Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1493-2021
https://doi.org/10.5194/gmd-14-1493-2021
Model evaluation paper
 | 
16 Mar 2021
Model evaluation paper |  | 16 Mar 2021

Using Shapley additive explanations to interpret extreme gradient boosting predictions of grassland degradation in Xilingol, China

Batunacun, Ralf Wieland, Tobia Lakes, and Claas Nendel

Related authors

Exploring drought hazard, vulnerability, and related impacts on agriculture in Brandenburg
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
Nat. Hazards Earth Syst. Sci., 24, 4237–4265, https://doi.org/10.5194/nhess-24-4237-2024,https://doi.org/10.5194/nhess-24-4237-2024, 2024
Short summary
Drought Research Exhibits Shifting Priorities, Trends and Geographic Patterns
Roland Baatz, Gohar Ghazaryan, Michael Hagenlocher, Claas Nendel, Andrea Toreti, and Ehsan Eyshi Rezaei
EGUsphere, https://doi.org/10.5194/egusphere-2024-1069,https://doi.org/10.5194/egusphere-2024-1069, 2024
Short summary
Evaluation and optimisation of the soil carbon turnover routine in the MONICA model (version 3.3.1)
Konstantin Aiteew, Jarno Rouhiainen, Claas Nendel, and René Dechow
Geosci. Model Dev., 17, 1349–1385, https://doi.org/10.5194/gmd-17-1349-2024,https://doi.org/10.5194/gmd-17-1349-2024, 2024
Short summary
Aerial and surface rivers: downwind impacts on water availability from land use changes in Amazonia
Wei Weng, Matthias K. B. Luedeke, Delphine C. Zemp, Tobia Lakes, and Juergen P. Kropp
Hydrol. Earth Syst. Sci., 22, 911–927, https://doi.org/10.5194/hess-22-911-2018,https://doi.org/10.5194/hess-22-911-2018, 2018
Short summary
Climate impacts on human livelihoods: where uncertainty matters in projections of water availability
T. K. Lissner, D. E. Reusser, J. Schewe, T. Lakes, and J. P. Kropp
Earth Syst. Dynam., 5, 355–373, https://doi.org/10.5194/esd-5-355-2014,https://doi.org/10.5194/esd-5-355-2014, 2014
Short summary

Related subject area

Earth and space science informatics
Checking the consistency of 3D geological models
Marion N. Parquer, Eric A. de Kemp, Boyan Brodaric, and Michael J. Hillier
Geosci. Model Dev., 18, 71–100, https://doi.org/10.5194/gmd-18-71-2025,https://doi.org/10.5194/gmd-18-71-2025, 2025
Short summary
The effect of lossy compression of numerical weather prediction data on data analysis: a case study using enstools-compression 2023.11
Oriol Tintó Prims, Robert Redl, Marc Rautenhaus, Tobias Selz, Takumi Matsunobu, Kameswar Rao Modali, and George Craig
Geosci. Model Dev., 17, 8909–8925, https://doi.org/10.5194/gmd-17-8909-2024,https://doi.org/10.5194/gmd-17-8909-2024, 2024
Short summary
GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024,https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary
Can AI be enabled to dynamical downscaling? A Latent Diffusion Model to mimic km-scale COSMO5.0_CLM9 simulations
Elena Tomasi, Gabriele Franch, and Marco Cristoforetti
EGUsphere, https://doi.org/10.48550/arXiv.2406.13627,https://doi.org/10.48550/arXiv.2406.13627, 2024
Short summary
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary

Cited articles

Abdullah, A. Y. M., Masrur, A., Adnan, M. S. G., Baky, Md. A. A., Hassan, Q. K., and Dewan, A.: Spatio-temporal Patterns of Land Use/Land Cover Change in the Heterogeneous Coastal Region of Bangladesh between 1990 and 2017, Remote Sens., 11, 790, https://doi.org/10.3390/rs11070790, 2019. 
Aburas, M. M., Ahamad, M. S. S., and Omar, N. Q.: Spatio-temporal simulation and prediction of land-use change using conventional and machine learning models: a review, Environ. Monit. Assess., 191, https://doi.org/10.1007/s10661-019-7330-6, 2019. 
Abu-Rmileh, A.: Be careful when interpreting your features importance in XGBoost!, Data Sci., available at: https://towardsdatascience.com/be-careful-when-interpreting-your-features-importance-in-xgboost-6e16132588e7, last access: 14 June 2019. 
Ahmadlou, M., Delavar, M. R., and Tayyebi, A.: Comparing ANN and CART to Model Multiple Land Use Changes: A Case Study of Sari and Ghaem-Shahr Cities in Iran, J. Geomat. Sci. Technol., 6, 292–303, 2016. 
Ahmadlou, M., Delavar, M. R., Basiri, A., and Karimi, M.: A Comparative Study of Machine Learning Techniques to Simulate Land Use Changes, J. Indian Soc. Remote Sens., 47, 53–62, https://doi.org/10.1007/s12524-018-0866-z, 2019. 
Download
Short summary
Extreme gradient boosting (XGBoost) can provide alternative insights that conventional land-use models are unable to generate. Shapley additive explanations (SHAP) can interpret the results of the purely data-driven approach. XGBoost achieved similar and robust simulation results. SHAP values were useful for analysing the complex relationship between the different drivers of grassland degradation.