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Abstract. This study proposes a novel structural self-
organizing map (S-SOM) algorithm for synoptic weather
typing. A novel feature of the S-SOM compared with tradi-
tional SOMs is its ability to deal with input data with spatial
or temporal structures. In detail, the search scheme for the
best matching unit (BMU) in a S-SOM is built based on a
structural similarity (S-SIM) index rather than by using the
traditional Euclidean distance (ED). S-SIM enables the BMU
search to consider the correlation in space between weather
states, such as the locations of highs or lows, that is impos-
sible when using ED. The S-SOM performance is evaluated
by multiple demo simulations of clustering weather patterns
over Japan using the ERA-Interim sea-level pressure data.
The results show the S-SOM’s superiority compared with a
standard SOM with ED (or ED-SOM) in two respects: clus-
tering quality based on silhouette analysis and topological
preservation based on topological error. Better performance
of S-SOM versus ED is consistent with results from differ-
ent tests and node-size configurations. S-SOM performs bet-
ter than a SOM using the Pearson correlation coefficient (or
COR-SOM), though the difference is not as clear as it is com-
pared to ED-SOM.

1 Introduction

There has been an increasing number of self-organizing map
(SOM) applications for climatology studies in recent years.
The SOM was initially developed by Kohonen (1982) as an
unsupervised data-mining method. SOMs are used to dis-
cover patterns intrinsic to input data by projecting them into

a map (usually two-dimensional), and the nodes on the map
represent the most important features of the input space. One
standard application of SOMs in climatology is “objective”
synoptic weather typing (Sheridan and Lee, 2011). Here,
synoptic circulation data, typically sea-level pressure (SLP)
or geopotential height, are used to generate a small-enough
number of representative weather states that can be readily
handled by sequential analysis.

SOMs are used for diverse purposes, from discovering the
links between synoptic circulation and climatic variability
to statistical dynamical downscaling, climate prediction, and
weather forecasting. For example, with a SOM, Horton et
al. (2015) found that changes in the frequency of geopotential
height patterns since the 1980s have modified extreme tem-
perature trends in some Northern Hemisphere regions. Also,
SOMs have been used to discover the association between
rainfall changes and shifts in large-scale circulation patterns
(e.g., Alexander et al., 2010; Lennard and Hegerl, 2015;
Swales et al., 2016; Nguyen-Le and Yamada, 2019; Luong
et al., 2020). SOMs are also used as a statistical downscaling
method for the future climate by associating the changes in
the frequency of synoptic occurrences with surface variables
(e.g., Gibson et al., 2016; Ohba and Sugimoto, 2019). Borah
et al. (2013) developed a probabilistic prediction scheme for
the Indian summer monsoon intraseasonal oscillation using
a SOM-based technique. Chang et al. (2014) used a hybrid
SOM and dynamic neural network for nowcasting rainfall in
Taiwan. Nguyen-Le et al. (2017) used a hybrid system of nu-
merical weather prediction (NWP) and a SOM to forecast
heavy rain for up to a week for Kyushu, Japan. A hybrid
NWP and a SOM were also used by Ohba et al. (2018) as
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a system for the medium-range forecasting of wind ramps in
Japan. For the first time, Lagerquist et al. (2017) proposed a
way to obtain a real-time extreme wildfire weather forecast
in the US using a SOM technique.

The SOM algorithm consists of repeatedly learning pro-
cesses that gradually update the nodes in the output map un-
til they converge to a stable solution, which is expected to be
the “best” representative of the input space. At each learning
step, the SOM selects an input vector, usually randomly, and
then searches for a node in a SOM map that best matches that
vector. In this task, nodes in the output map compete to find
the node most “similar” to the input vector. The “winning”
node is called the best matching unit (BMU). Next, training
is implemented by making the BMU and its neighbors closer
to the input vector. The learning rate and neighborhood func-
tion govern the training task. Searching for the BMU is a
crucial part of the SOM algorithm as it affects the sequential
training process and the quality of the final SOM outcome.

Traditional SOMs use the Euclidean distance (ED) to
search for the BMU, where the “closest” node to an input
vector in terms of ED will be assigned as the BMU. This
method is simple and computationally effective. Moreover,
ED is very popular and widely used as a quantitative simi-
larity metric when comparing two objects. ED is commonly
used in many machine learning algorithms. It is also the
basis of many clustering algorithms such as K means and
affinity propagation. Nevertheless, ED has severe shortcom-
ings when used to compare “structured” signals, i.e., those
with spatial or temporal orders, such as time series and two-
dimensional images. Despite these shortcomings, ED has
been influential and widely used. A reason for its popular-
ity is that the prevailing attitudes towards ED seem to range
from “it’s easy to use and not so bad” to “everyone else uses
it” (Wang and Bovik, 2009).

This weakness of ED becomes crucial in climatology stud-
ies where most of the data are spatially and temporally struc-
tured, e.g., weather maps, and time series. Intuitively, a simi-
larity measure based on ED might lead to the degradation of
the spatial correlations between air pressure patterns, such
as the location of highs or lows (Fig. A1). Thus, a BMU
search scheme using ED might result in an incorrect deter-
mination of the “winning node”, which would critically af-
fect the performance of SOMs. Several alternative versions
of the SOM have been developed since Kohonen (1982).
These include the generative topographic map (Kaski, 1997)
and the time-adaptive self-organizing map (Shah-Hosseini
and Safabakhsh, 2003; Shah-Hosseini, 2011). However, such
SOM versions have focused on parameterization schemes
such as learning rate or neighborhood functions in the train-
ing process. No studies have addressed the fundamental issue
of the ED in a BMU search.

Therefore, this study proposes a novel SOM algorithm
called a structural SOM (S-SOM). The advantage of S-SOM
compared with traditional SOMs is that an S-SOM can deal
with “structural” input data, i.e., data with spatial or temporal

Figure 1. The S-SOM algorithm.

relationships. To accomplish this, the S-SOM incorporates a
BMU search scheme that is implemented based on a struc-
tural similarity index rather than on the traditional ED.

The structural similarity (S-SIM) index, which was first
introduced by Wang et al. (2004) and is increasingly being
used in the signal processing field, has an advantage over ED
in detecting structural correlations in the pair data. We set
up multiple test simulations with different SOM configura-
tions to evaluate the S-SOM performance comparing the tra-
ditional ED-SOM and the SOM algorithm with the Pearson
correlation coefficient, hereafter called COR-ED, for classi-
fying sea-level pressure patterns over the Japan region. Quan-
tified metrics such as silhouette analysis and topological er-
rors are used to assess SOM performance. The remainder of
this paper is structured as follows. Section 2 describes the
novel S-SOM algorithm; Sect. 3 presents the test simulation
configuration and evaluation metrics. Results are presented
and discussed in Sect. 4. Concluding remarks are provided in
Sect. 5.

2 Structural SOM algorithm

Our proposed S-SOM algorithm is shown in Fig. 1. It fol-
lows the procedure initially proposed by Kohonen (1982) and
used in many application studies. An S-SOM starts with the
configuration and initialization of SOM nodes and establish-
ing the number of training iterations. The training consists of
three main steps: selecting an input vector, finding the best
matching unit for the input vector, then updating the weight
vectors of SOM nodes by using parameters, i.e., learning rate
and neighborhood function. The learning rate is a real num-
ber and decreases as the number of iteration steps increases.
The difference between S-SOM and traditional SOM imple-
mentation is that we propose a new scheme for finding a
BMU. In this scheme, we use a similarity index that can deal
with structural data such as two-dimensional air pressure dis-
tribution instead of using ED to compare the similarity be-
tween vectors.

The new BMU search scheme is based on competition
among SOM nodes so that a node with the highest S-SIM
index to an input vector will be assigned as the BMU. The
S-SIM was first introduced by Wang et al. (2004) to predict
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the perceived quality of digital television and cinematic pic-
tures. The basic model was developed in the Laboratory for
Image and Video Engineering at the University of Texas at
Austin and further developed jointly with the laboratory for
Computational Vision at New York University. The S-SIM
index is designed to improve traditional methods such as the
peak signal-to-noise ratio and mean squared error, i.e., meth-
ods based on ED, to detect similarities in “structural” signals
such as images. The S-SIM formula is based on three com-
parison measurements between two vectors x, y, luminance
(l), contrast (c), and structure (s).

S-SIM(x,y)= [l(x,y)α × c(x,y)β × s(x,y)γ ]. (1)

Here, individual comparison functions are

l(x,y)=
2µxµy + c1

µ2
x +µ

2
y + c1

(2)

c(x,y)=
2σxσy + c2

σ 2
x + σ

2
y + c2

(3)

s(x,y)=
σxy + c3

σxσy + c3
. (4)

Here, µx , µy are the average, σx , σy are the standard devia-
tion, and σ 2

x , σ 2
y are the variance of vectors x, y, respectively;

c1, c2, c3 are parameters to stabilize division with a weak de-
nominator. Three components of S-SIM, i.e., “luminance”,
“contrast”, and “structure”, represent human visual percep-
tion. The “luminance” measures the similarity in brightness
values; “contrast” quantifies the similarity in illumination
variability; and “structure” measures the correlation in spa-
tial interdependencies between images (Wang and Bovik,
2009). To simplify the model, here we set c1 = c2 = c3 = 0
and weights α = β = γ = 1 to reduce the original formula to

S-SIM(x,y)=

(
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2
y)(σ

2
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2
y )
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From the definition, S-SIM ranges from −1 to 1, where
1 indicates entirely similar, and vice versa. The S-SIM has
been repeatedly shown to outperform ED significantly in
terms of accuracy. Wang and Bovik (2009) pointed out
that an S-SIM provides powerful, easy-to-use, and easy-to-
understand alternatives to traditional ED for dealing with
specific kinds of data that are spatially and temporally or-
dered. Recently, S-SIM has been attracting attention as a
“new-generation” similarity metric in hydrological and mete-
orological studies (e.g., Mo et al., 2014; Han and Szunyogh,
2018).

3 Model configuration and quality measurements

3.1 Data and experiment settings

ERA-Interim (Dee et al., 2011) reanalysis daily mean sea-
level pressure (MSLP) data for 1979–2019 over the Japan

region (latitude 20 to 50◦ N and longitude 115 to 165◦ E;
see Fig. 2) are used for demo simulations of S-SOM. The
original MSLP data at a 0.75◦ resolution on a regular grid
were interpolated to an equal-area scalable Earth-type grid at
a spatial resolution of 100 km. This interpolation method has
been commonly applied in high-latitude regions (Lynch et
al., 2016; Gibson et al., 2017). The data are divided according
to the four seasons: winter (December, January, February;
DJF), spring (March, April, May; MAM), summer (June,
July, August; JJA), autumn (September, October, November;
SON).

The SOM grid topology consists of one-dimensional
nodes. The training was carried out with 5000 iterations and
with the learning rate start point at 0.01 (decreased exponen-
tially to 0). The Gaussian function is used as the neighbor-
hood function. A random initialization scheme was used. For
completeness, we also train our SOMs with various configu-
rations of n nodes= 4, 5, . . . , 20. The test for a larger num-
ber of nodes (greater than 100) was conducted, but the result
showed the ineffectiveness of SOMs in clustering into a large
number of classes. Together with S-SOM, ED- and COR-
SOM experiments are also conducted for comparison. ED-
and COR-SOM are SOM algorithms using the Euclidean dis-
tance and the Pearson correlation coefficient, respectively.
For this test, the total of four (seasons)× 17 (node configu-
rations)× 3 (S-SOM, COR-SOM, and ED-SOM) yields 204
runs that were conducted.

3.2 Quality evaluation

We evaluate the performance of the SOMs, focusing on
two different aspects. One is the capability as a clustering
method, which we investigate by using silhouette analysis;
the other is preserving the topology of input space, by an-
alyzing topographical error. We select the evaluation metric
based on its widespread use in clustering evaluation (silhou-
ette analysis) and the SOM characteristics.

Silhouette refers to a method for the interpretation and val-
idation of consistency within clusters of data. The technique
provides a succinct graphical representation of how well each
object has been classified (Rousseeuw, 1987). The silhou-
ette value is a measure of how similar an object is to its
cluster (cohesion) compared with other clusters (separation).
The silhouette coefficient is calculated using the mean intra-
cluster distance (a) and the mean nearest-cluster distance (b)
for each sample. The silhouette coefficient for a given object
is then defined as s = (b−a)/(max(a,b)). The value ranges
from−1 to+1, where a high value indicates that the object is
well matched to its cluster and poorly matched to neighbor-
ing clusters. If most objects have high values, then the clus-
tering configuration is appropriate. If many points have a low
or negative value, then the clustering configuration may have
too many or too few clusters. Silhouette coefficients near +1
indicate that the sample is far from the neighboring clusters.
A value of 0 indicates that the object is on or very close to the
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Figure 2. Illustration of SOM configuration and simulation settings. Used data are daily (at 00:00 UTC) ERA-Interim sea-level pressure
(from 1 January 1979 to 1 December 2019) divided into four seasons: winter (December–January–February), spring (March–April–May),
summer (June–July–August), and autumn (September–October–November).

Figure 3. Comparison of probability density distributions (PDDs) of normalized inter-sample similarity using the structural similarity (S-
SIM), the Pearson correlation coefficient (COR), and the Euclidean distance (ED) for four-season data. The inter-sample similarity values
indicate similarity (or difference) between all pairs. With a population size of N , one has (N − 1)! values, as S-SIM, COR, and ED are
symmetric measures. Values are normalized from 0 to 1, i.e., si = (si −min{s})/(max{s}−min{s}), with i = 1,2, . . .N . The maximum
similarity is 1, i.e., completely similar, and the minimum similarity is 0, i.e., the lowest similarity between a pair of data points. Note that the
minimum similarity is dependent on a similarity measure and data (DJF, MAM, JJA, or SON) used.

decision boundary between two neighboring clusters. Nega-
tive values indicate that those samples might have been as-
signed to the wrong cluster. A critical goal of the SOM al-
gorithm is to preserve the topological features of the input
space. The topological error (TE) is defined as the average
geometric distance between the winning and the second-best
matching nodes in the SOM (Gibson et al., 2017). If the
nodes are next to each other, we say that the topology has
been preserved for this input; otherwise, it is counted as an
error. The total number of errors divided by the total num-
ber of inputs gives the topographic error. TE measures how
well the SOM models the structure of the input space. Pri-
marily, it evaluates the local discontinuities in the mapping,
i.e., TE= 1/n

∑n
i=1di . Here, di is the distance between the

best matching and second-best matching units (SMUs) to an
input vector xi ; n is the total number of input vectors. The
best value of TE is 1, meaning that the BMU and SMU are

neighbors; i.e., SOM nodes are more topologically ordered
(or more “self-organized”).

4 Results

Before analyzing the SOM results, we examine how simi-
larity indices, S-SIM, COR, and negative ED (as the simi-
larity is inverse of distance metrics), distinguish SLP maps.
The similarity index for each SLP data pair is calculated and
normalized from 0 to 1, where 1 means precisely the same,
and 0 means most different (indicating the value for the fur-
thest pair). The probability density functions (PDFs) of these
normalized similarities are shown in Fig. 3 for four datasets
(DJF, MAM, JJA, and SON).

Two important points can be drawn from Fig. 3. First, the
S-SIM and COR PDFs tend to spread over two tails, whereas
those of ED appear to concentrate around their averages.

Geosci. Model Dev., 14, 2097–2111, 2021 https://doi.org/10.5194/gmd-14-2097-2021
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Table 1. Statistical indices of normalized discrimination distributions.

DJF MAM JJA SON

S-SIM COR ED S-SIM COR ED S-SIM COR ED S-SIM COR ED

Mean 0.70 0.72 0.69 0.53 0.54 0.69 0.61 0.62 0.68 0.55 0.56 0.71
Standard deviation 0.17 0.18 0.10 0.18 0.19 0.10 0.16 0.17 0.09 0.17 0.18 0.09
Skewness −0.73 −0.89 −0.78 −0.09 −0.12 −0.65 −0.42 −0.47 −0.71 −0.13 −0.19 −0.79
Kurtosis 0.04 0.25 0.75 −0.70 −0.78 0.47 −0.31 −0.33 0.70 −0.60 −0.66 0.87

Figure 4. Winter (DJF) MSLP pattern revealed by SOMs. Panels (a)–(d) show S-SOM patterns (with four nodes); panel (e) shows the
number of daily MSLPs classified as nodes 1 to 4. Panels (f)–(i) show the same result but for COR-SOM; (k)–(o) for ED-SOM.

The standard deviations of S-SIM and COR range 0.17–0.19,
consistently higher than those of ED, which is 0.09–0.10 (Ta-
ble 1). This result implies a higher ability of S-SIM and COR
to recognize the inter-sample difference. Second, S-SIM and
COR PDF shapes tend to vary, whereas ED’s look identical
for DJF, MAM, JJA, and SON. In other words, an S-SIM and
COR can effectively recognize seasonal variability, but ED
does not. The PDFs of ED have the mean at about 0.69 to
0.71, and skewness at about −0.65 to −0.79 among seasons.
Meanwhile, the means of S-SIM and COR range widely from
0.53 to 0.72, and skewness from −0.09 to −0.89. In partic-
ular, for S-SIM and COR, the skewness is lower in DJF and
JJA than in MAM and SON. In MAM and SON, the skew-
ness is close to 0, meaning the PDFs are almost symmetric.

Regarding characterizing actual weather patterns, the
PDFs of S-SIM and COR make more sense than those of ED.
In DJF, Japan’s weather is dominated by the winter-type air
pressure (high in the west and low in the east), with few ex-
ceptions. This explains why the daily SLP in DJF looks sim-
ilar most of the time; the PDFs’ mean is higher than in other

seasons; the skewness is deeply negative. The same weather
trend is observed in the summer months (JJA). Meanwhile, in
MAM and SON, which are transition periods between winter
and summer, and vice versa, the weather variability is higher,
and there are no dominant patterns during these times.

Next, we analyze the outcome of SOMs to ensure that the
results are physically reasonable and match the common per-
ception about seasonal weather patterns in Japan. Figure 4
shows the SLP patterns typed by SOMs (node number equal
to 4) from the winter simulation (DJF). It is well known that
the Japanese winter is characterized by the Siberian High,
which develops over the Eurasian continent, and the Aleutian
Low, which develops over the northern North Pacific. Pre-
vailing northwesterly winds cause the advection of cold air
from Siberia, bringing heavy snowfall to western Japan and
sunny weather to the eastern side (http://www.data.jma.go.jp/
gmd/cpd/longfcst/en/tourist_japan.html, last access: 6 Jan-
uary 2021). Such a dominant pattern is likely to be well de-
tected by S-SOM (Fig. 4a), COR-SOM (Fig. 4g), and ED-
SOM (Fig. 4n).
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Figure 5. Silhouette plots for S-, COR-, and ED-SOM clustering for winter months (DJF). Note that these are results from simulations with
the SOM-node size of 4. The vertical dashed red lines in each plot indicate the silhouette score.

An interesting difference between SOMs is that S-SOM
appears to estimate a more “ordered” clustering of nodes
(Fig. 4e), characterized by a dominant node (N1) accompa-
nied by non-dominant ones. Meanwhile, for COR-SOM and
ED-SOM, the size of clusters is relatively identical, under-
lining the presence of more “flat” clustering (Fig. 4j, o). This
result is consistently seen in other SOM-node configurations
(i.e., node numbers greater than 4). “Ordered” clustering by
S-SOM and “flat” clustering by COR- and ED-SOM are also
recognized for JJA but to a lesser extent (see Fig. A3). The
physical explanation for this is that two subperiods charac-
terize the Japanese summer. The early subperiod is rainy,
caused by the stationary Baiu front, where a warm maritime
tropical air mass meets a cold polar maritime air mass. In
the second subperiod, the North Pacific High extends north-
westward around Japan, bringing hot and sunny conditions.
The number of tropical cyclones passing the country peaks
in August. Unlike DJF and JJA, MAM and SON are tran-
sition seasons, and the difference (i.e., “ordered” and “flat”
clustering) is not apparent among SOMs.

Moreover, silhouette analysis shows that S-SOM and
COR-SOM perform consistently better than ED-SOM in
clustering SLP patterns. Figure 5 reveals two crucial points:
one is the thickness of clusters (y axis) and the other is the
silhouette coefficient value. As explained above, for DJF, S-
SOM estimates one dominant winter-type SLP pattern com-
bined with minor exception patterns. This is different from
ED-SOM, which predicts more “flat” clusters with the same
thickness. Thus, S-SOM clustering makes more sense than
ED-SOM, and COR-SOM is somewhere in between them.
The dominant Japanese winter-type pattern can be easily
identified by looking at the S-SOM plot, but this is not the
case with ED-SOM.

An important point here is that despite the “large” clus-
ter, the silhouette values of S-SOM tend to be consistently
higher than those of COR- and ED-SOM (Fig. 5). This re-
sult is highly counterintuitive because generally if the clus-
ter is large, there is a higher possibility of data points be-
ing assigned to the wrong cluster. Also, Fig. 6 summarizes
the silhouette score, compares three SOMs, and highlights
two critical points: (i) S-SOM is consistently superior to

ED-SOM for all seasons and all SOM-node configurations,
demonstrating that S-SOM offers higher quality clustering
than ED-SOM, which is consistent and independent of simu-
lations; COR-SOM has comparable performance to S-SOM
in MAM and SON but scores lower in DJF and partly in JJA;
(ii) although not obvious, the scores of S-SOM and COR-
SOM vary seasonally, whereas those of ED-SOM are identi-
cal among seasons. In particular, S-SOM scores the highest
in weather types for DJF than for other seasons. Those are
interesting results, noting that DJF in Japan is experientially
known as the season most characterized by weather patterns
in comparison to the other seasons.

As a measure of the topology preservation of SOM, TE
indicates the lower error (higher topological preservation)
of S-SOM, and partly COR-SOM, compared with ED-SOM
(Fig. 7). Unlike with the silhouette score (Fig. 6), the differ-
ence in the TE values among SOMs is less noticeable and
less consistent among SOM-node configurations and input
data. A lower TE is always seen for MAM and JJA with al-
most all SOM size settings. However, for DJF, S-SOM has
a higher TE, especially when it has a small size of 4 or 5.
For SON, there is no apparent difference among SOMs. As
TE is known to strongly depend on the neighborhood func-
tion (Gibson et al., 2017), the similarity detection scheme
might have less impact. We also suggest that future stud-
ies are needed to clarify the topology preservation ability of
SOMs with different similarity indices.

To confirm the above results, we have conducted addi-
tional simulations for wind vectors, a different type of data
from SLP. As wind vectors consist of two components, i.e.,
zonal and meridional, we combine two components into one
data array to feed the SOM models for each input vector. The
test result shows that the S-SOM and COR-SOM have bet-
ter performance over ED-SOM regarding both the silhouette
score and the topographic error (see Figs. A8–A9 for refer-
ence). This result is consistent with that of SLP experiments.

Besides, the computational time of SOMs is calculated
and shown in Fig. 8. ED-SOM needs 1–3 s to complete the
jobs with node size ranging from 4–20. To do the same jobs,
S-SOM needs 8–40 s, which are 10–15 times those of ED-
SOM; COR-SOM needs 8–40 s or 8–13 times of ED-SOM.

Geosci. Model Dev., 14, 2097–2111, 2021 https://doi.org/10.5194/gmd-14-2097-2021
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Figure 6. Comparison of silhouette scores of S-, COR-, and ED-SOM for all SOM size configurations and four seasons, i.e., DJF, MAM,
JJA, SON. In each plot, the x axis indicates a different SOM simulation (size configuration), and the y axis indicates silhouette score values.

Figure 7. Comparison of topographic errors of S-, COR-, and ED-SOM for all SOM size configurations and four seasons, i.e., DJF, MAM,
JJA, SON. In each plot, the x axis indicates a different SOM simulation (size configuration), and the y axis indicates topographic errors.

Though S-SOM needs more computational cost, it does not
produce a critical issue as total computational time is small
(less than 1 min) unlike the numerical weather prediction or
climate change projection.

5 Conclusions and remarks

In this study, we developed a novel SOM algorithm (S-SOM)
for synoptic weather typing. The novelty of S-SOM is the uti-
lization of the structural similarity index (S-SIM) for search-
ing for the best matching unit. The performance of S-SOM
has been evaluated by a series of test simulations to cluster

https://doi.org/10.5194/gmd-14-2097-2021 Geosci. Model Dev., 14, 2097–2111, 2021



2104 Q.-V. Doan et al.: S-SOM v1.0

Figure 8. Computational time of S-SOM, COR-SOM, and ED-
SOM. The x axis indicates the SOM size configurations; the y axis
represents the elapsed time needed to complete the jobs. These are
the results of the DJF experiments. Each experiment has with 3669
input samples; the size of each sample is 65× 72 pixels. The num-
ber of the SOM iteration steps is 5000.

two-dimensional SLP and wind patterns over the Japan re-
gion.

Test results demonstrated the superior performance of S-
SOM compared to the traditional ED-SOM (using the Eu-
clidean distance). This result is consistent in all tests and
SOM-node configurations in two respects: clustering qual-
ity in terms of the silhouette analysis and topological preser-
vation in terms of the topographic error. The performance
of S-SOM is higher than that of COR-SOM (using the Pear-
son correlation coefficient) but not as straightforward as com-
pared to ED-SOM.

We highlight the effectiveness of using S-SOM, and partly
COR-SOM rather than traditional ED-SOM, at least when
spatial distributions feature input data. However, we empha-
size that evaluation metrics other than the silhouette score
and topographic errors should be used to robustify the results
obtained in this study. Although this study did not assess the
performance of S-SOM on time series, we believe that S-
SOM can also be useful for temporally distributed data. The
S-SOM performance with time series should be assessed in
a further study. Moreover, although S-SOM has been devel-
oped primarily for climatology studies, it can also be used
in other fields. We expect it will constitute the new standard
SOM when dealing with “structural” input data.
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Appendix A

Figure A1. Example faults with ED when distinguishing data that
have a spatial and temporal correlation. Suppose we have two dis-
tributions represented by red and orange lines in each plot (a–c),
where “H” and “L” are the locations of a high and a low, respec-
tively. In panels (a)–(c), the red and orange lines have the same ED;
meanwhile, if using the S-SIM index to compare the lines, one will
have the highest S-SIM value in panel (a), followed by panel (c);
the S-SIM values in both panels (a, c) are much higher than that in
panel (b).

Figure A2. Spring (MAM) MSLP pattern revealed by SOMs. Panels (a)–(d) show S-SOM patterns (with four nodes); panel (e) shows the
number of daily MSLPs classified as nodes 1 to 4. Panels (f)–(i) show the same result but for COR-SOM; (k)–(o) for ED-SOM.
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Figure A3. Summer (JJA) MSLP pattern revealed by SOMs. Panels (a)–(d) show S-SOM patterns (with four nodes); panel (e) shows the
number of daily MSLPs classified as nodes 1 to 4. Panels (f)–(i) show the same result but for COR-SOM; (k)–(o) for ED-SOM.

Figure A4. Autumn (SON) MSLP pattern revealed by SOMs. Panels (a)–(d) show S-SOM patterns (with four nodes); panel (e) shows the
number of daily MSLPs classified as nodes 1 to 4. Panels (f)–(i) show the same result but for COR-SOM; (k)–(o) for ED-SOM.
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Figure A5. Silhouette plot for S-, COR-, and ED-SOM clustering for spring months (MAM). Note that these are results from simulations
with the SOM-node size of 4. The vertical dashed red lines in each plot indicate the silhouette score.

Figure A6. Silhouette plot for S-, COR-, and ED-SOM clustering for summer months (JJA). Note that these are results from simulations
with the SOM-node size of 4. The vertical dashed red lines in each plot indicate the silhouette score.

Figure A7. Silhouette plot for S-, COR-, and ED-SOM clustering for autumn months (SON). Note that these are results from simulations
with the SOM-node size of 4. The vertical dashed red lines in each plot indicate the silhouette score.

https://doi.org/10.5194/gmd-14-2097-2021 Geosci. Model Dev., 14, 2097–2111, 2021



2108 Q.-V. Doan et al.: S-SOM v1.0

Figure A8. Spatial patterns of the winter 500 hPa wind vector pattern revealed by SOMs with the size of 4. Panels (a)–(c) show the S-SOM
results and panel (d) shows the silhouette analysis plot; panels (f)–(j) show the same results but for COR-SOM and (k)–(o) for ED-SOM.
Input data are daily base data (at 00:00 UTC) winter months (DJF) from 2009 to 2019.

Figure A9. Performance of S-, COR-, and ED-SOM for winter 500 hPa wind vector clustering. (a) The silhouette scores; (b) topographic
errors of SOMs at different node sizes.
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Figure A10. Average silhouette scores of S-, COR-, and ED-SOM.
The x axis indicates the SOM size configurations. The y axis shows
the silhouette score, which ranges from−1 to 1. For a given sample,
the perfect cluster assignment has the value of 1, and negative values
indicate the wrong cluster assignment for the sample.
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Code and data availability. The exact version of the model used
to produce the results used in this paper is archived on Zenodo
(https://doi.org/10.5281/zenodo.4437954, Doan, 2021), as are input
data and scripts to run the model and make the plots for all the sim-
ulations presented in this paper.
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