 2016. 
de Marsily, G., Delay, F., Gonçalvès, J., Renard, P., Teles, V., and Violette, S.: Dealing with spatial heterogeneity, Hydrogeol. J., 13, 161–183, 2005. 
Short summary
Fast and reliable tools are required to extract hidden information from big geophysical and remote sensing data. A deep-learning model in 3D image construction from 2D image(s) is here developed for paleovalley mapping from globally available digital elevation data. The outstanding performance for 3D subsurface imaging gives confidence that this generic novel tool will make better use of existing geophysical and remote sensing data for improved management of limited earth resources.
Share