Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1493-2021
https://doi.org/10.5194/gmd-14-1493-2021
Model evaluation paper
 | 
16 Mar 2021
Model evaluation paper |  | 16 Mar 2021

Using Shapley additive explanations to interpret extreme gradient boosting predictions of grassland degradation in Xilingol, China

Batunacun, Ralf Wieland, Tobia Lakes, and Claas Nendel

Related authors

Exploring drought hazard, vulnerability, and related impacts on agriculture in Brandenburg
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
Nat. Hazards Earth Syst. Sci., 24, 4237–4265, https://doi.org/10.5194/nhess-24-4237-2024,https://doi.org/10.5194/nhess-24-4237-2024, 2024
Short summary
Drought Research Exhibits Shifting Priorities, Trends and Geographic Patterns
Roland Baatz, Gohar Ghazaryan, Michael Hagenlocher, Claas Nendel, Andrea Toreti, and Ehsan Eyshi Rezaei
EGUsphere, https://doi.org/10.5194/egusphere-2024-1069,https://doi.org/10.5194/egusphere-2024-1069, 2024
Short summary
Evaluation and optimisation of the soil carbon turnover routine in the MONICA model (version 3.3.1)
Konstantin Aiteew, Jarno Rouhiainen, Claas Nendel, and René Dechow
Geosci. Model Dev., 17, 1349–1385, https://doi.org/10.5194/gmd-17-1349-2024,https://doi.org/10.5194/gmd-17-1349-2024, 2024
Short summary
Aerial and surface rivers: downwind impacts on water availability from land use changes in Amazonia
Wei Weng, Matthias K. B. Luedeke, Delphine C. Zemp, Tobia Lakes, and Juergen P. Kropp
Hydrol. Earth Syst. Sci., 22, 911–927, https://doi.org/10.5194/hess-22-911-2018,https://doi.org/10.5194/hess-22-911-2018, 2018
Short summary
Climate impacts on human livelihoods: where uncertainty matters in projections of water availability
T. K. Lissner, D. E. Reusser, J. Schewe, T. Lakes, and J. P. Kropp
Earth Syst. Dynam., 5, 355–373, https://doi.org/10.5194/esd-5-355-2014,https://doi.org/10.5194/esd-5-355-2014, 2014
Short summary

Related subject area

Earth and space science informatics
GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024,https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024,https://doi.org/10.5194/gmd-17-5939-2024, 2024
Short summary
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024,https://doi.org/10.5194/gmd-17-5897-2024, 2024
Short summary
Remote sensing-based high-resolution mapping of the forest canopy height: some models are useful, but might they be even more if combined?
Nikola Besic, Nicolas Picard, Cédric Vega, Lionel Hertzog, Jean-Pierre Renaud, Fajwel Fogel, Agnès Pellissier-Tanon, Gabriel Destouet, Milena Planells-Rodriguez, and Philippe Ciais
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-95,https://doi.org/10.5194/gmd-2024-95, 2024
Revised manuscript accepted for GMD
Short summary

Cited articles

Abdullah, A. Y. M., Masrur, A., Adnan, M. S. G., Baky, Md. A. A., Hassan, Q. K., and Dewan, A.: Spatio-temporal Patterns of Land Use/Land Cover Change in the Heterogeneous Coastal Region of Bangladesh between 1990 and 2017, Remote Sens., 11, 790, https://doi.org/10.3390/rs11070790, 2019. 
Aburas, M. M., Ahamad, M. S. S., and Omar, N. Q.: Spatio-temporal simulation and prediction of land-use change using conventional and machine learning models: a review, Environ. Monit. Assess., 191, https://doi.org/10.1007/s10661-019-7330-6, 2019. 
Abu-Rmileh, A.: Be careful when interpreting your features importance in XGBoost!, Data Sci., available at: https://towardsdatascience.com/be-careful-when-interpreting-your-features-importance-in-xgboost-6e16132588e7, last access: 14 June 2019. 
Ahmadlou, M., Delavar, M. R., and Tayyebi, A.: Comparing ANN and CART to Model Multiple Land Use Changes: A Case Study of Sari and Ghaem-Shahr Cities in Iran, J. Geomat. Sci. Technol., 6, 292–303, 2016. 
Ahmadlou, M., Delavar, M. R., Basiri, A., and Karimi, M.: A Comparative Study of Machine Learning Techniques to Simulate Land Use Changes, J. Indian Soc. Remote Sens., 47, 53–62, https://doi.org/10.1007/s12524-018-0866-z, 2019. 
Download
Short summary
Extreme gradient boosting (XGBoost) can provide alternative insights that conventional land-use models are unable to generate. Shapley additive explanations (SHAP) can interpret the results of the purely data-driven approach. XGBoost achieved similar and robust simulation results. SHAP values were useful for analysing the complex relationship between the different drivers of grassland degradation.