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Abstract. This study introduces an efficient deep-learning
model based on convolutional neural networks with joint au-
toencoder and adversarial structures for 3D subsurface map-
ping from 2D surface observations. The method was applied
to delineate paleovalleys in an Australian desert landscape.
The neural network was trained on a 6400km? domain by
using a land surface topography as 2D input and an airborne
electromagnetic (AEM)-derived probability map of paleoval-
ley presence as 3D output. The trained neural network has a
squared error < 0.10 across 99 % of the training domain and
produces a squared error < 0.10 across 93 % of the valida-
tion domain, demonstrating that it is reliable in reconstruct-
ing 3D paleovalley patterns beyond the training area. Due to
its generic structure, the neural network structure designed
in this study and the training algorithm have broad applica-
tion potential to construct 3D geological features (e.g., ore
bodies, aquifer) from 2D land surface observations.

1 Introduction

Imaging the Earth’s subsurface is crucial for the exploration
and management of mineral, energy, and groundwater re-
sources, its reliability depending on the availability and qual-
ity of geological data. Although the amount and quality
of geological data obtained from borehole logs, geophysi-
cal prospecting, and remote sensing have increased over the
past decades, their spatial distribution is highly uneven. Big

datasets on geology and geomorphology are either globally
available as land surface observations (typically remote sens-
ing and topographical data and their derivatives) or only re-
gionally available in a limited number of highly developed
mining and oil fields (e.g., downhole, surface, and airborne
geophysical data and interpretations). In Australia, as an ex-
ample, the former are readily available at relatively low or
no-cost, while the latter are often non-existent and expen-
sive for remote desert areas, where a key challenge is to
secure groundwater for town/community supply, primarily
from shallow aquifers (Munday et al., 2020a, b). In their
study, Munday et al. (2020a, b) interpreted 17 000 line km
of airborne electromagnetic (AEM) data covering an area
of about 30000km? within the much larger Great Victoria
Desert in central Australia (422 000 km?). With a regional
AEM line spacing of 2 km, smaller infill areas were defined
close to remote isolated communities where line spacing was
reduced to 250 and 500 m. This provided greater detail of
the character of the subsurface electrical conductivity, en-
abling more accurate mapping of paleovalley aquifers to be
achieved (Munday et al., 2020a). Unfortunately the applica-
tion of such high-resolution data to much larger areas like the
entire Victorian Desert would be cost prohibitive, so alterna-
tive approaches to the definition of paleovalley systems are
required.

Commonly used methods for modeling complex geolog-
ical structures include geostatistical approaches such as se-
quential Gaussian or indicator simulation (Lee et al., 2007),
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transition probability simulation (Felletti et al., 2006; Weiss-
mann and Fogg, 1999), or multiple-point simulation (MPS)
methods (Hu and Chugunova, 2008; Mariethoz and Caers,
2014; Strebelle, 2002). Most geostatistical approaches are
suitable for “interpolation”, which performs well in pre-
dicting 3D subsurface structures within the data-rich region
(Kitanidis, 1997). However, their ability to “extrapolate” a
3D subsurface structure is limited. Alternatively, MPS is an
advanced method to quantify the complex spatial structure
based on training images. It transfers the quantified structures
to the data-scarce region for stochastic predictions; however,
a realistic 3D training image is difficult to obtain. Overall,
most existing subsurface structure modeling approaches are
developed to analyze a single-support dataset; that is, the data
types employed to define spatial structures are presumed to
be identical to those employed for predictive purposes (de
Marsily et al., 2005). Better defining and using the rela-
tionships between multiple-support datasets allows regional-
scale subsurface structural imaging based on easy-to-obtain,
lower-cost datasets. However, existing methods are often in-
effective or inefficient in capturing essential features and pat-
terns from available large and multiple-support datasets. The
analysis of multiple support datasets, e.g., downhole geo-
physical logs and 3D reflection seismic transects with lithofa-
cies, is still based on subjective expert knowledge. A fast and
reliable tool capable of deriving a robust relationship among
multiple-support big datasets is needed for improved high-
resolution imaging of 3D subsurface structures.

Deep-learning approaches specialized in big-data mining
have the potential to fill this gap (Gu et al., 2018; Hinton
and Salakhutdinov, 2006; Marcais and de Dreuzy, 2017). Ap-
plications in the geosciences include earthquake detection
based on seismic monitoring (Mousavi and Beroza, 2019;
Perol et al., 2018) and disaster recognition from remote sens-
ing data (Amit et al., 2016; Langkvist et al., 2016), among
others. Complex subsurface geological structures, such as
paleovalley fill boundaries and thickness, have also been pre-
dicted based on a digital elevation model combined with deep
learning, assuming that the extension of the paleovalley to-
pography is still present at land surface (Mey et al., 2015). A
recent breakthrough in deep learning is the 2D to 3D image
processing approaches (Niu et al., 2018; Sinha et al., 2017;
Wu et al.,, 2016; Yi et al., 2017). Such approaches give con-
fidence that novel ways to rapidly and automatically identify
buried 3D subsurface structures directly from readily avail-
able 2D surface observations (e.g., digital elevation models,
land cover maps, and signals captured by airborne geophysi-
cal surveys) are feasible. This is most obvious where the 3D
subsurface structures have a relationship with the 2D surface
observations, even though this relationship may be obscured
or even unknown. A neural network framework that reliably
transforms 2D input data into 3D output data is required that
has the flexibility to fuse multiple types of geology and geo-
physical input data for more complex 3D geological subsur-
face structure imaging.
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To this end, we designed a deep convolutional neural net-
work (CNN) with joint autoencoder (Kingma and Welling,
2013) and adversarial structures (Goodfellow et al., 2014).
The autoencoder component features large input and out-
put images connected by a small latent space. This struc-
ture is advantageous for the fusion of complex input data and
3D image reconstruction. Its training involves direct back-
propagation according to a voxel-wise independent heuristic
criterion and thus often needs a large training dataset to con-
strain the model and avoid overfitting (Laloy et al., 2018).
The generative adversarial learning is capable of generating
multiple images inheriting the probability structure of one
real image, which can relax the need for a very large training
dataset.

To demonstrate that the interplay between autoencoder
and adversarial components is capable of effectively exploit-
ing land surface data to generate regional-scale buried 3D ge-
ological structures, the proposed neural network model is ap-
plied to an Australian desert landscape to generate regional-
scale 3D paleovalley patterns from 2D digital terrain infor-
mation. The case study area is a pre-Pliocene paleovalley
system in central Australia that has been postulated to con-
tain significant groundwater resources (Dodds and Sampson,
2000). In these very old landscapes the definition of the pale-
ovalley systems has, until more recently, remained relatively
poorly known (Munday et al., 2020a), which is attributed to
aeolian, alluvial, and colluvial sediments forming a continu-
ous cover over much of the region to depths exceeding 50 m.
Below this depth the definition of the paleovalley systems
becomes significantly clearer with a well-defined network
of major alluvial channels and tributary systems, evident
from the analysis of AEM images (Munday et al., 2020a).
However, large parts of the region have no geophysical data
coverage of value for defining near-surface aquifer systems,
and therefore developing predictive techniques to help target
ground investigations can be of significant value.

Our goal is therefore to employ the proposed model to
express the relationship between an easy-to-obtain dataset
(readily available land surface information) and a more costly
dataset (AEM-derived paleovalley pattern) for the specific
purpose of detecting paleovalley features that would facili-
tate the discovery of new groundwater resources in arid and
semi-arid regions. Specifically, the primary aim of using geo-
physical methods combined with topographical data is to de-
fine the form and nature of paleovalleys to assist with siting
groundwater boreholes in the deepest part of the paleoval-
ley. The model uses AEM only for model development on
a small training area while the application (i.e., detection of
paleovalleys across large areas) uses readily available land
surface information that otherwise (i.e., without AEM cou-
pling through a training procedure) would have had poten-
tially little value for paleovalley detection. Such methodol-
ogy is premised on the existence of a mechanistic or empiri-
cal connection between land surface features and subsurface
distribution of paleovalleys. To what degree such correlation
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exists (and can be cast in a predictive framework) between
paleovalley geometry and land surface features derived from
digital elevation data in the paleovalley system of the Mus-
grave Province can be determined using a deep convolutional
neural network methodology. It is worthy of note that the to-
pography of the study area is very subdued, and whilst the
contemporary draining channels are discordant with respect
to their ancient precursors as defined by the thalweg or deep-
est part of the paleovalley, these old valley systems are con-
cordant with the subdued valley forms expressed in today’s
landscape.

2 Background, materials, and method
2.1 Genesis of paleovalley systems in central Australia

The genesis of the central Australia paleovalleys of the Mus-
grave Province (including the Great Victorian Desert and
the APY Lands as our study area) covers about 60 Ma and
started as early as the middle—late Mesozoic to early Paleo-
gene (about 65 Ma) with the latest paleovalley infilling com-
pleted during the early to late Pliocene (about 2.5-5 Ma).
The paleovalley history involves a sequence of fluvial depo-
sitional periods interrupted by marine incursions, with cli-
matic boundary conditions ranging from warm and humid
(late Miocene) to more arid conditions (late Pliocene to early
Pleistocene) (Krapf et al., 2019).

Valley incision was preceded by deep weathering of ex-
posed basement rocks in the middle to late Mesozoic (Al-
ley et al., 2009). While timing of the incision is debated,
Hou et al. (2008) considered that the first infilling of the pa-
leovalleys with sandy fluvial deposits occurred through the
late Mesozoic—early Paleogene and was focused along long-
lived, and still active (Pawley et al., 2014), structural dis-
continuities within the faulted Mesoproterozoic crystalline
basement rocks (Fig. 1). In the subsequent late Miocene to
early Pliocene (about 40—13 Ma), characterized by a warm
and humid climate, both freshwater and marine environment
reversals occurred with marine sediments being deposited,
transitioning to brackish and freshwater lakes (playas) oc-
cupying the valley floor. During the late Miocene to early
Pliocene (about 10-3 Ma), evaporation of these sediments
led to the deposition of a gypsum layer which was accom-
panied by intermittent fluvial deposition. A combination of
active faulting and sedimentation may have encouraged the
development of small, narrow internally draining basins dur-
ing this period The second and final fluvial deposition with
quartz-rich sands occurred during the wetter early to late
Pliocene (about 2.5-5 Ma). After this, the sedimentation con-
tinued into the Quaternary, with deposition of fluvial and
colluvial sediments across the arid landscape. During the
Pliocene—Holocene (about 4 Ma to present), sand plains and
sand sheets developed as a result of aeolian processes (Krapf
et al., 2019; Munday et al., 2020b).
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As a result of this long history of land-forming processes,
the valley structures of our study area are complex, with vary-
ing width and geometry (Krapf et al., 2019; Munday et al.,
2020b). Whilst fluvial systems at the coarse spatial scale are
“continuous”, at a finer scale they may be discontinuous —
shifting braided channel systems resulting in pinching out
of fine- or coarse-scale sedimentary packages (Krapf et al.,
2019). A not insignificant role in the creation of lateral dis-
continuities was played by neotectonics resulting from the
reactivation of basement structures, which in the context of
the APY Lands (our study site) created discontinuities in
both sedimentation and valley development and important to
groundwater systems formed hydraulic barriers in the over-
lying sediments. Such variations in width and depth of pa-
leovalleys can cause discontinuities when airborne electro-
magnetics are geophysically inverted, particularly if the val-
leys are smaller than the footprint (resolution) of the airborne
system. However, most prominent are discontinuities in the
lateral continuation of the conductivity features associated
with the valley fill, particularly where major fault systems
cross-cut the primary orientation of the valley systems. These
become particularly apparent at depth (> 50m) in the sub-
surface (see Munday et al., 2020b). This is attributed to the
effects of active tectonics during the valley fill events.

The influence of neotectonism on the observed conductiv-
ity structure associated with paleovalley fill sequences has
been discussed elsewhere by Munday et al. (2001), while
Munday et al. (2016) highlighted the role neotectonics may
have played in influencing the patterns of the observed elec-
trical conductivity structure in the Musgrave province of
South Australia. These studies demonstrated the role faults,
interpreted in the regional magnetics, play in influencing the
presence of abrupt discontinuities in the modeled conductiv-
ity structure.

More important for the success of AEM in deriving paleo-
valley features is the variation in the petrophysical properties
of the valley fill materials. If those properties vary, then one
can expect to see an airborne system varying in its capability
of mapping continuity. The critical factor for deep-learning
(DL) applications is understanding what the DL-based fit is
actually working with. That would determine whether one
is fitting a geophysical expression of a geological system,
which by its nature will be a simplification of true geol-
ogy, or geological reality. The geophysical expression is well
matched with the geological reality in that targeted drilling
(described in Krapf et al., 2019; Munday et al., 2020b), con-
firming the presence of thick (> 150m) alluvial sediment
fill sequences associated with the interpreted paleovalleys,
which were also coincident with the more conductive linear
features identified in the AEM data. For the larger paleoval-
leys, where the conductive structures identified correlate well
with alluvial fill of the valley systems, the geophysical data
map geology well. Consequently it is reasonable to argue that
DL is fitting geological reality, but at the finer scales a mis-
match may occur between geological reality and its geophys-
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A: Onset of deep weathering of faulted
crystalline basement rocks (~65Ma)

B: Freshwater and marine environmental
reversals (~40-13 Ma)

C: Drying out, evaporation and
development of playa lakes (~10-3 Ma)
D: Increased erosion and infilling during
wetter conditions (5-2.5 Ma)

E: Development of extensive sand plains
(~4Ma- present)

Figure 1. Conceptualized genesis of the paleovalley landscape in the Musgrave Province in South Australia (after Krapf et al., 2019; Munday

et al., 2020b).

ical expression. For both scales, however, the DL application
will be affected by the underlying geophysical expression of
the geology and the inversion approach used. In the latter
case we employ a 1D layered earth inversion (LEI) routine
with lateral constraints. The 1D assumptions in the inversion
include the assumption that the earth consists of uniform, lat-
erally extensive layers. At the scale of AEM system footprint
and mapping scale of this study, this assumption holds. Sim-
ilar inversion assumptions have been successfully employed
in other studies of paleovalley systems using 1D inversion
codes (e.g., Hgyer et al., 2015; Korus et al., 2017). Davis
et al. (2016) and Roach et al. (2014) reported on the success-
ful application of 1D inversion approaches with AEM data
for delimiting paleovalley systems in Australian settings.

2.2 Neural network methodology

The adversarial neural network for 3D subsurface imaging
involves three steps: (1) patch extraction and representation,
(2) nonlinear mapping and reconstruction, and (3) statistical
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expression of the generated image (Fig. 2). The first step is
referred to as “encoder” (Fig. 2a), which is employed to fuse
the information contained in the 2D land surface observation
images (input data) into a low-dimension layer by successive
convolutions (Hinton and Salakhutdinov, 2006):

h(x) = f(W-x+b), (1)

where f is a nonlinear function referred to as “activation
function”, W is a matrix of weights, and b is a bias vector
in the encoder.

The encoder can be designed to contain multiple layers,
where the number of layers is defined as “depth”. Each layer
can contain multiple images, with the number of images de-
fined as “width”. The images in one layer are convoluted
to generate the elements in the image of the next layer by
weight filters, and the elements in the low-dimension layer
of the encoder (the output) are called “code”. The process of
convolution is illustrated in Fig. 2b, which shows that with a
filter size of 2 x 2 (for a 2D image convolution for example),
one element in the output layer is related to four elements in
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the input layer. Thus, the spatial correlation scale addressed
by the convolutional neural network can be controlled by the
filter size in both vertical and horizontal directions.

The weight and bias in the encoder are trained to ensure
that the code follows a standard normal distribution, by min-
imizing the Kullback-Leibler divergence (L1), defined as
(Kullback and Leibler, 1951)

1
2N ¢

i=1

L1 (uz—i—az —logo? — 1) )

Rl
l

where N is number of codes in the final output layer of the
encoder, and p and o are the mean and standard deviation of
the codes, respectively.

In the second step, the codes are converted into a 3D im-
age of subsurface structure (a 3D array) by deconvolution
(referred to as the “decoder”, Fig. 2a), which is a process
involving a zero-padding before the convolution (Fig. 2c).
The combination of decoder and encoder forms a “genera-
tor”, linking input and output images. The generated 3D im-
age is referred to as “simulated image”.

To ensure that the simulated image is comparable to a real
image, a voxel-wise independent heuristic criterion is mini-
mized. The mean squared error (L2) between simulated and
real images at all voxels is used as the criterion to update the
weight and bias in the decoder, which is expressed as

_ L _vi2
L2= G ()~ Y|, 3)

where M is the number of voxels in the simulated 3D image,
Y is the real image, z is the code generated from the encoder,
and G (-) represents the convolutional calculations in the de-
coder (in the same form as Eq. 1).

However, if only a limited number of real 3D images are
available to train the network, the use of a voxel-wise inde-
pendent criterion often leads to an overfitting problem. Good-
fellow et al. (2014) proposed a generative adversarial net-
work structure, which adds a “discriminator” to convert sim-
ulated and real images to a vector by an identical convolution
process (Fig. 2a). Adversarial criteria are proposed, typically
expressed by binary cross entropy functions as

1
L3 = —Vlog[D(G(z))], )
and

1 1
L4 = —Vlog[D(Y)] - Vlog[l —D(G(2))], 5)

where V is the size of the output vector via the discriminator,
and D(-) represents the calculations (Eq. 1) in the discrimina-
tor. The weights in the discriminator are trained to minimize
L4, which attempts to distinguish the vectors generated from
the real and simulated 3D images. The weights in the gener-
ator are trained to minimize L3, which attempts to fool the
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discriminator to be unable to identify the vector generated
from the simulated 3D image. In such a way, the generator
can produce images aligned with the real image in terms of
probability structure (Goodfellow et al., 2014).

Finally, while the loss function L4 is minimized to opti-
mize the weights in the discriminator, a comprehensive loss
function combining L1, L2, and L3 is employed to optimize
the weights in the generator, which is expressed as (Wu et al.,
2016)

Lg=a-L1+b-L2+c-L3, (6)

where a, b, and c are the coefficients on each loss function.
This loss function makes it convenient to vary the neural net-
work structure between semi-supervised learning with an ad-
ditional adversarial neural network by defining coefficient ¢
as a non-zero value and supervised learning with merely an
autoencoder neural network with ¢ as zero.

The hyperparameters (including the width, depth, filter
size, and the coefficients in generator loss functions, etc.)
defining the neural network structure are determined by trial-
and-error tests (Supplement). Weight and bias in the gener-
ator and discriminator are trained to minimize L, and L4
using the stochastic gradient descent algorithm, referred to
as adaptive moment estimation (ADAM) (Kingma and Ba,
2014). We implemented the above convolution neural net-
work using the TensorFlow Python library (Abadi et al.,
2016). Once the neural network is trained, the generator in
the network (Fig. 2a) is used independently to generate 3D
subsurface structures from the 2D land surface observations.

3 Results

The effectiveness of our deep-learning model is tested on
predicting 3D paleovalley patterns in the Anangu Pitjant-
jatjara Yankunytjatjara (APY) lands, part of the Musgrave
Province of South Australia (Fig. 3a and b). As discussed
earlier, the paleovalley networks in this region are remnants
of the late Mesozoic to early Cenozoic inset valleys with
coarsely to finely grained sand infill, which is covered by a
thin and variable Quaternary eolian sediment (Magee, 2009)
(Fig. 3b). The 3D structure of a paleovalley was interpreted
from an airborne electromagnetic (AEM) survey (Soerensen
et al., 2016). AEM data of sufficient spatial granularity (line
spacing of < 400m) to effectively define the spatial extent
of near-surface aquifer systems only exists in a limited num-
ber of prospective areas within close proximity to isolated
townships. Our previous work evidenced that the paleoval-
ley geometry is correlated to the contemporary valley pat-
tern in this region (Jiang et al., 2019) (compare Fig. 4a and
b). The present-day valley pattern has been well defined by
the multiple-resolution valley bottom flatness (MrVBF) in-
dex based on the slope calculated from the original 1 arcsec
(around 30 m) SRTM-derived digital elevation model (details
in Gallant and Dowling, 2003). Across the paleovalley do-
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Figure 2. (a) Adversarial convolution neural network composed of (1) encoder for input image(s) (e.g., surface geology map, uninterpreted
geophysics prospecting, remote sensing images, and digital elevation model) patch extraction and representation, (2) decoder for nonlinear
mapping and 3D image (i.e., hidden subsurface structure) reconstruction, (3) discriminator for distinguishing the output 3D image and real
image after statistical expression, and features of the (b) convolution and (c¢) deconvolution processes with the color representing the origin
of the deconvoluted values. For mapping paleovalley patterns in an Australian desert landscape, as an example in this study, the input data use
the 2D MrVBF (an index calculated from globally available digital elevation model) with random white noise; the output is a 3D probability
map of paleovalley presence. For convenience of 3D convolution, the 2D input image (800 x 800 x 1) is simply repeated in 10 layers to form
a 3D input dataset (800 x 800 x 10); following a structure optimization by trial and error, the encoder is designed to contain four layers, with
a width of 64, 32, 32, and 1 in each layer. The decoder contains six layers, with a width of 1, 16, 32, 32, 64, and 128, and the discriminator
contains four layers with a width of 128, 64, 32, and 1.

main, MrVBF ranges between 4 (25th percentile) and 7 (75th
percentile), with a median value of 6 (Fig. 4c).

The MrVBF index exists across the entire Aus-
tralia continent, whereas the AEM data coverage
at a high resolution exists across a limited area
only, commonly confined to areas of mineral explo-
ration interest or to areas prospective for ground-
water (http://www.ga.gov.au/about/projects/resources/
continental-geophysics/airborne-electromagnetics, last
access: December 2019). The relationship between MrVBF
and paleovalley presence is complex, as paleovalleys identi-
fied by AEM interpretation occurred in those zones with low
MrVBF in addition to the high MrVBF that indicates the
present-day valley (Fig. 4c). Our neural network model thus
establishes a relationship between the MrVBF index and the
AEM-derived 3D paleovalley structure. This relationship is

Geosci. Model Dev., 14, 3421-3435, 2021

then used to predict the 3D paleovalley structure in those
areas with only MrVBF data but without the AEM dataset.
For the method verification, both the training and prediction
are conducted in the area where AEM data are available.
Note that the weights in the neural network are determined
based on the training area. The AEM data in the other areas
are only used to test the predictive capability of the trained
neural network.

The dataset employed for model verification includes the
1 arcsec resolution 2D MrVBF index across the entire model
domain (Gallant and Dowling, 2003) and a 3D electrical con-
ductivity dataset (400 m horizontal and 10m vertical res-
olution) interpreted from a combined SkyTEM and TEM-
PEST time domain AEM survey across the APY Lands
(Soerensen et al., 2016). These data are available from the
CSIRO Data Access Portal (Munday, 2019). For the conve-
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Figure 3. Datasets for delineating 3D paleovalley in the Anangu Pitjantjatjara Yankunytjatjara (APY) Lands of South Australia: (a) location
of the largest deserts in Australia and (b) general conceptual model of paleovalley sedimentary facies revealed by over 90 % borehole logs,
(¢) multiple resolution valley bottom flatness index, and (d) electrical conductivity (at depths of 30 to 40 m with a horizontal resolution of
400 m) inferred by airborne electromagnetic surveys in the APY Lands, forming an indicator of paleovalley presence.

nience of convolution operations, the MrVBF with 1 arcsec
resolution available is normalized into the values ranging
from zero to unity and is pre-smoothed into a spatial reso-
lution of 100 m, by a 3 x 3 average filter. Considering that
high-bulk electrical conductivity (EC) values are a proxy for
paleovalley presence in contrast to the low EC of the under-
lying bedrock (Jiang et al., 2019; Munday et al., 2013; Taylor
et al., 2015), the occurrence of paleovalleys in this study is
defined by what is termed as an AEM-derived paleovalley
aquifer index (PAI):

10g10(EC)max - loglo(EC)min ’

where max and min represent the maximum and minimum
logarithm of EC values over the entire dataset. PAI ranges
from 0.0 to 1.0 and is calculated in the first 100 m depth at
the AEM-surveyed area, which is considered a ground-truth
3D probability map of paleovalley occurrences with a spa-
tial resolution of 400 m x 400m x 10m. The effectiveness of
the proposed model lies in predicting a 3D paleovalley pat-
tern equally well as that derived from AEM-derived EC val-
ues which represent the bulk geo-electric properties of the
sediment infill, rather than specific lithofacies comparable to
those interpreted from downhole logs.

A neural network simulator is established and trained to
relate the AEM-derived PAI (output image) with 2D MrVBF
data (input image). The training dataset covers part of the
APY Lands (6400 km?) (hereafter referred to as “training
area”). Both loss functions for discriminator and generator

(N

https://doi.org/10.5194/gmd-14-3421-2021

were monitored when training the model to verify the net-
work being trained sufficiently (Supplement). Training of the
network under 10 000 iterations on a high-performance com-
puter (Tesla P-100-SXM2-M-16GB) required 100 to 150 min
of computation time. Once trained, generating of a 3D image
from a 2D MrVBF required less than 5s on a desktop com-
puter.

An area 80km west of the training area is first used to
validate the trained neural network in generating 3D PAI In
both the training and validation domains, the paleovalley ge-
ometry in each layer is generally comparable to the surface
valley geometry indicated by the MrVBF index at land sur-
face (compare Fig. 5a with ¢ and e, and Fig. 5b with d and
f), with varying width at different depths. A horizontal tran-
sect or section through the middle of the study area for both
training and validation areas illustrates the good correspon-
dence between simulated and real PAI. Note the normalized
MrVBEF is typically at its maximum value everywhere the
paleovalley has a significant depth (Fig. 5g and h).

A comparison of the PAI error with the surface valley pat-
tern in the validation domain (Fig. 6) shows that the spatial
distribution of the largest prediction errors is rather random,
with some concentration at the boundaries of modern-day
valleys. This is because the convolution processes in the pro-
posed model may smooth the conductive units adjacent to
the resistive units, and the margins of conductive paleoval-
leys get distorted. The other possible source of error could be
linked to the inversion procedure adopted with the AEM data,
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Figure 4. (a) Airborne electromagnetic (AEM) depth slice showing
conductive paleovalley areas, (b) corresponding MrVBF map with
paleovalley overlay, and (c¢) boxplot (interquartile range, median,
and minimum value) of MrVBF across full study domain and for
paleovalley domain only.
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where a 1D code was employed. On the margins of the pale-
ovalleys, we may be encountering 2D or 3D effects that are
poorly modeled with the 1D approach. The error distribution
in the validation domain is independent from the modern-day
valley geometry in the training area, suggesting that no over-
fitting problem occurs.

The statistics of squared errors between the simulated 3D
PAI and real PAI are calculated at all 200 x 200 x 10 voxels.
As shown in Fig. 5, the squared error in the training dataset
is below 0.1 for 99 % of the training domain and with a mean
value of about 0.03, and the squared error of the predicted 3D
PAI is well below < 0.1 for 93 % of the validation domain,
with a mean squared error of about 0.04. The patterns of the
generated paleovalley in both horizontal and vertical direc-
tions align with those inferred from the AEM-derived PAI.
This indicates that the deep-learning neural network struc-
ture developed here is capable of incorporating the relation-
ships between the MrVBF and the buried paleovalley pat-
terns and allowing for high-quality predictions beyond the
training area.

4 Discussion

4.1 Neural network with and without fully connected
layer

The traditional convolution neural network is often ended by
a fully connected layer in the encoder (e.g., Wu et al., 2016),
where all the elements in the previous layer are connected to
every code in the output layer by matrix multiplication. Such
an operation helps adequately fuse the input information for
prediction. In this study, a 3D image with a size of 25 x25x 5
is employed for the final output layer of the encoder (Fig. 2),
without a fully connected layer. For comparison, a fully con-
nected layer with a vector of 3125 (25 x 25 x 5) elements
is employed as well. As shown in Fig. 7, both models can
be trained to generate the paleovalley in the training domain
successfully (Fig. 7a to ¢ and b, respectively). However, with
a fully connected layer, the trained model fails to generate
paleovalleys in the validation domain. Under an alternative
MrVBF as input (Fig. 7d), the predicted paleovalley has a ge-
ometry very similar to that of the training domain (compare
Fig. 7e and d). This suggests an apparent overfitting, caused
by the fully connected operation fusing the input MrVBF
globally.

Alternatively, the model without a fully connected layer
can predict the paleovalley following the MrVBF pattern
well. Without the fully connected layer, the convolution pro-
cesses with a 3D filter addressed the local relationship of
MrVBF and PAI The correlation scale is determined by the
size of the filter; the lager the filter, the larger the correlation
scale addressed. The filter size can be determined by a trial-
and-error test, according to the misfit between the predicted
geological variable and the ground truth data in both training
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Figure 5. Normalized multiple-resolution valley bottom flatness (MrVBF) (a and b) converted to the 3D paleovalley aquifer index (PAI)
in the training area (c¢) and validation area (80 km west to the train area) (d) by the neural network simulator, compared with AEM-derived
PAI (ground truth data) (e and f) generated from airborne electromagnetic surveys. Transects of simulated and real PAI and corresponding
normalized MrVBF for training area (g) and validation area (h). The trained neural network with the squared error < 0.10 across 99 % of the
training zone (a total of 200 x 200 x 10 voxels) results in a PAI error < 0.10 across 93 % of this validation zone, with < 1 % of this validation

zone having errors exceeding 0.20.

and validation domains. In this study, a filter with a size of
4 x4 %2 is employed for the encoder and discriminator, while
a filter with a size of 5 x 5 x 2 is employed for the decoder
(details in the Supplement).

Training and validation suggest that using a relatively
small filter and removing the fully connected layer to under-
parameter the neural network model helped reduce the over-
fitting risk. Although the performance of the neural network

https://doi.org/10.5194/gmd-14-3421-2021

model with this given structure is acceptable, relatively large
errors still occur at the boundaries of the paleovalley where
the MrVBF values vary sharply. This is because local convo-
lution potentially broadens the influence of large MrVBFs;
adaptive optimization of filter size in each convolution layer
potentially solves this problem.

Geosci. Model Dev., 14, 3421-3435, 2021



3430

(a) Voxel squared errors

(validation domain

/ Fig. 5b

Surface valley
(training domain

0 20 40 60

80km

Figure 6. (a) The 3D distribution of squared errors between simu-
lated PAI and real PAI in the validation domain and (b) plan view of
the mean of squared errors from 10 layers, overlain by the surface
(modern-day) valley (validation and training domains). The large
errors, to some extent, focus on the edge of modern-day valley in
the validation domain but are unrelated to the modern-day valley in
the training domain, suggesting that the overfitting does not occur.

4.2 Adversarial neural network versus autoencoder
neural network

Furthermore, another 19 validation areas west of the train-
ing domain (Fig. 3d) are used to monitor the decay in the
accuracy of predicted paleovalley patterns. This is done us-
ing two different models: semi-supervised learning with ad-
ditional adversarial neural network and supervised learning
with only autoencoder neural network (controlled by coeffi-
cient ¢ in Eq. 6).

As shown in Fig. 8, an extremely small error (< 0.01)
can be achieved when constructing paleovalleys in the train-
ing area by supervised learning using only the autoencoder
neural network. The mean error resulting from the semi-
supervised learning with an additional adversarial network
is higher, i.e., about 0.03. Within the 19 validation areas,
the mean squared errors in predicting paleovalley patterns by
both neural networks are well below 0.04.

While the autoencoder learning generally performs better
than the adversarial learning in terms of mean squared er-
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rors, its prediction errors (especially the 95 % quantile) in-
crease much faster with the separation distance between val-
idation and training areas. This indicates that using the au-
toencoder can only potentially lead to very large errors (or
poor predictions) in the case of discrepancies between train-
ing and prediction areas. We hypothesize that these errors are
due to model overfitting in the case of using only the autoen-
coder learning. To confirm this, we conduct an overfitting test
based on a synthetic ground being a random MrVBF input
following a uniform distribution (i.e., non-informative) rang-
ing from O to 1, which should result in a uniform PAI distri-
bution. As shown in Fig. 8c, a uniform PAI can be generated
by adversarial learning, while the predicted PAI using only
the autoencoder learning results in structured patterns. This
means that the weights trained by purely supervised learning
inherit too much information hidden in the training dataset,
which is inflexible in predicting 3D paleovalley patterns with
strong variations from the input image. On the other hand,
adversarial learning is much more robust to discrepancies,
and the accuracy decays only slightly in predicting 3D struc-
tures in areas further away from the training area, which is a
highly desired property in real-world applications.

4.3 Generalization

The geomorphological evolution of paleovalley systems is
never straightforward. Our study site, for instance, remains
tectonically active, although not in a manner where more
recent tectonism leads to hills and ranges. Rather the neo-
tectonism leads to changes in the hydraulic conductivity of
aquifer systems. In some instances this results in marked
changes in the conductivity structure across faults which
transect paleovalley systems (see, for example, Munday et
al., 2020a, 2001). Furthermore, application of AEM for map-
ping buried valley systems has been successful in several
other areas across Australia, each with their own evolution-
ary intricacies (Davis et al., 2016; Magee, 2009; Roach et al.,
2014), with the key commonality being a very low topo-
graphic gradient. AEM has also been used in northern Eu-
rope, Canada, and the US for similar purposes, albeit with
different electrical conductivity structures. The application of
AEM to map paleovalley systems in many parts of the world
has been successfully demonstrated.

Indeed, paleovalleys occur beneath the glaciated land-
scapes of northern Europe, Canada, and the northern USA.
When filled with coarse-grained permeable sediments, these
valleys — as their Australian counterparts — represent poten-
tial sources of groundwater. In northern Germany, shallow
strata deposited during Quaternary times developed into pa-
leovalley systems characterized by a ground floor topography
filled by fine-grained marine and glacio-marine sediments. In
these systems, AEM was successfully used to derive a de-
tailed 3D geological model of the 350 m deep and 0.8-2 km
wide valley infill (Siemon et al., 2006). Similar buried val-
leys with heterogeneous infill have been reported for Den-
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Figure 7. Input MrVBF in (a) training area and (d) validation area and (b, e) the generated PAI at a depth of 30—40 m with fully connected

operation in the encoder and (c, f) without fully connected operation.

mark, with typical dimensions of 0.5-4km wide and 25—
350 m deep; their lengths vary from roughly 30km for on-
shore structures to 100 km for offshore systems (Hgyer et al.,
2015; Jgrgensen et al., 2003). In our study site, the burial
depth of paleovalley infills ranges between 5.0 and 250 m,
with the typical width from 0.1 to 2 km.

In southern Manitoba, Canada, Oldenborger et al. (2013)
used a combination of airborne time-domain electromagnet-
ics, electrical resistivity, and seismic reflection to map the
complex buried valley morphology with nested scales of val-
leys at a level of detail sufficient for groundwater prospect-
ing, modeling, and management. Korus et al. (2017) demon-
strated that AEM can be used effectively in environments
like the glaciated Central Lowlands of Nebraska (USA) to
identify sedimentary architectural units with a high degree of
lithological heterogeneity. These systems were tens of meters
deep and 100 m to more than 1000 m wide.

All these valley—infill systems are characterized by a
multi-phase history of glaciation and buried valley gen-
esis. The paleovalley systems in our study area and the
broader Musgrave Province—Great Victorian Desert also
have a multi-phase history, albeit with somewhat differ-
ent processes across more extended timescales. Importantly,
geophysical inversions across a wide range of paleovalley
systems have consistently delivered realistic geologic pro-
files, albeit defined by the geo-electrical properties of the
fill materials and the water contained therein (Davis et al.,
2016; Magee, 2009; Roach et al., 2014; Soerensen et al.,
2016). They thus form a sound basis for subsequent develop-
ments such as a deep-learning model for predictive purposes.

https://doi.org/10.5194/gmd-14-3421-2021

Among the many potentially suitable geoscientific datasets
for deep-learning-based prediction of paleovalley boundaries
and internal structure, topographic information was shown in
this study to be a suitable predictor across a large test area
(6400 km?).

Valleys are, by definition, low points in the landscape, and
therefore topographic information is pivotal when mapping
paleodrainage patterns. In Australia, with its long-term tec-
tonic stability, the topography of drainage systems has sur-
vived for very long periods of time. The presence of pre-
existing Mesozoic—Cenozoic valleys has survived in the new
landscape, because both erosion and deposition rates are
extremely slow. These factors have combined to preserve
many ancient Tertiary paleodrainage patterns, and in most
instances paleovalleys are still actual valleys, even though
relief is subdued. Digital elevation models are very effective
in recognizing such Tertiary paleovalleys and related features
because the modern and Tertiary geomorphologies are usu-
ally related, both spatially and genetically (Magee, 2009).

Further characteristics of the paleovalley landscape of the
Musgrave Province are the extensive aeolian sand plains and
sand dunes that overlay the valleys; groundwater calcrete
and gypsum-rich playa sediments are evident in paleoval-
leys where sand dunes are absent (Magee, 2009). These sand
dunes were deposited around 200 000 years ago (Krapf et al.,
2019). The thickness of these sand deposits varies, but drill
hole investigations revealed the boundary between overlying
sand plains and paleovalley to be around 30 m for major val-
leys to 10 m for tributary channels (Krapf et al., 2019). As
a result, the paleovalleys have only a subtle surface expres-
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sion in today’s landscape. As we have demonstrated, detailed
topographic data such as high-resolution MrVBF can be suc-
cessfully used to detect such subdued surface expressions
and infer the presence of buried systems.

In summary, paleovalley relief is minimized and concealed
by infill material, overlying sediments, and the formation of
playas (salt lakes). As a result, DEMs and their derivatives
like MrVBF do not always permit the direct interpretation
of paleovalley boundaries, while the paleochannel facies are
even more difficult to infer (Hou et al., 2000). However, pa-
leodrainage systems in our study area mostly coincide with
topographic lows characterized by MrVBF values between 4
and 7 (inter-quartile range) (Fig. 4c).

So far, our deep-learning model has been tested and val-
idated in the Great Victorian Desert only, noting the areas
for training and validation were considerable in size, each
6400 km?. Based on the characteristics of the paleovalleys
and the topographic features of the surrounding terrain dis-
cussed above, potentially suitable areas for further model
testing can be identified. Note that the proposed model is not
restricted to topographic input parameters only; any parame-
ter that can be correlated with paleovalley structure and fea-
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tures has potential to be used for predictive purposes. There-
fore, the model developed here mainly serves as a generic
framework that also has applicability in other areas, with in-
put data not restricted to topographic information but also
including remote sensing and geophysical data (Hou and
Mauger, 2005).

5 Conclusions

This study developed an efficient and reliable adversarial
convolutional neural network model for generating 3D sub-
surface structures directly from 2D land surface data. The
proposed generic structure of the convolutional neural net-
work was composed of an “encoder” to fuse 2D input data
into low-dimension codes following a normal distribution, a
“decoder” to nonlinearly map the low-dimension codes into
3D subsurface images, and a “discriminator” to statistically
express the generated and real subsurface image into a vec-
tor for adversarial semi-supervised learning based on a single
training image.

The neural network was tested for mapping the 3D struc-
ture of buried paleovalley systems in the northeast Great Vic-
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toria Desert, Australia. Training and validation involved us-
ing the multiple-resolution valley bottom flatness (MrVBF)
(input) and 3D paleovalley aquifer index (PAI) (output) on an
area of 80 x 80 km”. The neural network trained with errors
< 0.1 across 99 % of the training domain can predict 3D PAI
with errors < 0.1 at over 90 % of the validation zones.

The performance of the deep-learning neural network for
3D subsurface structure imaging has applications as a generic
novel tool for making better use of existing multiple-support
2D land surface observations (e.g., surface geology map, dig-
ital elevation data, and remote sensing) for better manage-
ment of limited resources such as groundwater.

Code and data availability. The original data of MrVBF
and AEM were provided by John Gallant and CSIRO
and are available freely from CSIRO Data Access Portal
https://doi.org/10.4225/08/5701C885AB4FE (Gallant et al., 2012)
and https://doi.org/10.25919/5d0868d48591e (Munday, 2019). The
codes for the neural network developed in TensorFlow are now
provided at https://doi.org/10.7910/DVN/DDEIUV (Jiang, 2020).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-3421-2021-supplement.

Author contributions. ZJ developed the model code and performed
the modeling; DM, LG, TM, GM, and LP collected the data and ev-
idence and provided constructive feedback for the improvement of
the model; ZJ and DM prepared the manuscript with contributions
from all co-authors.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. Funding support for this study was provided
by the National Key R&D Program of China (2018YFB1501803)
and the International Postdoctoral Exchange Fellowship Program
(2017) from the China Postdoctoral Council in combination with
CSIRO funding through the Land and Water Business Unit and the
Future Science Platform Deep Earth Imaging. We thank Guillaume
Rongier and Hoel Seille for the internal review and constructive
suggestions on this article.

Financial support. This research has been supported by the Na-
tional Key R&D Program of China (grant no. 2018YFB1501803)
and the International Postdoctoral Exchange Fellowship Program
(2017) from the China Postdoctoral Council in combination with
CSIRO.

Review statement. This paper was edited by Andrew Wickert and
reviewed by two anonymous referees.

https://doi.org/10.5194/gmd-14-3421-2021

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Irving, G., and Isard, M.: Tensorflow:
a system for large-scale machine learning, 12th USENIX Sym-
posium on Operating Systems Design and Implementation, 265—
283, 2016.

Alley, N., Ckarjet, T., Macphail, M., and Truswell, E.: Sedimen-
tary infillings and development of major Tertiary palaeodrainage
systems of south-central Australia, in: Palacoweathering, palaeo-
surfaces and related continental deposits, John Wiley and Sons,
Hoboken, US, 73, 337, 2009.

Amit, S. N. K. B., Shiraishi, S., Inoshita, T., and Aoki, Y.: Analy-
sis of satellite images for disaster detection, IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 5189—
5192, 2016.

Davis, A., Macaulay, S., Munday, T., Sorensen, C., Shudra, J., and
Ibrahimi, T.: Uncovering the groundwater resource potential of
Murchison Region in Western Australia through targeted appli-
cation of airborne electromagnetics, ASEG Extended Abstracts,
2016, 1-6, 2016.

de Marsily, G., Delay, F., Gongalves, J., Renard, P., Teles, V., and
Violette, S.: Dealing with spatial heterogeneity, Hydrogeol. J.,
13, 161-183, 2005.

Dodds, S. and Sampson, L.: The Sustainability of Water Resources
in the Anangu Pitjantjatjara Lands, South Australia, Department
for Water Resources, Adelaide, 2000.

Felletti, F., Bersezio, R., and Giudici, M.: Geostatistical simula-
tion and numerical upscaling, to model ground-water flow in a
sandy-gravel, braided river, aquifer analogue, J. Sediment. Res.,
76, 1215-1229, 2006.

Gallant, J., Dowling, T., and Austin, J.: Multi-resolution Val-
ley Bottom Flatness (MrVBF), v3, CSIRO, Data Collection,
https://doi.org/10.4225/08/5701C885AB4FE, 2012.

Gallant, J. C. and Dowling, T. I.: A multiresolution index of valley
bottom flatness for mapping depositional areas, Water Resour.
Res., 39, 1347, https://doi.org/10.1029/2002WR001426, 2003.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y.: Generative
adversarial nets, arXiv preprint, 2672-2680, 2014.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T.,
Wang, X., Wang, G., and Cai, J.: Recent advances in convolu-
tional neural networks, Pattern Recogn., 77, 354-377, 2018.

Hinton, G. E. and Salakhutdinov, R. R.: Reducing the dimensional-
ity of data with neural networks, 313, Science, 504-507, 2006.

Hou, B. and Mauger, A.: How well does remote sensing aid
palaeochannel identification?-an example from the Harris Green-
stone Belt, SA, MESA J., 38, 46-52, 2005.

Hou, B., Frakes, L., Alley, N., Stamoulis, V., and Rowett, A.: Geo-
scientific signatures of Tertiary palacochannels and their sig-
nificance for mineral exploration in the Gawler Craton region,
MESA J., 19, 36-39, 2000.

Hou, B., Frakes, L., Sandiford, M., Worrall, L., Keeling, J., and
Alley, N.: Cenozoic Eucla Basin and associated palaeovalleys,
southern Australia — climatic and tectonic influences on land-
scape evolution, sedimentation and heavy mineral accumulation,
Sediment. Geol., 203, 112-130, 2008.

Hgyer, A.-S., Jorgensen, F., Sandersen, P., Viezzoli, A., and
Mgller, I.: 3D geological modelling of a complex buried-valley

Geosci. Model Dev., 14, 3421-3435, 2021


https://doi.org/10.4225/08/5701C885AB4FE
https://doi.org/10.25919/5d0868d48591e
https://doi.org/10.7910/DVN/DDEIUV
https://doi.org/10.5194/gmd-14-3421-2021-supplement
https://doi.org/10.4225/08/5701C885AB4FE
https://doi.org/10.1029/2002WR001426

3434

network delineated from borehole and AEM data, J. Appl. Geo-
phys., 122, 94-102, 2015.

Hu, L. and Chugunova, T.:
tics for modeling subsurface
prehensive review, Water Resour. Res.,
https://doi.org/10.1029/2008 WR006993, 2008.

Jiang, Z.: A deep learning model for regional-scale 3D
subsurface structure mapping, Harvard Dataverse, VI,
https://doi.org/10.7910/DVN/DDEIUV, 2020.

Jiang, Z., Mallants, D., Peeters, L., Gao, L., Soerensen, C., and Ma-
riethoz, G.: High-resolution paleovalley classification from air-
borne electromagnetic imaging and deep neural network training
using digital elevation model data, Hydrol. Earth Syst. Sci., 23,
2561-2580, https://doi.org/10.5194/hess-23-2561-2019, 2019.

Jgrgensen, F., Lykke-Andersen, H., Sandersen, P. B., Auken, E.,
and Ngrmark, E.: Geophysical investigations of buried Quater-
nary valleys in Denmark: an integrated application of transient
electromagnetic soundings, reflection seismic surveys and ex-
ploratory drillings, J. Appl. Geophys., 53, 215-228, 2003.

Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimiza-
tion, arXiv preprint, arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M.: Auto-encoding variational bayes,
arXiv preprint, arXiv:1312.6114, 2013.

Kitanidis, P. K.: Introduction to Geostatistics: Applications in Hy-
drogeology, Cambridge University Press, Cambridge, UK, 1997.

Korus, J. T., Joeckel, R. M., Divine, D. P., and Abraham, J. D.:
Three-dimensional architecture and hydrostratigraphy of cross-
cutting buried valleys using airborne electromagnetics, glaciated
Central Lowlands, Nebraska, USA, Sedimentology, 64, 553—
581, 2017.

Krapf, C., Costar, A., Stoian, L., Keppel, M., Gordon, G., Inver-
arity, L., Love, A., and Munday, T.: A sniff of the ocean in the
Miocene at the foothills of the Musgrave Ranges—unravelling the
evolution of the Lindsay East Palaeovalley, MESA J., 90, 4-22,
2019.

Kullback, S. and Leibler, R. A.: On information and sufficiency,
Ann. Math. Stat., 22, 79-86, 1951.

Laloy, E., Hérault, R., Jacques, D., and Linde, N.: Training-Image
Based Geostatistical Inversion Using a Spatial Generative Adver-
sarial Neural Network, Water Resour. Res., 54, 381-406, 2018.

Langkvist, M., Kiselev, A., Alirezaie, M., and Loutfi, A.:
Classification and segmentation of satellite orthoimagery us-
ing convolutional neural networks, Remote Sens., 8, 329,
https://doi.org/10.3390/rs8040329, 2016.

Lee, S.-Y., Carle, S. F,, and Fogg, G. E.: Geologic heterogeneity and
a comparison of two geostatistical models: Sequential Gaussian
and transition probability-based geostatistical simulation, Adv.
Water Resour., 30, 1914-1932, 2007.

Magee, J. W.: Palaeovalley groundwater resources in arid and semi-
arid Australia: A literature review, Geoscience Australia, Record
2009/03, Commonwealth of Australia, 2009.

Marcais, J. and de Dreuzy, J. R.: Prospective Interest of Deep
Learning for Hydrological Inference, Groundwater, 55, 688—692,
2017.

Mariethoz, G. and Caers, J.: Multiple-point geostatistics: stochastic
modeling with training images, John Wiley and Sons, Hoboken,
US, 2014.

Mey, J., Scherler, D., Zeilinger, G., and Strecker, M. R.: Estimat-
ing the fill thickness and bedrock topography in intermontane

Multiple-point  geostatis-
heterogeneity: A com-
44, WI11413,

Geosci. Model Dev., 14, 3421-3435, 2021

Z. Jiang et al.: Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping

valleys using artificial neural networks, J. Geophys. Res.-Earth,
120, 1301-1320, https://doi.org/10.1002/2014JF003270, 2015.

Mousavi, S. M. and Beroza, G. C.: A Machine-Learning Approach
for Earthquake Magnitude Estimation, Geophys. Res. Lett., 47,
€2019GL085976, https://doi.org/10.1029/2019GL085976, 2019.

Munday, T..: Musgrave Province Airborne Electromag-
netic Conductivity Grids, v1, CSIRO [data collection],
https://doi.org/10.25919/5d0868d48591e, 2019.

Munday, T., Abdat, T., Ley-Cooper, Y., and Gilfedder, M.: Facili-
tating Long-term Outback Water Solutions (G-FLOWS Stage-1:
Hydrogeological Framework, Technical Report Series, Goyder
Institute for Water Research, Adelaide, Australia, 2013.

Munday, T., Gilfedder, M Costar, A., Blaikie, T., Cahill, K., Cui, T,
Davis, A., Deng, Z., Flinchum, B., Gao, L., Gogoll, M., Gor-
don, G., Ibrahimi, T., Inverarity, K., Irvine, J., Janardhanan, S.,
Jiang, Z., Keppel, M., Krapf, C., Lane, T., Love, A., Mac-
nae, J., Mallants, D., Mariethoz, G., Martinez, J., Pagendam, D.,
Peeters, L., Pickett, T., Raiber, M., Ren, X., Robinson, N.,
Siade, A., Smolanko, N., Soerensen, C., Stoian, L., Taylor, A.,
Visser, G., Wallis, 1., and Xie, Y.: Facilitating Long-term Out-
back Water Solutions (G-FLOWS Stage 3): Final Summary Re-
port, Goyder Institute for Water Research, Adelaide, Australia,
2020a.

Munday, T., Taylor, A., Raiber, M., Soerensen, C., Peeters, L.,
Krapf, C., Cui, T., Cahill, K., Flinchum, B., Smolanko, N.,
Martinez, J., Ibrahimi, T. and Gilfedder, M: Integrated regional
hydrogeophysical conceptualisation of the Musgrave Province,
South Australia, Technical Report, Goyder Institute for Water
Research, Adelaide, Australia, 2020b.

Munday, T. J., Macnae, J., Bishop, J., and Sattel, D.: A geologi-
cal interpretation of observed electrical structures in the regolith:
Lawlers, Western Australia, Explor. Geophys., 32, 3647, 2001.

Munday, T. J., Cahill, K., Sorensen, C., Davis, A., and Ibrahimi, T.:
Uncovering the Musgraves — a different perspective on an old
landscape, Goyder Institute for Water Research, Adelaide, De-
cember, 2016.

Niu, C., Li, J., and Xu, K.: Im2Struct: Recovering 3D Shape Struc-
ture from a Single RGB Image, Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 80, 4096, 2018.

Oldenborger, G. A., Pugin, A. J. M., and Pullan, S. E.: Airborne
time-domain electromagnetics, electrical resistivity and seismic
reflection for regional three-dimensional mapping and charac-
terization of the Spiritwood Valley Aquifer, Manitoba, Canada,
Near Surf. Geophys., 11, 63-74, 2013.

Pawley, M. J., Dutch, R. A., Werner, M., and Krapf, C. B.: Repeated
failure: long-lived faults in the eastern Musgrave Province,
MESA J., 75, 45-55, 2014.

Perol, T., Gharbi, M., and Denolle, M.: Convolutional neural
network for earthquake detection and location, Sci. Adv., 4,
€1700578, https://doi.org/10.1126/sciadv.1700578, 2018.

Roach, L., Jaireth, S., and Costelloe, M.: Applying regional airborne
electromagnetic (AEM) surveying to understand the architecture
of sandstone-hosted uranium mineral systems in the Callabonna
Sub-basin, Lake Frome region, South Australia, Aust. J. Earth
Sci., 61, 659-688, 2014.

Siemon, B., Eberle, D., Rehli, H.-J., Vo83, W., and Pielawa, J.: Air-
borne geophysical investigation of buried valleys — survey area
Ellerbeker Rinne, Germany, BGR Report, Hannover, 2006.

https://doi.org/10.5194/gmd-14-3421-2021


https://doi.org/10.1029/2008WR006993
https://doi.org/10.7910/DVN/DDEIUV
https://doi.org/10.5194/hess-23-2561-2019
https://arxiv.org/abs/1312.6114
https://doi.org/10.3390/rs8040329
https://doi.org/10.1002/2014JF003270
https://doi.org/10.1029/2019GL085976
https://doi.org/10.25919/5d0868d48591e
https://doi.org/10.1126/sciadv.1700578

Z. Jiang et al.: Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping 3435

Sinha, A., Unmesh, A., Huang, Q., and Ramani, K.: SurfNet: Gen-
erating 3D shape surfaces using deep residual networks, Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 1, 6040, 2017.

Soerensen, C. C., Munday, T. J., Ibrahimi, T., Cahill, K., and Gil-
fedder, M.: Musgrave Province, South Australia: processing and
inversion of airborne electromagnetic (AEM) data: Preliminary
results, Technical Report Series, 1839-2725, Goyder Institute for
Water Research, Adelaide, Australia, 2016.

Strebelle, S.: Conditional simulation of complex geological struc-
tures using multiple-point statistics, Math. Geol., 34, 1-21, 2002.

Taylor, A., Pichler, M., Olifent, V., Thompson, J., Bestland, E.,
Davies, P., Lamontagne, S., Suckow, A., Robinson, N., and
Love, A.: Groundwater Flow Systems of North-eastern Eyre
Peninsula (G-FLOWS Stage-2): Hydrogeology, geophysics and
environmental tracers, Technical Report Series, Goyder Institute
for Water Research, Adelaide, Australia, 2015.

https://doi.org/10.5194/gmd-14-3421-2021

Weissmann, G. S. and Fogg, G. E.: Multi-scale alluvial fan hetero-
geneity modeled with transition probability geostatistics in a se-
quence stratigraphic framework, J. Hydrol., 226, 48—65, 1999.

Wu, J., Zhang, C., Xue, T., Freeman, B., and Tenenbaum, J.: Learn-
ing a probabilistic latent space of object shapes via 3d generative-
adversarial modeling, arXiv [preprint], arXiv:1610.07584, 2016.

Yi, L., Shao, L., Savva, M., Huang, H., Zhou, Y., Wang, Q., Gra-
ham, B., Engelcke, M., Klokov, R., and Lempitsky, V.: Large-
scale 3d shape reconstruction and segmentation from shapenet
core55, arXiv [preprint], arXiv:1710.06104, 2017.

Geosci. Model Dev., 14, 3421-3435, 2021


https://arxiv.org/abs/1610.07584
https://arxiv.org/abs/1710.06104

	Abstract
	Introduction
	Background, materials, and method
	Genesis of paleovalley systems in central Australia
	Neural network methodology

	Results
	Discussion
	Neural network with and without fully connected layer
	Adversarial neural network versus autoencoder neural network
	Generalization

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

