Articles | Volume 14, issue 4
https://doi.org/10.5194/gmd-14-2097-2021
https://doi.org/10.5194/gmd-14-2097-2021
Model description paper
 | 
22 Apr 2021
Model description paper |  | 22 Apr 2021

S-SOM v1.0: a structural self-organizing map algorithm for weather typing

Quang-Van Doan, Hiroyuki Kusaka, Takuto Sato, and Fei Chen

Related authors

Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data
Quang-Van Doan, Toshiyuki Amagasa, Thanh-Ha Pham, Takuto Sato, Fei Chen, and Hiroyuki Kusaka
Geosci. Model Dev., 16, 2215–2233, https://doi.org/10.5194/gmd-16-2215-2023,https://doi.org/10.5194/gmd-16-2215-2023, 2023
Short summary

Related subject area

Earth and space science informatics
Overcoming barriers to enable convergence research by integrating ecological and climate sciences: the NCAR–NEON system Version 1
Danica L. Lombardozzi, William R. Wieder, Negin Sobhani, Gordon B. Bonan, David Durden, Dawn Lenz, Michael SanClements, Samantha Weintraub-Leff, Edward Ayres, Christopher R. Florian, Kyla Dahlin, Sanjiv Kumar, Abigail L. S. Swann, Claire M. Zarakas, Charles Vardeman, and Valerio Pascucci
Geosci. Model Dev., 16, 5979–6000, https://doi.org/10.5194/gmd-16-5979-2023,https://doi.org/10.5194/gmd-16-5979-2023, 2023
Short summary
Ensemble of optimised machine learning algorithms for predicting surface soil moisture content at a global scale
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023,https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Hazard assessment modeling and software development of earthquake-triggered landslides in the Sichuan–Yunnan area, China
Xiaoyi Shao, Siyuan Ma, and Chong Xu
Geosci. Model Dev., 16, 5113–5129, https://doi.org/10.5194/gmd-16-5113-2023,https://doi.org/10.5194/gmd-16-5113-2023, 2023
Short summary
A generalized spatial autoregressive neural network method for three-dimensional spatial interpolation
Junda Zhan, Sensen Wu, Jin Qi, Jindi Zeng, Mengjiao Qin, Yuanyuan Wang, and Zhenhong Du
Geosci. Model Dev., 16, 2777–2794, https://doi.org/10.5194/gmd-16-2777-2023,https://doi.org/10.5194/gmd-16-2777-2023, 2023
Short summary
The Common Community Physics Package (CCPP) Framework v6
Dominikus Heinzeller, Ligia Bernardet, Grant Firl, Man Zhang, Xia Sun, and Michael Ek
Geosci. Model Dev., 16, 2235–2259, https://doi.org/10.5194/gmd-16-2235-2023,https://doi.org/10.5194/gmd-16-2235-2023, 2023
Short summary

Cited articles

Alexander, L. V., Uotila, P., Nicholls, N., and Lynch, A.: A new daily pressure dataset for Australia and its application to the assessment of changes in synoptic patterns during the last century, J. Climate, 23, 1111–1126, 2010. 
Borah, N., Sahai, A., Chattopadhyay, R., Joseph, S., Abhilash, S., and Goswami, B.: A self-organizing map–based ensemble forecast system for extended range prediction of active/break cycles of Indian summer monsoon, J. Geophys. Res.-Atmos., 118, 9022–9034, 2013. 
Chang, L.-C., Shen, H.-Y., and Chang, F.-J.: Regional flood inundation nowcast using hybrid SOM and dynamic neural networks, J. Hydrol., 519, 476–489, 2014. 
Doan, Q. V.: S-SOM v1.0: A structural self-organizing map algorithm for weather typing (Version V1), Zenodo, https://doi.org/10.5281/zenodo.4437954, 2021. 
Download
Short summary
This study proposes a novel structural self-organizing map (S-SOM) algorithm. The superiority of S-SOM is that it can better recognize the difference (or similarity) among spatial (or temporal) data used for training and thus improve the clustering quality compared to traditional SOM algorithms.