Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1493-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-1493-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using Shapley additive explanations to interpret extreme gradient boosting predictions of grassland degradation in Xilingol, China
Department of Geography, Humboldt-Universität zu Berlin, Unter
den Linden 6, 10099 Berlin, Germany
Leibniz Centre for Agricultural Landscape Research (ZALF),
Eberswalder Straße 84, 15374 Müncheberg, Germany
Ralf Wieland
Leibniz Centre for Agricultural Landscape Research (ZALF),
Eberswalder Straße 84, 15374 Müncheberg, Germany
Tobia Lakes
Department of Geography, Humboldt-Universität zu Berlin, Unter
den Linden 6, 10099 Berlin, Germany
Integrative Research Institute on Transformations of
Human-Environment Systems, Humboldt-Universität zu Berlin,
Friedrichstraße 191, 10099 Berlin, Germany
Claas Nendel
Leibniz Centre for Agricultural Landscape Research (ZALF),
Eberswalder Straße 84, 15374 Müncheberg, Germany
Integrative Research Institute on Transformations of
Human-Environment Systems, Humboldt-Universität zu Berlin,
Friedrichstraße 191, 10099 Berlin, Germany
Related authors
No articles found.
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
Nat. Hazards Earth Syst. Sci., 24, 4237–4265, https://doi.org/10.5194/nhess-24-4237-2024, https://doi.org/10.5194/nhess-24-4237-2024, 2024
Short summary
Short summary
Droughts are a threat to agricultural crops, but different factors influence how much damage occurs. This is important to know to create meaningful risk maps and to evaluate adaptation options. We investigate the years 2013–2022 in Brandenburg, Germany, and find in particular the soil quality and meteorological drought in June to be statistically related to the observed damage. Measurement of crop health from satellites is also related to soil quality and not necessarily to anomalous yields.
Roland Baatz, Gohar Ghazaryan, Michael Hagenlocher, Claas Nendel, Andrea Toreti, and Ehsan Eyshi Rezaei
EGUsphere, https://doi.org/10.5194/egusphere-2024-1069, https://doi.org/10.5194/egusphere-2024-1069, 2024
Short summary
Short summary
Our analysis of over 130,000 peer-reviewed articles on drought research reveals critical shifts towards interdisciplinary approaches. Research priorities are identified in methodological advancements of drought forecasting and in plant genetics. The systemic nature of drought impacts is demonstrated. Challenges identified are the integration of plant physiological response in forecasting, fostering machine learning and early warning systems, and more systemic drought resilience frameworks.
Konstantin Aiteew, Jarno Rouhiainen, Claas Nendel, and René Dechow
Geosci. Model Dev., 17, 1349–1385, https://doi.org/10.5194/gmd-17-1349-2024, https://doi.org/10.5194/gmd-17-1349-2024, 2024
Short summary
Short summary
This study evaluated the biogeochemical model MONICA and its performance in simulating soil organic carbon changes. MONICA can reproduce plant growth, carbon and nitrogen dynamics, soil water and temperature. The model results were compared with five established carbon turnover models. With the exception of certain sites, adequate reproduction of soil organic carbon stock change rates was achieved. The MONICA model was capable of performing similar to or even better than the other models.
Wei Weng, Matthias K. B. Luedeke, Delphine C. Zemp, Tobia Lakes, and Juergen P. Kropp
Hydrol. Earth Syst. Sci., 22, 911–927, https://doi.org/10.5194/hess-22-911-2018, https://doi.org/10.5194/hess-22-911-2018, 2018
Short summary
Short summary
We provide a detailed spatial analysis of hydrological impacts of land use change in Amazonia, focusing on the aspect of
aerial rivers. Our approach of observation-based atmospheric moisture tracking allows us to recognize potential teleconnection between source and sink regions of atmospheric moisture. Relying on a quantitative assessment, we identified regions where water availability is most sensitive to land use change and regions where land use change is critical for a given sink region.
T. K. Lissner, D. E. Reusser, J. Schewe, T. Lakes, and J. P. Kropp
Earth Syst. Dynam., 5, 355–373, https://doi.org/10.5194/esd-5-355-2014, https://doi.org/10.5194/esd-5-355-2014, 2014
Short summary
Short summary
Climate change will have impacts on many different sectors of society, but a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable. This paper presents the AHEAD approach, which allows for relating impacts of climate change to 16 dimensions of livelihoods and well-being. Using the example of changes in water availability, the results show how climate change impacts AHEAD. The approach also provides a tool to frame uncertainties from climate models.
Related subject area
Earth and space science informatics
GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
Remote sensing-based high-resolution mapping of the forest canopy height: some models are useful, but might they be even more if combined?
Consistency-Checking 3D Geological Models
Accelerating Lagrangian transport simulations on graphics processing units: performance optimizations of Massive-Parallel Trajectory Calculations (MPTRAC) v2.6
The effect of lossy compression of numerical weather prediction data on data analysis: a case study using enstools-compression 2023.11
Focal-TSMP: deep learning for vegetation health prediction and agricultural drought assessment from a regional climate simulation
Tomofast-x 2.0: an open-source parallel code for inversion of potential field data with topography using wavelet compression
Functional analysis of variance (ANOVA) for carbon flux estimates from remote sensing data
The 4D reconstruction of dynamic geological evolution processes for renowned geological features
Moving beyond post-hoc XAI: Lessons learned from dynamical climate modeling
Machine learning for numerical weather and climate modelling: a review
Overcoming barriers to enable convergence research by integrating ecological and climate sciences: the NCAR–NEON system Version 1
Ensemble of optimised machine learning algorithms for predicting surface soil moisture content at a global scale
Hazard assessment modeling and software development of earthquake-triggered landslides in the Sichuan–Yunnan area, China
A generalized spatial autoregressive neural network method for three-dimensional spatial interpolation
The Common Community Physics Package (CCPP) Framework v6
Causal deep learning models for studying the Earth system
A methodological framework for improving the performance of data-driven models: a case study for daily runoff prediction in the Maumee domain, USA
SHAFTS (v2022.3): a deep-learning-based Python package for simultaneous extraction of building height and footprint from sentinel imagery
Bayesian atmospheric correction over land: Sentinel-2/MSI and Landsat 8/OLI
Twenty-five years of the IPCC Data Distribution Centre at the DKRZ and the Reference Data Archive for CMIP data
Effectiveness and computational efficiency of absorbing boundary conditions for full-waveform inversion
LAND-SUITE V1.0: a suite of tools for statistically based landslide susceptibility zonation
Towards physics-inspired data-driven weather forecasting: integrating data assimilation with a deep spatial-transformer-based U-NET in a case study with ERA5
Fast infrared radiative transfer calculations using graphics processing units: JURASSIC-GPU v2.0
CSDMS: a community platform for numerical modeling of Earth surface processes
A new methodological framework for geophysical sensor combinations associated with machine learning algorithms to understand soil attributes
Model calibration using ESEm v1.1.0 – an open, scalable Earth system emulator
Turbidity maximum zone index: a novel model for remote extraction of the turbidity maximum zone in different estuaries
dh2loop 1.0: an open-source Python library for automated processing and classification of geological logs
Copula-based synthetic data augmentation for machine-learning emulators
Automated geological map deconstruction for 3D model construction using map2loop 1.0 and map2model 1.0
A spatially explicit approach to simulate urban heat mitigation with InVEST (v3.8.0)
S-SOM v1.0: a structural self-organizing map algorithm for weather typing
Current status on the need for improved accessibility to climate models code
ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
A spatiotemporal weighted regression model (STWR v1.0) for analyzing local nonstationarity in space and time
A new end-to-end workflow for the Community Earth System Model (version 2.0) for the Coupled Model Intercomparison Project Phase 6 (CMIP6)
HyLands 1.0: a hybrid landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution
Comparative analysis of atmospheric radiative transfer models using the Atmospheric Look-up table Generator (ALG) toolbox (version 2.0)
Fast domain-aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model
VISIR-1.b: ocean surface gravity waves and currents for energy-efficient navigation
Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets
Global hydro-climatic biomes identified via multitask learning
A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications
An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1.0) and its application to mineral prospectivity mapping
High-performance software framework for the calculation of satellite-to-satellite data matchups (MMS version 1.2)
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024, https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary
Short summary
In geography, understanding how relationships between different factors change over time and space is crucial. This study implements two neural-network-based spatiotemporal regression models and an open-source Python package named Geographically Neural Network Weighted Regression to capture relationships between factors. This makes it a valuable tool for researchers in fields such as environmental science, urban planning, and public health.
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024, https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
Short summary
Spatial proxies, such as coordinates and distances, are often used as predictors in random forest models for predictive mapping. In a simulation and two case studies, we investigated the conditions under which their use is appropriate. We found that spatial proxies are not always beneficial and should not be used as a default approach without careful consideration. We also provide insights into the reasons behind their suitability, how to detect them, and potential alternatives.
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024, https://doi.org/10.5194/gmd-17-5939-2024, 2024
Short summary
Short summary
With ERA5 hourly data, we show spatiotemporal characteristics of pressure and zenith wet delay (ZWD) and propose an empirical global pressure and ZWD grid model with a broader operating space which can provide accurate pressure, ZWD, zenith hydrostatic delay, and zenith tropospheric delay estimates for any selected time and location over globe. IGPZWD will be of great significance for the tropospheric augmentation in real-time GNSS positioning and atmospheric water vapor remote sensing.
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024, https://doi.org/10.5194/gmd-17-5897-2024, 2024
Short summary
Short summary
Estimation of map accuracy based on cross-validation (CV) in spatial modelling is pervasive but controversial. Here, we build upon our previous work and propose a novel, prediction-oriented k-fold CV strategy for map accuracy estimation in which the distribution of geographical distances between prediction and training points is taken into account when constructing the CV folds. Our method produces more reliable estimates than other CV methods and can be used for large datasets.
Nikola Besic, Nicolas Picard, Cédric Vega, Lionel Hertzog, Jean-Pierre Renaud, Fajwel Fogel, Agnès Pellissier-Tanon, Gabriel Destouet, Milena Planells-Rodriguez, and Philippe Ciais
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-95, https://doi.org/10.5194/gmd-2024-95, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The creation of advanced mapping models for forest attributes, utilizing remote sensing data and incorporating machine or deep learning methods, has become a key area of interest in the domain of forest observation and monitoring. This paper introduces a method where we blend and collectively interpret five models dedicated to estimating forest canopy height. We achieve this through Bayesian model averaging, offering a comprehensive approach to height estimation in forest ecosystems.
Marion N. Parquer, Eric A. de Kemp, Boyan Brodaric, and Michael J. Hillier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1326, https://doi.org/10.5194/egusphere-2024-1326, 2024
Short summary
Short summary
This is a proof-of-concept paper outlining a general approach to how 3D geological models would be checked to be geologically 'reasonable'. We do this with a consistency checking tool that looks at geological feature pairs and their spatial, temporal and internal polarity characteristics. The idea is to assess if geological relationships from a specific 3D geological model matches what is allowed in the real world, from the perspective of geological principals.
Lars Hoffmann, Kaveh Haghighi Mood, Andreas Herten, Markus Hrywniak, Jiri Kraus, Jan Clemens, and Mingzhao Liu
Geosci. Model Dev., 17, 4077–4094, https://doi.org/10.5194/gmd-17-4077-2024, https://doi.org/10.5194/gmd-17-4077-2024, 2024
Short summary
Short summary
Lagrangian particle dispersion models are key for studying atmospheric transport but can be computationally intensive. To speed up simulations, the MPTRAC model was ported to graphics processing units (GPUs). Performance optimization of data structures and memory alignment resulted in runtime improvements of up to 75 % on NVIDIA A100 GPUs for ERA5-based simulations with 100 million particles. These optimizations make the MPTRAC model well suited for future high-performance computing systems.
Oriol Tintó Prims, Robert Redl, Marc Rautenhaus, Tobias Selz, Takumi Matsunobu, Kameswar Rao Modali, and George Craig
EGUsphere, https://doi.org/10.5194/egusphere-2024-753, https://doi.org/10.5194/egusphere-2024-753, 2024
Short summary
Short summary
Advanced compression techniques can drastically reduce the size of meteorological datasets (by 5x to 150x) without compromising the data's scientific value. We developed a user-friendly tool called 'enstools-compression' that makes this compression simple for Earth scientists. This tool works seamlessly with common weather and climate data formats. Our work shows that lossy compression can significantly improve how researchers store and analyze large meteorological datasets.
Mohamad Hakam Shams Eddin and Juergen Gall
Geosci. Model Dev., 17, 2987–3023, https://doi.org/10.5194/gmd-17-2987-2024, https://doi.org/10.5194/gmd-17-2987-2024, 2024
Short summary
Short summary
In this study, we use deep learning and a climate simulation to predict the vegetation health as it would be observed from satellites. We found that the developed model can help to identify regions with a high risk of agricultural drought. The main applications of this study are to estimate vegetation products for periods where no satellite data are available and to forecast the future vegetation response to climate change based on climate scenarios.
Vitaliy Ogarko, Kim Frankcombe, Taige Liu, Jeremie Giraud, Roland Martin, and Mark Jessell
Geosci. Model Dev., 17, 2325–2345, https://doi.org/10.5194/gmd-17-2325-2024, https://doi.org/10.5194/gmd-17-2325-2024, 2024
Short summary
Short summary
We present a major release of the Tomofast-x open-source gravity and magnetic inversion code that is enhancing its performance and applicability for both industrial and academic studies. We focus on real-world mineral exploration scenarios, while offering flexibility for applications at regional scale or for crustal studies. The optimisation work described in this paper is fundamental to allowing more complete descriptions of the controls on magnetisation, including remanence.
Jonathan Hobbs, Matthias Katzfuss, Hai Nguyen, Vineet Yadav, and Junjie Liu
Geosci. Model Dev., 17, 1133–1151, https://doi.org/10.5194/gmd-17-1133-2024, https://doi.org/10.5194/gmd-17-1133-2024, 2024
Short summary
Short summary
The cycling of carbon among the land, oceans, and atmosphere is a closely monitored process in the global climate system. These exchanges between the atmosphere and the surface can be quantified using a combination of atmospheric carbon dioxide observations and computer models. This study presents a statistical method for investigating the similarities and differences in the estimated surface–atmosphere carbon exchange when different computer model assumptions are invoked.
Jiateng Guo, Zhibin Liu, Xulei Wang, Lixin Wu, Shanjun Liu, and Yunqiang Li
Geosci. Model Dev., 17, 847–864, https://doi.org/10.5194/gmd-17-847-2024, https://doi.org/10.5194/gmd-17-847-2024, 2024
Short summary
Short summary
This study proposes a 3D and temporally dynamic (4D) geological modeling method. Several simulation and actual cases show that the 4D spatial and temporal evolution of regional geological formations can be modeled easily using this method with smooth boundaries. The 4D modeling system can dynamically present the regional geological evolution process under the timeline, which will be helpful to the research and teaching on the formation of typical and complex geological features.
Ryan O'Loughlin, Dan Li, and Travis O'Brien
EGUsphere, https://doi.org/10.5194/egusphere-2023-2969, https://doi.org/10.5194/egusphere-2023-2969, 2024
Short summary
Short summary
We draw from traditional climate modeling practices to make recommendations for AI-driven climate science. In particular, we show how component-level understanding–which is obtained when scientists can link model behavior to parts within the overall model–should guide the development and evaluation of AI models. Better understanding can lead to a stronger basis for trust in these models. We highlight several examples to demonstrate.
Catherine O. de Burgh-Day and Tennessee Leeuwenburg
Geosci. Model Dev., 16, 6433–6477, https://doi.org/10.5194/gmd-16-6433-2023, https://doi.org/10.5194/gmd-16-6433-2023, 2023
Short summary
Short summary
Machine learning (ML) is an increasingly popular tool in the field of weather and climate modelling. While ML has been used in this space for a long time, it is only recently that ML approaches have become competitive with more traditional methods. In this review, we have summarized the use of ML in weather and climate modelling over time; provided an overview of key ML concepts, methodologies, and terms; and suggested promising avenues for further research.
Danica L. Lombardozzi, William R. Wieder, Negin Sobhani, Gordon B. Bonan, David Durden, Dawn Lenz, Michael SanClements, Samantha Weintraub-Leff, Edward Ayres, Christopher R. Florian, Kyla Dahlin, Sanjiv Kumar, Abigail L. S. Swann, Claire M. Zarakas, Charles Vardeman, and Valerio Pascucci
Geosci. Model Dev., 16, 5979–6000, https://doi.org/10.5194/gmd-16-5979-2023, https://doi.org/10.5194/gmd-16-5979-2023, 2023
Short summary
Short summary
We present a novel cyberinfrastructure system that uses National Ecological Observatory Network measurements to run Community Terrestrial System Model point simulations in a containerized system. The simple interface and tutorials expand access to data and models used in Earth system research by removing technical barriers and facilitating research, educational opportunities, and community engagement. The NCAR–NEON system enables convergence of climate and ecological sciences.
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Xiaoyi Shao, Siyuan Ma, and Chong Xu
Geosci. Model Dev., 16, 5113–5129, https://doi.org/10.5194/gmd-16-5113-2023, https://doi.org/10.5194/gmd-16-5113-2023, 2023
Short summary
Short summary
Scientific understandings of the distribution of coseismic landslides, followed by emergency and medium- and long-term risk assessment, can reduce landslide risk. The aim of this study is to propose an improved three-stage spatial prediction strategy and develop corresponding hazard assessment software called Mat.LShazard V1.0, which provides a new application tool for coseismic landslide disaster prevention and mitigation in different stages.
Junda Zhan, Sensen Wu, Jin Qi, Jindi Zeng, Mengjiao Qin, Yuanyuan Wang, and Zhenhong Du
Geosci. Model Dev., 16, 2777–2794, https://doi.org/10.5194/gmd-16-2777-2023, https://doi.org/10.5194/gmd-16-2777-2023, 2023
Short summary
Short summary
We develop a generalized spatial autoregressive neural network model used for three-dimensional spatial interpolation. Taking the different changing trend of geographic elements along various directions into consideration, the model defines spatial distance in a generalized way and integrates it into the process of spatial interpolation with the theories of spatial autoregression and neural network. Compared with traditional methods, the model achieves better performance and is more adaptable.
Dominikus Heinzeller, Ligia Bernardet, Grant Firl, Man Zhang, Xia Sun, and Michael Ek
Geosci. Model Dev., 16, 2235–2259, https://doi.org/10.5194/gmd-16-2235-2023, https://doi.org/10.5194/gmd-16-2235-2023, 2023
Short summary
Short summary
The Common Community Physics Package is a collection of physical atmospheric parameterizations for use in Earth system models and a framework that couples the physics to a host model’s dynamical core. A primary goal for this effort is to facilitate research and development of physical parameterizations and physics–dynamics coupling methods while offering capabilities for numerical weather prediction operations, for example in the upcoming implementation of the Global Forecast System (GFS) v17.
Tobias Tesch, Stefan Kollet, and Jochen Garcke
Geosci. Model Dev., 16, 2149–2166, https://doi.org/10.5194/gmd-16-2149-2023, https://doi.org/10.5194/gmd-16-2149-2023, 2023
Short summary
Short summary
A recent statistical approach for studying relations in the Earth system is to train deep learning (DL) models to predict Earth system variables given one or several others and use interpretable DL to analyze the relations learned by the models. Here, we propose to combine the approach with a theorem from causality research to ensure that the deep learning model learns causal rather than spurious relations. As an example, we apply the method to study soil-moisture–precipitation coupling.
Yao Hu, Chirantan Ghosh, and Siamak Malakpour-Estalaki
Geosci. Model Dev., 16, 1925–1936, https://doi.org/10.5194/gmd-16-1925-2023, https://doi.org/10.5194/gmd-16-1925-2023, 2023
Short summary
Short summary
Data-driven models (DDMs) gain popularity in earth and environmental systems, thanks in large part to advancements in data collection techniques and artificial intelligence (AI). The performance of these models is determined by the underlying machine learning (ML) algorithms. In this study, we develop a framework to improve the model performance by optimizing ML algorithms and demonstrate the effectiveness of the framework using a DDM to predict edge-of-field runoff in the Maumee domain, USA.
Ruidong Li, Ting Sun, Fuqiang Tian, and Guang-Heng Ni
Geosci. Model Dev., 16, 751–778, https://doi.org/10.5194/gmd-16-751-2023, https://doi.org/10.5194/gmd-16-751-2023, 2023
Short summary
Short summary
We developed SHAFTS (Simultaneous building Height And FootprinT extraction from Sentinel imagery), a multi-task deep-learning-based Python package, to estimate average building height and footprint from Sentinel imagery. Evaluation in 46 cities worldwide shows that SHAFTS achieves significant improvement over existing machine-learning-based methods.
Feng Yin, Philip E. Lewis, and Jose L. Gómez-Dans
Geosci. Model Dev., 15, 7933–7976, https://doi.org/10.5194/gmd-15-7933-2022, https://doi.org/10.5194/gmd-15-7933-2022, 2022
Short summary
Short summary
The proposed SIAC atmospheric correction method provides consistent surface reflectance estimations from medium spatial-resolution satellites (Sentinel 2 and Landsat 8) with per-pixel uncertainty information. The outputs from SIAC have been validated against a wide range of ground measurements, and it shows that SIAC can provide accurate estimations of both surface reflectance and atmospheric parameters, with meaningful uncertainty information.
Martina Stockhause and Michael Lautenschlager
Geosci. Model Dev., 15, 6047–6058, https://doi.org/10.5194/gmd-15-6047-2022, https://doi.org/10.5194/gmd-15-6047-2022, 2022
Short summary
Short summary
The Data Distribution Centre (DDC) of the Intergovernmental Panel on Climate Change (IPCC) celebrates its 25th anniversary in 2022. DDC Partner DKRZ has supported the IPCC Assessments and preserved the quality-assured, citable climate model data underpinning the Assessment Reports over these years over the long term. With the introduction of the IPCC FAIR Guidelines into the current AR6, the value of DDC services has been recognized. However, DDC sustainability remains unresolved.
Daiane Iglesia Dolci, Felipe A. G. Silva, Pedro S. Peixoto, and Ernani V. Volpe
Geosci. Model Dev., 15, 5857–5881, https://doi.org/10.5194/gmd-15-5857-2022, https://doi.org/10.5194/gmd-15-5857-2022, 2022
Short summary
Short summary
We investigate and compare the theoretical and computational characteristics of several absorbing boundary conditions (ABCs) for the full-waveform inversion (FWI) problem. The different ABCs are implemented in an optimized computational framework called Devito. The computational efficiency and memory requirements of the ABC methods are evaluated in the forward and adjoint wave propagators, from simple to realistic velocity models.
Mauro Rossi, Txomin Bornaetxea, and Paola Reichenbach
Geosci. Model Dev., 15, 5651–5666, https://doi.org/10.5194/gmd-15-5651-2022, https://doi.org/10.5194/gmd-15-5651-2022, 2022
Short summary
Short summary
LAND-SUITE is a software package designed to support landslide susceptibility zonation. The software integrates, extends, and completes LAND-SE (Rossi et al., 2010; Rossi and Reichenbach, 2016). The software is implemented in R, a free software environment for statistical computing and graphics, and gives expert users the possibility to perform easier, more flexible, and more informed statistically based landslide susceptibility applications and zonations.
Ashesh Chattopadhyay, Mustafa Mustafa, Pedram Hassanzadeh, Eviatar Bach, and Karthik Kashinath
Geosci. Model Dev., 15, 2221–2237, https://doi.org/10.5194/gmd-15-2221-2022, https://doi.org/10.5194/gmd-15-2221-2022, 2022
Short summary
Short summary
There is growing interest in data-driven weather forecasting, i.e., to predict the weather by using a deep neural network that learns from the evolution of past atmospheric patterns. Here, we propose three components to add to the current data-driven weather forecast models to improve their performance. These components involve a feature that incorporates physics into the neural network, a method to add data assimilation, and an algorithm to use several different time intervals in the forecast.
Paul F. Baumeister and Lars Hoffmann
Geosci. Model Dev., 15, 1855–1874, https://doi.org/10.5194/gmd-15-1855-2022, https://doi.org/10.5194/gmd-15-1855-2022, 2022
Short summary
Short summary
The efficiency of the numerical simulation of radiative transport is shown on modern server-class graphics cards (GPUs). The low-cost prefactor on GPUs compared to general-purpose processors (CPUs) enables future large retrieval campaigns for multi-channel data from infrared sounders aboard low-orbit satellites. The validated research software JURASSIC is available in the public domain.
Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, https://doi.org/10.5194/gmd-15-1413-2022, 2022
Short summary
Short summary
Scientists use computer simulation models to understand how Earth surface processes work, including floods, landslides, soil erosion, river channel migration, ocean sedimentation, and coastal change. Research benefits when the software for simulation modeling is open, shared, and coordinated. The Community Surface Dynamics Modeling System (CSDMS) is a US-based facility that supports research by providing community support, computing tools and guidelines, and educational resources.
Danilo César de Mello, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Raul Roberto Poppiel, Diego Ribeiro Oquendo Cabrero, Luis Augusto Di Loreto Di Raimo, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes Filho, Emilson Pereira Leite, and José Alexandre Melo Demattê
Geosci. Model Dev., 15, 1219–1246, https://doi.org/10.5194/gmd-15-1219-2022, https://doi.org/10.5194/gmd-15-1219-2022, 2022
Short summary
Short summary
We used soil parent material, terrain attributes, and geophysical data from the soil surface to test and compare different and unprecedented geophysical sensor combination, as well as different machine learning algorithms to model and predict several soil attributes. Also, we analyzed the importance of pedoenvironmental variables. The soil attributes were modeled throughout different machine learning algorithms and related to different geophysical sensor combinations.
Duncan Watson-Parris, Andrew Williams, Lucia Deaconu, and Philip Stier
Geosci. Model Dev., 14, 7659–7672, https://doi.org/10.5194/gmd-14-7659-2021, https://doi.org/10.5194/gmd-14-7659-2021, 2021
Short summary
Short summary
The Earth System Emulator (ESEm) provides a fast and flexible framework for emulating a wide variety of Earth science datasets and tools for constraining (or tuning) models of any complexity. Three distinct use cases are presented that demonstrate the utility of ESEm and provide some insight into the use of machine learning for emulation in these different settings. The open-source Python package is freely available so that it might become a valuable tool for the community.
Chongyang Wang, Li Wang, Danni Wang, Dan Li, Chenghu Zhou, Hao Jiang, Qiong Zheng, Shuisen Chen, Kai Jia, Yangxiaoyue Liu, Ji Yang, Xia Zhou, and Yong Li
Geosci. Model Dev., 14, 6833–6846, https://doi.org/10.5194/gmd-14-6833-2021, https://doi.org/10.5194/gmd-14-6833-2021, 2021
Short summary
Short summary
The turbidity maximum zone (TMZ) is a special phenomenon in estuaries worldwide. However, the extraction methods and criteria used to describe the TMZ vary significantly both spatially and temporally. This study proposes an new index, the turbidity maximum zone index, based on the corresponding relationship of total suspended solid concentration and Chl a concentration, which could better extract TMZs in different estuaries and on different dates.
Ranee Joshi, Kavitha Madaiah, Mark Jessell, Mark Lindsay, and Guillaume Pirot
Geosci. Model Dev., 14, 6711–6740, https://doi.org/10.5194/gmd-14-6711-2021, https://doi.org/10.5194/gmd-14-6711-2021, 2021
Short summary
Short summary
We have developed a software that allows the user to extract and standardize drill hole information from legacy datasets and/or different drilling campaigns. It also provides functionality to upscale the lithological information. These functionalities were possible by developing thesauri to identify and group geological terminologies together.
David Meyer, Thomas Nagler, and Robin J. Hogan
Geosci. Model Dev., 14, 5205–5215, https://doi.org/10.5194/gmd-14-5205-2021, https://doi.org/10.5194/gmd-14-5205-2021, 2021
Short summary
Short summary
A major limitation in training machine-learning emulators is often caused by the lack of data. This paper presents a cheap way to increase the size of training datasets using statistical techniques and thereby improve the performance of machine-learning emulators.
Mark Jessell, Vitaliy Ogarko, Yohan de Rose, Mark Lindsay, Ranee Joshi, Agnieszka Piechocka, Lachlan Grose, Miguel de la Varga, Laurent Ailleres, and Guillaume Pirot
Geosci. Model Dev., 14, 5063–5092, https://doi.org/10.5194/gmd-14-5063-2021, https://doi.org/10.5194/gmd-14-5063-2021, 2021
Short summary
Short summary
We have developed software that allows the user to extract sufficient information from unmodified digital maps and associated datasets that we are able to use to automatically build 3D geological models. By automating the process we are able to remove human bias from the procedure, which makes the workflow reproducible.
Martí Bosch, Maxence Locatelli, Perrine Hamel, Roy P. Remme, Jérôme Chenal, and Stéphane Joost
Geosci. Model Dev., 14, 3521–3537, https://doi.org/10.5194/gmd-14-3521-2021, https://doi.org/10.5194/gmd-14-3521-2021, 2021
Short summary
Short summary
The article presents a novel approach to simulate urban heat mitigation from land use/land cover data based on three biophysical mechanisms: tree shade, evapotranspiration and albedo. An automated procedure is proposed to calibrate the model parameters to best fit temperature observations from monitoring stations. A case study in Lausanne, Switzerland, shows that the approach outperforms regressions based on satellite data and provides valuable insights into design heat mitigation policies.
Quang-Van Doan, Hiroyuki Kusaka, Takuto Sato, and Fei Chen
Geosci. Model Dev., 14, 2097–2111, https://doi.org/10.5194/gmd-14-2097-2021, https://doi.org/10.5194/gmd-14-2097-2021, 2021
Short summary
Short summary
This study proposes a novel structural self-organizing map (S-SOM) algorithm. The superiority of S-SOM is that it can better recognize the difference (or similarity) among spatial (or temporal) data used for training and thus improve the clustering quality compared to traditional SOM algorithms.
Juan A. Añel, Michael García-Rodríguez, and Javier Rodeiro
Geosci. Model Dev., 14, 923–934, https://doi.org/10.5194/gmd-14-923-2021, https://doi.org/10.5194/gmd-14-923-2021, 2021
Short summary
Short summary
This work shows that it continues to be hard, if not impossible, to obtain some of the most used climate models worldwide. We reach this conclusion through a systematic study and encourage all development teams and research centres to make public the models they use to produce scientific results.
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021, https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
Short summary
Detecting extreme weather events is a crucial step in understanding how they change due to climate change. Deep learning (DL) is remarkable at pattern recognition; however, it works best only when labeled datasets are available. We create
ClimateNet– an expert-labeled curated dataset – to train a DL model for detecting weather events and predicting changes in extreme precipitation. This work paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data.
Xiang Que, Xiaogang Ma, Chao Ma, and Qiyu Chen
Geosci. Model Dev., 13, 6149–6164, https://doi.org/10.5194/gmd-13-6149-2020, https://doi.org/10.5194/gmd-13-6149-2020, 2020
Short summary
Short summary
This paper presents a spatiotemporal weighted regression (STWR) model for exploring nonstationary spatiotemporal processes in nature and socioeconomics. A value change rate is introduced in the temporal kernel, which presents significant model fitting and accuracy in both simulated and real-world data. STWR fully incorporates observed data in the past and outperforms geographic temporal weighted regression (GTWR) and geographic weighted regression (GWR) models in several experiments.
Sheri Mickelson, Alice Bertini, Gary Strand, Kevin Paul, Eric Nienhouse, John Dennis, and Mariana Vertenstein
Geosci. Model Dev., 13, 5567–5581, https://doi.org/10.5194/gmd-13-5567-2020, https://doi.org/10.5194/gmd-13-5567-2020, 2020
Short summary
Short summary
Every generation of MIP exercises introduces new layers of complexity and an exponential growth in the amount of data requested. CMIP6 required us to develop a new tool chain and forced us to change our methodologies. The new methods discussed in this paper provided us with an 18 times faster speedup over our existing methods. This allowed us to meet our deadlines and we were able to publish more than half a million data sets on the Earth System Grid Federation (ESGF) for the CMIP6 project.
Benjamin Campforts, Charles M. Shobe, Philippe Steer, Matthias Vanmaercke, Dimitri Lague, and Jean Braun
Geosci. Model Dev., 13, 3863–3886, https://doi.org/10.5194/gmd-13-3863-2020, https://doi.org/10.5194/gmd-13-3863-2020, 2020
Short summary
Short summary
Landslides shape the Earth’s surface and are a dominant source of terrestrial sediment. Rivers, then, act as conveyor belts evacuating landslide-produced sediment. Understanding the interaction among rivers and landslides is important to predict the Earth’s surface response to past and future environmental changes and for mitigating natural hazards. We develop HyLands, a new numerical model that provides a toolbox to explore how landslides and rivers interact over several timescales.
Jorge Vicent, Jochem Verrelst, Neus Sabater, Luis Alonso, Juan Pablo Rivera-Caicedo, Luca Martino, Jordi Muñoz-Marí, and José Moreno
Geosci. Model Dev., 13, 1945–1957, https://doi.org/10.5194/gmd-13-1945-2020, https://doi.org/10.5194/gmd-13-1945-2020, 2020
Short summary
Short summary
The modeling of light propagation through the atmosphere is key to process satellite images and to understand atmospheric processes. However, existing atmospheric models can be complex to use in practical applications. Here we aim at providing a new software tool to facilitate using advanced models and to generate large databases of simulated data. As a test case, we use this tool to analyze differences between several atmospheric models, showing the capabilities of this open-source tool.
Jiali Wang, Prasanna Balaprakash, and Rao Kotamarthi
Geosci. Model Dev., 12, 4261–4274, https://doi.org/10.5194/gmd-12-4261-2019, https://doi.org/10.5194/gmd-12-4261-2019, 2019
Short summary
Short summary
Parameterizations are frequently used in models representing physical phenomena and are often the computationally expensive portions of the code. Using model output from simulations performed using a weather model, we train deep neural networks to provide an accurate alternative to a physics-based parameterization. We demonstrate that a domain-aware deep neural network can successfully simulate the entire diurnal cycle of the boundary layer physics and the results are transferable.
Gianandrea Mannarini and Lorenzo Carelli
Geosci. Model Dev., 12, 3449–3480, https://doi.org/10.5194/gmd-12-3449-2019, https://doi.org/10.5194/gmd-12-3449-2019, 2019
Short summary
Short summary
The VISIR ship-routing model is updated in order to deal with ocean currents.
The optimal tracks we computed through VISIR in the Atlantic ocean show great seasonal and regional variability, following a variable influence of surface gravity waves and currents. We assess how these tracks contribute to voyage energy-efficiency gains through a standard indicator (EEOI) of the International Maritime Organization. Also, the new model features are validated against an exact analytical benchmark.
Grzegorz Muszynski, Karthik Kashinath, Vitaliy Kurlin, Michael Wehner, and Prabhat
Geosci. Model Dev., 12, 613–628, https://doi.org/10.5194/gmd-12-613-2019, https://doi.org/10.5194/gmd-12-613-2019, 2019
Short summary
Short summary
We present the automated method for recognizing atmospheric rivers in climate data, i.e., climate model output and reanalysis product. The method is based on topological data analysis and machine learning, both of which are powerful tools that the climate science community often does not use. An advantage of the proposed method is that it is free of selection of subjective threshold conditions on a physical variable. This method is also suitable for rapidly analyzing large amounts of data.
Christina Papagiannopoulou, Diego G. Miralles, Matthias Demuzere, Niko E. C. Verhoest, and Willem Waegeman
Geosci. Model Dev., 11, 4139–4153, https://doi.org/10.5194/gmd-11-4139-2018, https://doi.org/10.5194/gmd-11-4139-2018, 2018
Short summary
Short summary
Common global land cover and climate classifications are based on vegetation–climatic characteristics derived from observational data, ignoring the interaction between the local climate and biome. Here, we model the interplay between vegetation and local climate by discovering spatial relationships among different locations. The resulting global
hydro-climatic biomescorrespond to regions of coherent climate–vegetation interactions that agree well with traditional global land cover maps.
Wendy Sharples, Ilya Zhukov, Markus Geimer, Klaus Goergen, Sebastian Luehrs, Thomas Breuer, Bibi Naz, Ketan Kulkarni, Slavko Brdar, and Stefan Kollet
Geosci. Model Dev., 11, 2875–2895, https://doi.org/10.5194/gmd-11-2875-2018, https://doi.org/10.5194/gmd-11-2875-2018, 2018
Short summary
Short summary
Next-generation geoscientific models are based on complex model implementations and workflows. Next-generation HPC systems require new programming paradigms and code optimization. In order to meet the challenge of running complex simulations on new massively parallel HPC systems, we developed a run control framework that facilitates code portability, code profiling, and provenance tracking to reduce both the duration and the cost of code migration and development, while ensuring reproducibility.
Daojun Zhang, Na Ren, and Xianhui Hou
Geosci. Model Dev., 11, 2525–2539, https://doi.org/10.5194/gmd-11-2525-2018, https://doi.org/10.5194/gmd-11-2525-2018, 2018
Short summary
Short summary
Geographically weighted regression is a widely used method to deal with spatial heterogeneity, which is common in geostatistics. However, most existing software does not support logistic regression and cannot deal with missing data, which exist extensively in mineral prospectivity mapping. This work generalized logistic regression to spatial statistics based on a spatially weighted technique. The new model also supports an anisotropic local window, which is another innovative point.
Thomas Block, Sabine Embacher, Christopher J. Merchant, and Craig Donlon
Geosci. Model Dev., 11, 2419–2427, https://doi.org/10.5194/gmd-11-2419-2018, https://doi.org/10.5194/gmd-11-2419-2018, 2018
Short summary
Short summary
For calibration and validation purposes it is necessary to detect simultaneous data acquisitions from different spaceborne platforms. We present an algorithm and a software system which implements a general approach to resolve this problem. The multisensor matchup system (MMS) can detect simultaneous acquisitions in a large dataset (> 100 TB) and extract data for matching locations for further analysis. The MMS implements a flexible software infrastructure and allows for high parallelization.
Cited articles
Abdullah, A. Y. M., Masrur, A., Adnan, M. S. G., Baky, Md. A. A., Hassan, Q.
K., and Dewan, A.: Spatio-temporal Patterns of Land Use/Land Cover Change in
the Heterogeneous Coastal Region of Bangladesh between 1990 and 2017, Remote
Sens., 11, 790, https://doi.org/10.3390/rs11070790, 2019.
Aburas, M. M., Ahamad, M. S. S., and Omar, N. Q.: Spatio-temporal simulation and prediction of land-use change using conventional and machine learning models: a review, Environ. Monit. Assess., 191, https://doi.org/10.1007/s10661-019-7330-6, 2019.
Abu-Rmileh, A.: Be careful when interpreting your features importance in
XGBoost!, Data Sci., available at:
https://towardsdatascience.com/be-careful-when-interpreting-your-features-importance-in-xgboost-6e16132588e7,
last access: 14 June 2019.
Ahmadlou, M., Delavar, M. R., and Tayyebi, A.: Comparing ANN and CART to Model Multiple Land Use Changes: A Case Study of Sari and Ghaem-Shahr Cities in Iran, J. Geomat. Sci. Technol., 6, 292–303, 2016.
Ahmadlou, M., Delavar, M. R., Basiri, A., and Karimi, M.: A Comparative Study
of Machine Learning Techniques to Simulate Land Use Changes, J. Indian Soc.
Remote Sens., 47, 53–62, https://doi.org/10.1007/s12524-018-0866-z, 2019.
Akiyama, T. and Kawamura, K.: Grassland degradation in China: Methods of
monitoring, management and restoration, Grassl. Sci., 53, 1–17,
https://doi.org/10.1111/j.1744-697X.2007.00073.x, 2007.
Allington, G. R. H., Fernandez-Gimenez, M. E., Chen, J., and Brown, D. G.:
Combining participatory scenario planning and systems modeling to identify
drivers of future sustainability on the Mongolian Plateau, Ecol. Soc.,
23, 9, https://doi.org/10.5751/ES-10034-230209, 2018.
Batunacun and Wieland, R.: XGBoost-SHAP values, prediction of grassland degradation, Zenodo, https://doi.org/10.5281/zenodo.3937226, 2020.
Batunacun, Wieland, R., Lakes, T., Yunfeng, H., and Nendel, C.: Identifying
drivers of land degradation in Xilingol, China, between 1975 and 2015, Land
Use Policy, 83, 543–559, https://doi.org/10.1016/j.landusepol.2019.02.013, 2019.
Bengtsson, J., Bullock, J. M., Egoh, B., Everson, C., Everson, T., O'Connor,
T., O'Farrell, P. J., Smith, H. G., and Lindborg, R.: Grasslands-more
important for ecosystem services than you might think, Ecosphere, 10,
e02582, https://doi.org/10.1002/ecs2.2582, 2019.
Brownlee, J.: How and When to Use ROC Curves and Precision-Recall Curves for
Classification in Python, Mach. Learn. Mastery, available at:
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/
(last access: 19 July 2019), 2018.
Cao, J., Yeh, E. T., Holden, N. M., Qin, Y., and Ren, Z.: The Roles of
Overgrazing, Climate Change and Policy As Drivers of Degradation of China's
Grasslands, Nomadic Peoples, 17, 82–101, https://doi.org/10.3167/np.2013.170207,
2013a.
Cao, J., Yeh, E. T., Holden, N. M., Qin, Y., and Ren, Z.: The Roles of
Overgrazing, Climate Change and Policy As Drivers of Degradation of China's
Grasslands, Nomadic Peoples, 17, 82–101, https://doi.org/10.3167/np.2013.170207,
2013b.
Cao, M., Zhu, Y., Quan, J., Zhou, S., Lü, G., Chen, M., and Huang, M.:
Spatial Sequential Modeling and Predication of Global Land Use and Land
Cover Changes by Integrating a Global Change Assessment Model and Cellular
Automata, Earths Future, 7, 1102–1116, https://doi.org/10.1029/2019EF001228, 2019.
Charif, O., Omrani, H., Abdallah, F., and Pijanowski, B.: A multi-label
cellular automata model for land change simulation, Trans. GIS, 21,
1298–1320, https://doi.org/10.1111/tgis.12279, 2017.
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining – KDD '16, pp. 785–794, ACM Press, San Francisco,
California, USA, 2016.
Dataman: Explain Your Model with the SHAP Values – Towards Data Science,
Data Sci., available at:
https://towardsdatascience.com/explain-your-model-with-the-shap-values-bc36aac4de3d, last access: 8 October 2019.
Davis, J. and Goadrich, M.: The relationship between Precision-Recall and
ROC curves, in Proceedings of the 23rd international conference on Machine
learning – ICML '06, pp. 233–240, ACM Press, Pittsburgh, Pennsylvania,
2006.
Diouf, A. and Lambin, E. F.: Monitoring land-cover changes in semi-arid regions: remote sensing data and field observations in the Ferlo, Senegal, J. Arid Environ., 48, 129–148, https://doi.org/10.1006/jare.2000.0744, 2001.
Feng, Y., Liu, Y., Tong, X., Liu, M., and Deng, S.: Modeling dynamic urban
growth using cellular automata and particle swarm optimization rules,
Landsc. Urban Plan., 102, 188–196,
https://doi.org/10.1016/j.landurbplan.2011.04.004, 2011.
Filippi, A. M., Güneralp, İ., and Randall, J.: Hyperspectral remote
sensing of aboveground biomass on a river meander bend using multivariate
adaptive regression splines and stochastic gradient boosting, Remote Sens.
Lett., 5, 432–441, https://doi.org/10.1080/2150704X.2014.915070, 2014.
Freeman, E. A., Moisen, G. G., Coulston, J. W., and Wilson, B. T.: Random
forests and stochastic gradient boosting for predicting tree canopy cover:
comparing tuning processes and model performance, Can. J. For. Res., 46,
323–339, https://doi.org/10.1139/cjfr-2014-0562, 2016.
Fu, Q., Hou, Y., Wang, B., Bi, X., Li, B., and Zhang, X.: Scenario analysis
of ecosystem service changes and interactions in a mountain-oasis-desert
system: a case study in Altay Prefecture, China, Sci. Rep.-UK, 8, 1–13,
https://doi.org/10.1038/s41598-018-31043-y, 2018.
Fuchs, R., Prestele, R., and Verburg, P. H.: A global assessment of gross and net land change dynamics for current conditions and future scenarios, Earth Syst. Dynam., 9, 441–458, https://doi.org/10.5194/esd-9-441-2018, 2018.
Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., and
Wolff, E.: Very High Resolution Object-Based Land Use – Land Cover Urban
Classification Using Extreme Gradient Boosting, IEEE Geosci. Remote Sens.
Lett., 15, 607–611, https://doi.org/10.1109/LGRS.2018.2803259, 2018.
Gollnow, F. and Lakes, T.: Policy change, land use, and agriculture: The
case of soy production and cattle ranching in Brazil, 2001–2012, Appl.
Geogr., 55, 203–211, https://doi.org/10.1016/j.apgeog.2014.09.003, 2014.
Hao Dong, Xin Xu, Lei Wang, and Fangling Pu: Gaofen-3 PolSAR Image
Classification via XGBoost and Polarimetric Spatial Information, Sensors,
18, 611, https://doi.org/10.3390/s18020611, 2018.
He, H. and Garcia, E. A.: Learning from Imbalanced Data, IEEE Trans. Knowl.
Data Eng., 21, 1263–1284, https://doi.org/10.1109/TKDE.2008.239, 2009.
He, C., Shi, P., Li, X., Chen, J., Li, Y., and Li, J.: Developing Land Use Scenario Dynamics Model by the Integration of System Dynamics Model and Cellular Automata Model, IEEE, Anchorage, AK, USA, 2647–2650, 2004.
Hoffmann, C., Funk, R., Wieland, R., Li, Y., and Sommer, M.: Effects of
grazing and topography on dust flux and deposition in the Xilingele
grassland, Inner Mongolia, J. Arid Environ., 72, 792–807,
https://doi.org/10.1016/j.jaridenv.2007.09.004, 2008.
Huang, B., Xie, C., Tay, R., and Wu, B.: Land-Use-Change Modeling Using
Unbalanced Support-Vector Machines, Environ. Plan. B Plan. Des., 36,
398–416, https://doi.org/10.1068/b33047, 2009.
Huang, B., Xie, C., and Tay, R.: Support vector machines for urban growth
modeling, GeoInformatica, 14, 83–99, https://doi.org/10.1007/s10707-009-0077-4,
2010.
Iacono, M., Levinson, D., El-Geneidy, A., and Wasfi, R.: A Markov Chain Model of Land Use Change, Tema J. Land Use Mobil. Environ., 8, 263–276, 2015.
Islam, K., Rahman, M. F., and Jashimuddin, M.: Modeling land use change
using Cellular Automata and Artificial Neural Network: The case of Chunati
Wildlife Sanctuary, Bangladesh, Ecol. Indic., 88, 439–453,
https://doi.org/10.1016/j.ecolind.2018.01.047, 2018.
Jacquin, A., Goulard, M., Hutchinson, J. M. S., Devienne, T., and Hutchinson,
S. L.: A statistical approach for predicting grassland degradation in
disturbance-driven landscapes, J. Environ. Prot., 7, 912–925,
https://doi.org/10.4236/jep.2016.76081?. ?hal-01509642?, 2016.
Kaggle: Kaggle: Your Home for Data Science, available at:
https://www.kaggle.com/ (last access: 5 January 2020), 2019.
Keshtkar, H., Voigt, W., and Alizadeh, E.: Land-cover classification and
analysis of change using machine-learning classifiers and multi-temporal
remote sensing imagery, Arab. J. Geosci., 10, 154,
https://doi.org/10.1007/s12517-017-2899-y, 2017.
Khoury, A. E.: Modeling Land-Use Changes in the South Nation Watershed using
Dyna-CLUE, University of Ottawa, Ottawa, Canada, available at:
http://hdl.handle.net/10393/22902 (last access: 7 August 2020), 2012.
Kiyohara, S., Miyata, T., Tsuda, K., and Mizoguchi, T.: Data-driven approach
for the prediction and interpretation of core-electron loss spectroscopy,
Sci. Rep.-UK, 8, 1–12, https://doi.org/10.1038/s41598-018-30994-6, 2018.
Kontokosta, C. E. and Tull, C.: A data-driven predictive model of city-scale
energy use in buildings, Appl. Energy, 197, 303–317,
https://doi.org/10.1016/j.apenergy.2017.04.005, 2017.
Krawczyk, B.: Learning from imbalanced data: open challenges and future
directions, Prog. Artif. Intell., 5, 221–232,
https://doi.org/10.1007/s13748-016-0094-0, 2016.
Krüger, C. and Lakes, T.: Bayesian belief networks as a versatile method
for assessing uncertainty in land-change modeling, Int. J. Geogr. Inf. Sci.,
29, 111–131, https://doi.org/10.1080/13658816.2014.949265, 2015.
Kwon, H. Y., Nkonya, E., Johnson, T., Graw, V., Kato, E., and Kihiu, E.: Global Estimates of the Impacts of Grassland Degradation on Livestock Productivity from 2001 to 2011, in: Economics of Land Degradation and Improvement – A Global Assessment for Sustainable Development, edited by: Nkonya, E., Mirzabaev, A., and von Braun, J., Springer, Cham, Switzerland, https://doi.org/10.1007/978-3-319-19168-3_8, 2016.
Lakes, T., Müller, D., and Krüger, C.: Cropland change in southern
Romania: a comparison of logistic regressions and artificial neural
networks, Landsc. Ecol., 24, 1195–1206, https://doi.org/10.1007/s10980-009-9404-2,
2009.
Lambin, E. F., Geist, H. J., and Lepers, E.: Dynamics of Land-Use and Land-Cover Change in Tropical Regions, Annu. Rev. Environ. Resour., 28, 205–241, https://doi.org/10.1146/annurev.energy.28.050302.105459, 2003.
Landis, J. R. and Koch, G. G.: The Measurement of Observer Agreement for
Categorical Data, Biometrics, 33, 159, https://doi.org/10.2307/2529310, 1977.
Li, S., Verburg, P. H., Lv, S., Wu, J., and Li, X.: Spatial analysis of the
driving factors of grassland degradation under conditions of climate change
and intensive use in Inner Mongolia, China, Reg. Environ. Change, 12,
461–474, https://doi.org/10.1007/s10113-011-0264-3, 2012.
Li, X. and Yeh, A. G.-O.: Neural-network-based cellular automata for
simulating multiple land use changes using GIS, Int. J. Geogr. Inf. Sci.,
16, 323–343, https://doi.org/10.1080/13658810210137004, 2002.
Li, X., Zhou, W., and Ouyang, Z.: Forty years of urban expansion in Beijing:
What is the relative importance of physical, socioeconomic, and neighborhood
factors?, Appl. Geogr., 38, 1–10, https://doi.org/10.1016/j.apgeog.2012.11.004, 2013.
Li, X., Bai, Y., Wen, W., Wang, H., Li, R., Li, G., and Wang, H.: Effects of
grassland degradation and precipitation on carbon storage distributions in a
semi-arid temperate grassland of Inner Mongolia, China, Acta Oecol., 85,
44–52, https://doi.org/10.1016/j.actao.2017.09.008, 2017.
Liang, X., Liu, X., Li, D., Zhao, H., and Chen, G.: Urban growth simulation
by incorporating planning policies into a CA-based future land-use
simulation model, Int. J. Geogr. Inf. Sci., 32, 2294–2316,
https://doi.org/10.1080/13658816.2018.1502441, 2018a.
Liang, X., Liu, X., Li, X., Chen, Y., Tian, H., and Yao, Y.: Delineating
multi-scenario urban growth boundaries with a CA-based FLUS model and
morphological method, Landsc. Urban Plan., 177, 47–63,
https://doi.org/10.1016/j.landurbplan.2018.04.016, 2018b.
Lin, Y., Deng, X., Li, X., and Ma, E.: Comparison of multinomial logistic
regression and logistic regression: which is more efficient in allocating
land use?, Front. Earth Sci., 8, 512–523, https://doi.org/10.1007/s11707-014-0426-y,
2014.
Lin, Y.-P., Chu, H.-J., Wu, C.-F., and Verburg, P. H.: Predictive ability of
logistic regression, auto-logistic regression and neural network models in
empirical land-use change modeling – a case study, Int. J. Geogr. Inf.
Sci., 25, 65–87, https://doi.org/10.1080/13658811003752332, 2011.
Liu, M., Dries, L., Heijman, W., Zhu, X., Deng, X., and Huang, J.: Land
tenure reform and grassland degradation in Inner Mongolia, China, China
Econ. Rev., 55, 181–198, https://doi.org/10.1016/j.chieco.2019.04.006, 2019.
Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., Li, S., Wang, S., and
Pei, F.: A future land use simulation model (FLUS) for simulating multiple
land use scenarios by coupling human and natural effects, Landsc. Urban
Plan., 168, 94–116, https://doi.org/10.1016/j.landurbplan.2017.09.019, 2017.
Lundberg, S.: Interpretable Machine Learning with XGBoost, available at: https://towardsdatascience.com/interpretable-machine-learning-with-xgboost-9ec80d148d27 (last access: 2 August 2019), 2018.
Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model
Predictions, pp. 4768–4777, Long Beach, California, USA, 2017.
Mondal, I., Srivastava, V. K., Roy, P. S., and Talukdar, G.: Using logit
model to identify the drivers of landuse landcover change in the lower
gangetic basin, india, ISPRS – Int. Arch. Photogramm, Remote Sens. Spat.
Inf. Sci., XL–8, 853–859, https://doi.org/10.5194/isprsarchives-XL-8-853-2014, 2014.
Mustafa, A., Cools, M., Saadi, I., and Teller, J.: Coupling agent-based,
cellular automata and logistic regression into a hybrid urban expansion
model (HUEM), Land Use Policy, 69, 529–540,
https://doi.org/10.1016/j.landusepol.2017.10.009, 2017.
Mustafa, A., Rienow, A., Saadi, I., Cools, M., and Teller, J.: Comparing
support vector machines with logistic regression for calibrating cellular
automata land use change models, Eur. J. Remote Sens., 51, 391–401,
https://doi.org/10.1080/22797254.2018.1442179, 2018.
National Research Council: Advancing Land Change Modeling:
Opportunities and Research Requirements, National Academies Press,
Washington, D.C., 2014.
Nkonya, E., Mirzabaev, A., and von Braun, J. (Eds.): Economics of Land
Degradation and Improvement – A Global Assessment for Sustainable
Development, Springer International Publishing, Cham, Switzerland, 2016.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., and Cournapeau, D.: Scikit-learn: Machine Learning in Python,
Mach. Learn. PYTHON, 12, 2825–2830, 2011.
Pijanowski, B. C., Brown, D. G., Shellito, B. A., and Manik, G. A.: Using
neural networks and GIS to forecast land use changes: a Land Transformation
Model, Comput. Environ. Urban Syst., 26, 553–575,
https://doi.org/10.1016/S0198-9715(01)00015-1, 2002.
Pijanowski, B. C., Pithadia, S., Shellito, B. A., and Alexandridis, K.:
Calibrating a neural network-based urban change model for two metropolitan
areas of the Upper Midwest of the United States, Int. J. Geogr. Inf. Sci.,
19, 197–215, https://doi.org/10.1080/13658810410001713416, 2005.
Qian, Z.: Herders' Social Vulnerability to Climate Change: A case of desert
grassland in Inner Mongolia, Sociol. Study, 6, 171–195,
2011 (in Chinese).
Reiche, M.: Wind erosion and dust deposition – A landscape in Inner
Mongolia Grassland, China, Universität Potsdam, Germany, 2014.
Ren, Y., Lü, Y., Comber, A., Fu, B., Harris, P., and Wu, L.: Spatially
explicit simulation of land use/land cover changes: Current coverage and
future prospects, Earth-Sci. Rev., 190, 398–415,
https://doi.org/10.1016/j.earscirev.2019.01.001, 2019.
Saito, T. and Rehmsmeier, M.: The Precision-Recall Plot Is More Informative
than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets,
edited by: Brock, G., PLOS ONE, 10, e0118432,
https://doi.org/10.1371/journal.pone.0118432, 2015.
Samardžić-Petrović, M., Dragićević, S., Bajat, B., and
Kovačević, M.: Exploring the Decision Tree Method for Modelling
Urban Land Use Change, GEOMATICA, 69, 313–325, https://doi.org/10.5623/cig2015-305,
2015.
Samardžić-Petrović, M., Dragićević, S.,
Kovačević, M., and Bajat, B.: Modeling Urban Land Use Changes Using
Support Vector Machines: Modeling Urban Land Use Changes Using Support
Vector Machines, Trans. GIS, 20, 718–734, https://doi.org/10.1111/tgis.12174, 2016.
Samardžić-Petrović, M., Kovačević, M., Bajat, B., and
Dragićević, S.: Machine Learning Techniques for Modelling Short Term
Land-Use Change, ISPRS Int. J. Geo-Inf., 6, 387,
https://doi.org/10.3390/ijgi6120387, 2017.
Samardžić-Petrović, M., Bajat, B., Kovačević, M., and Dragicevic,
S.: Modelling and analysing land use changes with data-driven
models: a review of application on the Belgrade study area, in: ResearchGate,
Belgrade, available at:
https://www.researchgate.net/publication/330910156_Modelling_and_analysing_land_use_changes_with_data-driven_models_a_review_of_application_on_the_Belgrade_study_area (last access: 10 March 2019),
2018.
Samie, A., Deng, X., Jia, S., and Chen, D.: Scenario-Based Simulation on
Dynamics of Land-Use-Land-Cover Change in Punjab Province, Pakistan,
Sustainability, 9, 1285, https://doi.org/10.3390/su9081285, 2017.
Shafizadeh-Moghadam, H., Asghari, A., Tayyebi, A., and Taleai, M.: Coupling
machine learning, tree-based and statistical models with cellular automata
to simulate urban growth, Comput. Environ. Urban Syst., 64, 297–308,
https://doi.org/10.1016/j.compenvurbsys.2017.04.002, 2017.
Shao, L., Chen, H., Zhang, C., and Huo, X.: Effects of Major Grassland
Conservation Programs Implemented in Inner Mongolia since 2000 on Vegetation
Restoration and Natural and Anthropogenic Disturbances to Their Success,
Sustainability, 9, 466, https://doi.org/10.3390/su9030466, 2017.
Sohl, T. and Benjamin, S.: Land-use and land-cover scenarios and spatial modeling at the regional scale, Fact Sheet, https://doi.org/10.3133/fs20123091, 2012.
Sokolova, M. and Lapalme, G.: A systematic analysis of performance measures
for classification tasks, Inf. Process. Manag., 45, 427–437,
https://doi.org/10.1016/j.ipm.2009.03.002, 2009.
Su, H., Liu, W., Xu, H., Wang, Z., Zhang, H., Hu, H., and Li, Y.: Long-term
livestock exclusion facilitates native woody plant encroachment in a sandy
semiarid rangeland, Ecol. Evol., 5, 2445–2456, https://doi.org/10.1002/ece3.1531,
2015.
Subramaniyan, M., Skoogh, A., Salomonsson, H., Bangalore, P., and Bokrantz,
J.: A data-driven algorithm to predict throughput bottlenecks in a
production system based on active periods of the machines, Comput. Ind.
Eng., 125, 533–544, https://doi.org/10.1016/j.cie.2018.04.024, 2018.
Sun, B., Li, Z., Gao, Z., Guo, Z., Wang, B., Hu, X., and Bai, L.: Grassland
degradation and restoration monitoring and driving forces analysis based on
long time-series remote sensing data in Xilin Gol League, Acta Ecol. Sin.,
37, 219–228, https://doi.org/10.1016/j.chnaes.2017.02.009, 2017.
Sun, Z. and Müller, D.: A framework for modeling payments for ecosystem
services with agent-based models, Bayesian belief networks and opinion
dynamics models, Environ. Model. Softw., 45, 15–28,
https://doi.org/10.1016/j.envsoft.2012.06.007, 2013.
Tayyebi, A. and Pijanowski, B. C.: Modeling multiple land use changes using
ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory
power of data mining tools, Int. J. Appl. Earth Obs. Geoinformation,
28, 102–116, https://doi.org/10.1016/j.jag.2013.11.008, 2014a.
Tayyebi, A. and Pijanowski, B. C.: Modeling multiple land use changes using
ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory
power of data mining tools, Int. J. Appl. Earth Obs. Geoinformation, 28,
102–116, https://doi.org/10.1016/j.jag.2013.11.008, 2014b.
Tiscornia, G., Jaurena, M., and Baethgen, W.: Drivers, Process, and
Consequences of Native Grassland Degradation: Insights from a Literature
Review and a Survey in Río de la Plata Grasslands, Agronomy, 9, 239,
https://doi.org/10.3390/agronomy9050239, 2019a.
Tiscornia, G., Jaurena, M., and Baethgen, W.: Drivers, Process, and
Consequences of Native Grassland Degradation: Insights from a Literature
Review and a Survey in Río de la Plata Grasslands, Agronomy, 9, 239,
https://doi.org/10.3390/agronomy9050239, 2019b.
Tong, S., Bao, Y., Te, R., Ma, Q., Ha, S., and Lusi, A.: Analysis of Drought
Characteristics in Xilingol Grassland of Northern China Based on SPEI and
Its Impact on Vegetation, Math. Probl. Eng., 2017, 1–11,
https://doi.org/10.1155/2017/5209173, 2017.
Troost, C., Walter, T., and Berger, T.: Climate, energy and environmental
policies in agriculture: Simulating likely farmer responses in Southwest
Germany, Land Use Policy, 46, 50–64, https://doi.org/10.1016/j.landusepol.2015.01.028,
2015.
Verburg, P. H. and Chen, Y.: Multiscale Characterization of Land-Use
Patterns in China, Ecosystems, 3, 369–385, https://doi.org/10.1007/s100210000033,
2000.
Verburg, P. H. and Veldkamp, A.: Projecting land use transitions at forest
fringes in the Philippines at two spatial scales, Landsc. Ecol., 19,
77–98, https://doi.org/10.1023/B:LAND.0000018370.57457.58, 2004.
Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., and
Mastura, S. S. A.: Modeling the Spatial Dynamics of Regional Land Use: The
CLUE-S Model, Environ. Manage., 30, 391–405,
https://doi.org/10.1007/s00267-002-2630-x, 2002.
Vermeiren, K., Vanmaercke, M., Beckers, J., and Van Rompaey, A.: ASSURE: a
model for the simulation of urban expansion and intra-urban social
segregation, Int. J. Geogr. Inf. Sci., 30, 2377–2400,
https://doi.org/10.1080/13658816.2016.1177641, 2016.
Vluymans, S.: Learning from Imbalanced Data, in Dealing with Imbalanced and
Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Methods,
807, 81–110, Springer International Publishing, Cham, Switzerland, 2019.
Wang, X., Dong, S., Yang, B., Li, Y., and Su, X.: The effects of grassland
degradation on plant diversity, primary productivity, and soil fertility in
the alpine region of Asia's headwaters, Environ. Monit. Assess., 186,
6903–6917, https://doi.org/10.1007/s10661-014-3898-z, 2014.
Wang, Y., Wang, Z., Li, R., Meng, X., Ju, X., Zhao, Y., and Sha, Z.:
Comparison of Modeling Grassland Degradation with and without Considering
Localized Spatial Associations in Vegetation Changing Patterns,
Sustainability, 10, 316, https://doi.org/10.3390/su10020316, 2018.
Wang, Z., Deng, X., Song, W., Li, Z., and Chen, J.: What is the main cause of
grassland degradation? A case study of grassland ecosystem service in the
middle-south Inner Mongolia, CATENA, 150, 100–107,
https://doi.org/10.1016/j.catena.2016.11.014, 2017.
Xie, Y. and Sha, Z.: Quantitative Analysis of Driving Factors of Grassland
Degradation: A Case Study in Xilin River Basin, Inner Mongolia, Sci. World
J., 2012, 1–14, https://doi.org/10.1100/2012/169724, 2012.
Xu, G. C., Kang, M. Y., Metzger, M., and Jiang, Y.: Vulnerability of the
Human-Environment System in Arid Regions: The Case of Xilingol Grassland in
Northern China, Pol. J. Environ. Stud., 23, 1773–1785, 2014.
Yang, J., Chen, F., Xi, J., Xie, P., and Li, C.: A Multitarget Land Use
Change Simulation Model Based on Cellular Automata and Its Application,
Abstr. Appl. Anal., 2014, 1–11, https://doi.org/10.1155/2014/375389, 2014.
Yang, X., Chen, R., and Zheng, X. Q.: Simulating land use change by
integrating ANN-CA model and landscape pattern indices, Geomat. Nat. Hazards
Risk, 7, 918–932, https://doi.org/10.1080/19475705.2014.1001797, 2016.
Yuan, T., Yiping, X., Lei, Z., and Danqing, L.: Land Use and Cover Change Simulation and Prediction in Hangzhou City Based on CA-Markov Model, Int. Proc. Chem. Biol. Environ. Eng., 90, 108–113, https://doi.org/10.7763/IPCBEE.2015.V90.17, 2015.
Zhan, J. Y., Deng, X., Jiang, O., and Shi, N.: The Application of System
Dynamics and CLUE-S Model in Land Use Change Dynamic Simulation: a Case
Study in Taips County, Inner Mongolia of China, in: Management Science, pp.
2781–2790, Shanghai, available at:
https://www.researchgate.net/publication/228986766_The_Application_of_System_Dynamics_and_CLUE-S_Model_in_Land_Use_Change_Dynamic_Simulation_a_Case_Study_in_Taips_County_Inner_Mongolia_of_China (last access: 29 April 2018),
2007.
Zhang, M., Zhao, J., and Yuan, L.: Simulation of Land-Use Policies on Spatial
Layout with the CLUE-S Model, ISPRS – Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci., XL-2/W1, 185–190,
https://doi.org/10.5194/isprsarchives-XL-2-W1-185-2013, 2013.
Short summary
Extreme gradient boosting (XGBoost) can provide alternative insights that conventional land-use models are unable to generate. Shapley additive explanations (SHAP) can interpret the results of the purely data-driven approach. XGBoost achieved similar and robust simulation results. SHAP values were useful for analysing the complex relationship between the different drivers of grassland degradation.
Extreme gradient boosting (XGBoost) can provide alternative insights that conventional land-use...