Articles | Volume 14, issue 4
https://doi.org/10.5194/gmd-14-2097-2021
https://doi.org/10.5194/gmd-14-2097-2021
Model description paper
 | 
22 Apr 2021
Model description paper |  | 22 Apr 2021

S-SOM v1.0: a structural self-organizing map algorithm for weather typing

Quang-Van Doan, Hiroyuki Kusaka, Takuto Sato, and Fei Chen

Related authors

Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data
Quang-Van Doan, Toshiyuki Amagasa, Thanh-Ha Pham, Takuto Sato, Fei Chen, and Hiroyuki Kusaka
Geosci. Model Dev., 16, 2215–2233, https://doi.org/10.5194/gmd-16-2215-2023,https://doi.org/10.5194/gmd-16-2215-2023, 2023
Short summary

Related subject area

Earth and space science informatics
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024,https://doi.org/10.5194/gmd-17-5939-2024, 2024
Short summary
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024,https://doi.org/10.5194/gmd-17-5897-2024, 2024
Short summary
GNNWR: An Open-Source Package of Spatiotemporal Intelligent Regression Methods for Modeling Spatial and Temporal Non-Stationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-62,https://doi.org/10.5194/gmd-2024-62, 2024
Revised manuscript accepted for GMD
Short summary
Accelerating Lagrangian transport simulations on graphics processing units: performance optimizations of Massive-Parallel Trajectory Calculations (MPTRAC) v2.6
Lars Hoffmann, Kaveh Haghighi Mood, Andreas Herten, Markus Hrywniak, Jiri Kraus, Jan Clemens, and Mingzhao Liu
Geosci. Model Dev., 17, 4077–4094, https://doi.org/10.5194/gmd-17-4077-2024,https://doi.org/10.5194/gmd-17-4077-2024, 2024
Short summary

Cited articles

Alexander, L. V., Uotila, P., Nicholls, N., and Lynch, A.: A new daily pressure dataset for Australia and its application to the assessment of changes in synoptic patterns during the last century, J. Climate, 23, 1111–1126, 2010. 
Borah, N., Sahai, A., Chattopadhyay, R., Joseph, S., Abhilash, S., and Goswami, B.: A self-organizing map–based ensemble forecast system for extended range prediction of active/break cycles of Indian summer monsoon, J. Geophys. Res.-Atmos., 118, 9022–9034, 2013. 
Chang, L.-C., Shen, H.-Y., and Chang, F.-J.: Regional flood inundation nowcast using hybrid SOM and dynamic neural networks, J. Hydrol., 519, 476–489, 2014. 
Doan, Q. V.: S-SOM v1.0: A structural self-organizing map algorithm for weather typing (Version V1), Zenodo, https://doi.org/10.5281/zenodo.4437954, 2021. 
Download
Short summary
This study proposes a novel structural self-organizing map (S-SOM) algorithm. The superiority of S-SOM is that it can better recognize the difference (or similarity) among spatial (or temporal) data used for training and thus improve the clustering quality compared to traditional SOM algorithms.