Articles | Volume 14, issue 6
Geosci. Model Dev., 14, 3421–3435, 2021
https://doi.org/10.5194/gmd-14-3421-2021
Geosci. Model Dev., 14, 3421–3435, 2021
https://doi.org/10.5194/gmd-14-3421-2021

Model description paper 08 Jun 2021

Model description paper | 08 Jun 2021

Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping

Zhenjiao Jiang et al.

Related authors

High-resolution paleovalley classification from airborne electromagnetic imaging and deep neural network training using digital elevation model data
Zhenjiao Jiang, Dirk Mallants, Luk Peeters, Lei Gao, Camilla Soerensen, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 23, 2561–2580, https://doi.org/10.5194/hess-23-2561-2019,https://doi.org/10.5194/hess-23-2561-2019, 2019
Short summary

Related subject area

Solid Earth
PALEOSTRIPv1.0 – a user-friendly 3D backtracking software to reconstruct paleo-bathymetries
Florence Colleoni, Laura De Santis, Enrico Pochini, Edy Forlin, Riccardo Geletti, Giuseppe Brancatelli, Magdala Tesauro, Martina Busetti, and Carla Braitenberg
Geosci. Model Dev., 14, 5285–5305, https://doi.org/10.5194/gmd-14-5285-2021,https://doi.org/10.5194/gmd-14-5285-2021, 2021
Short summary
LoopStructural 1.0: time-aware geological modelling
Lachlan Grose, Laurent Ailleres, Gautier Laurent, and Mark Jessell
Geosci. Model Dev., 14, 3915–3937, https://doi.org/10.5194/gmd-14-3915-2021,https://doi.org/10.5194/gmd-14-3915-2021, 2021
Short summary
Realistic modelling of faults in LoopStructural 1.0
Lachlan Grose, Laurent Ailleres, Gautier Laurent, Guillaume Caumon, Mark Jessell, and Robin Armit
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-112,https://doi.org/10.5194/gmd-2021-112, 2021
Revised manuscript accepted for GMD
Short summary
Spatial Agents for Geological Surface Modelling
Eric A. de Kemp
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-66,https://doi.org/10.5194/gmd-2021-66, 2021
Revised manuscript accepted for GMD
Short summary
Analytical solutions for mantle flow in cylindrical and spherical shells
Stephan C. Kramer, D. Rhodri Davies, and Cian R. Wilson
Geosci. Model Dev., 14, 1899–1919, https://doi.org/10.5194/gmd-14-1899-2021,https://doi.org/10.5194/gmd-14-1899-2021, 2021
Short summary

Cited articles

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., and Isard, M.: Tensorflow: a system for large-scale machine learning, 12th USENIX Symposium on Operating Systems Design and Implementation, 265–283, 2016. 
Alley, N., Ckarjet, T., Macphail, M., and Truswell, E.: Sedimentary infillings and development of major Tertiary palaeodrainage systems of south-central Australia, in: Palaeoweathering, palaeosurfaces and related continental deposits, John Wiley and Sons, Hoboken, US, 73, 337, 2009. 
Amit, S. N. K. B., Shiraishi, S., Inoshita, T., and Aoki, Y.: Analysis of satellite images for disaster detection, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 5189–5192, 2016. 
Davis, A., Macaulay, S., Munday, T., Sorensen, C., Shudra, J., and Ibrahimi, T.: Uncovering the groundwater resource potential of Murchison Region in Western Australia through targeted application of airborne electromagnetics, ASEG Extended Abstracts, 2016, 1–6, 2016. 
de Marsily, G., Delay, F., Gonçalvès, J., Renard, P., Teles, V., and Violette, S.: Dealing with spatial heterogeneity, Hydrogeol. J., 13, 161–183, 2005. 
Short summary
Fast and reliable tools are required to extract hidden information from big geophysical and remote sensing data. A deep-learning model in 3D image construction from 2D image(s) is here developed for paleovalley mapping from globally available digital elevation data. The outstanding performance for 3D subsurface imaging gives confidence that this generic novel tool will make better use of existing geophysical and remote sensing data for improved management of limited earth resources.