Articles | Volume 14, issue 6
Model description paper
08 Jun 2021
Model description paper |  | 08 Jun 2021

Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping

Zhenjiao Jiang, Dirk Mallants, Lei Gao, Tim Munday, Gregoire Mariethoz, and Luk Peeters

Related authors

High-resolution paleovalley classification from airborne electromagnetic imaging and deep neural network training using digital elevation model data
Zhenjiao Jiang, Dirk Mallants, Luk Peeters, Lei Gao, Camilla Soerensen, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 23, 2561–2580,,, 2019
Short summary

Related subject area

Solid Earth
Simulation of a fully coupled 3D glacial isostatic adjustment – ice sheet model for the Antarctic ice sheet over a glacial cycle
Caroline J. van Calcar, Roderik S. W. van de Wal, Bas Blank, Bas de Boer, and Wouter van der Wal
Geosci. Model Dev., 16, 5473–5492,,, 2023
Short summary
AdaHRBF v1.0: gradient-adaptive Hermite–Birkhoff radial basis function interpolants for three-dimensional stratigraphic implicit modeling
Baoyi Zhang, Linze Du, Umair Khan, Yongqiang Tong, Lifang Wang, and Hao Deng
Geosci. Model Dev., 16, 3651–3674,,, 2023
Short summary
PySubdiv 1.0: open-source geological modeling and reconstruction by non-manifold subdivision surfaces
Mohammad Moulaeifard, Simon Bernard, and Florian Wellmann
Geosci. Model Dev., 16, 3565–3579,,, 2023
Short summary
Reconstructing tephra fall deposits via ensemble-based data assimilation techniques
Leonardo Mingari, Antonio Costa, Giovanni Macedonio, and Arnau Folch
Geosci. Model Dev., 16, 3459–3478,,, 2023
Short summary
IMEX_SfloW2D v2: a depth-averaged numerical flow model for volcanic gas-particle flows over complex topographies and water
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Samantha Engwell
Geosci. Model Dev. Discuss.,,, 2023
Revised manuscript accepted for GMD
Short summary

Cited articles

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., and Isard, M.: Tensorflow: a system for large-scale machine learning, 12th USENIX Symposium on Operating Systems Design and Implementation, 265–283, 2016. 
Alley, N., Ckarjet, T., Macphail, M., and Truswell, E.: Sedimentary infillings and development of major Tertiary palaeodrainage systems of south-central Australia, in: Palaeoweathering, palaeosurfaces and related continental deposits, John Wiley and Sons, Hoboken, US, 73, 337, 2009. 
Amit, S. N. K. B., Shiraishi, S., Inoshita, T., and Aoki, Y.: Analysis of satellite images for disaster detection, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 5189–5192, 2016. 
Davis, A., Macaulay, S., Munday, T., Sorensen, C., Shudra, J., and Ibrahimi, T.: Uncovering the groundwater resource potential of Murchison Region in Western Australia through targeted application of airborne electromagnetics, ASEG Extended Abstracts, 2016, 1–6, 2016. 
de Marsily, G., Delay, F., Gonçalvès, J., Renard, P., Teles, V., and Violette, S.: Dealing with spatial heterogeneity, Hydrogeol. J., 13, 161–183, 2005. 
Short summary
Fast and reliable tools are required to extract hidden information from big geophysical and remote sensing data. A deep-learning model in 3D image construction from 2D image(s) is here developed for paleovalley mapping from globally available digital elevation data. The outstanding performance for 3D subsurface imaging gives confidence that this generic novel tool will make better use of existing geophysical and remote sensing data for improved management of limited earth resources.