Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1493-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-1493-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using Shapley additive explanations to interpret extreme gradient boosting predictions of grassland degradation in Xilingol, China
Department of Geography, Humboldt-Universität zu Berlin, Unter
den Linden 6, 10099 Berlin, Germany
Leibniz Centre for Agricultural Landscape Research (ZALF),
Eberswalder Straße 84, 15374 Müncheberg, Germany
Ralf Wieland
Leibniz Centre for Agricultural Landscape Research (ZALF),
Eberswalder Straße 84, 15374 Müncheberg, Germany
Tobia Lakes
Department of Geography, Humboldt-Universität zu Berlin, Unter
den Linden 6, 10099 Berlin, Germany
Integrative Research Institute on Transformations of
Human-Environment Systems, Humboldt-Universität zu Berlin,
Friedrichstraße 191, 10099 Berlin, Germany
Claas Nendel
Leibniz Centre for Agricultural Landscape Research (ZALF),
Eberswalder Straße 84, 15374 Müncheberg, Germany
Integrative Research Institute on Transformations of
Human-Environment Systems, Humboldt-Universität zu Berlin,
Friedrichstraße 191, 10099 Berlin, Germany
Related authors
No articles found.
Roland Baatz, Gohar Ghazaryan, Michael Hagenlocher, Claas Nendel, Andrea Toreti, and Ehsan Eyshi Rezaei
Hydrol. Earth Syst. Sci., 29, 1379–1393, https://doi.org/10.5194/hess-29-1379-2025, https://doi.org/10.5194/hess-29-1379-2025, 2025
Short summary
Short summary
Our global review of 130 000 peer-reviewed articles reveals that drought forecasting and plant genetics dominate drought research priorities. Using topic modelling, we traced evolving themes from 1901 to 2022, highlighting a shift from ecology to cutting-edge technologies. By applying unsupervised machine learning, we offer insights into how integrated approaches matter, guiding future priorities to strengthen drought resilience and to safeguard water resources.
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
Nat. Hazards Earth Syst. Sci., 24, 4237–4265, https://doi.org/10.5194/nhess-24-4237-2024, https://doi.org/10.5194/nhess-24-4237-2024, 2024
Short summary
Short summary
Droughts are a threat to agricultural crops, but different factors influence how much damage occurs. This is important to know to create meaningful risk maps and to evaluate adaptation options. We investigate the years 2013–2022 in Brandenburg, Germany, and find in particular the soil quality and meteorological drought in June to be statistically related to the observed damage. Measurement of crop health from satellites is also related to soil quality and not necessarily to anomalous yields.
Konstantin Aiteew, Jarno Rouhiainen, Claas Nendel, and René Dechow
Geosci. Model Dev., 17, 1349–1385, https://doi.org/10.5194/gmd-17-1349-2024, https://doi.org/10.5194/gmd-17-1349-2024, 2024
Short summary
Short summary
This study evaluated the biogeochemical model MONICA and its performance in simulating soil organic carbon changes. MONICA can reproduce plant growth, carbon and nitrogen dynamics, soil water and temperature. The model results were compared with five established carbon turnover models. With the exception of certain sites, adequate reproduction of soil organic carbon stock change rates was achieved. The MONICA model was capable of performing similar to or even better than the other models.
Cited articles
Abdullah, A. Y. M., Masrur, A., Adnan, M. S. G., Baky, Md. A. A., Hassan, Q.
K., and Dewan, A.: Spatio-temporal Patterns of Land Use/Land Cover Change in
the Heterogeneous Coastal Region of Bangladesh between 1990 and 2017, Remote
Sens., 11, 790, https://doi.org/10.3390/rs11070790, 2019.
Aburas, M. M., Ahamad, M. S. S., and Omar, N. Q.: Spatio-temporal simulation and prediction of land-use change using conventional and machine learning models: a review, Environ. Monit. Assess., 191, https://doi.org/10.1007/s10661-019-7330-6, 2019.
Abu-Rmileh, A.: Be careful when interpreting your features importance in
XGBoost!, Data Sci., available at:
https://towardsdatascience.com/be-careful-when-interpreting-your-features-importance-in-xgboost-6e16132588e7,
last access: 14 June 2019.
Ahmadlou, M., Delavar, M. R., and Tayyebi, A.: Comparing ANN and CART to Model Multiple Land Use Changes: A Case Study of Sari and Ghaem-Shahr Cities in Iran, J. Geomat. Sci. Technol., 6, 292–303, 2016.
Ahmadlou, M., Delavar, M. R., Basiri, A., and Karimi, M.: A Comparative Study
of Machine Learning Techniques to Simulate Land Use Changes, J. Indian Soc.
Remote Sens., 47, 53–62, https://doi.org/10.1007/s12524-018-0866-z, 2019.
Akiyama, T. and Kawamura, K.: Grassland degradation in China: Methods of
monitoring, management and restoration, Grassl. Sci., 53, 1–17,
https://doi.org/10.1111/j.1744-697X.2007.00073.x, 2007.
Allington, G. R. H., Fernandez-Gimenez, M. E., Chen, J., and Brown, D. G.:
Combining participatory scenario planning and systems modeling to identify
drivers of future sustainability on the Mongolian Plateau, Ecol. Soc.,
23, 9, https://doi.org/10.5751/ES-10034-230209, 2018.
Batunacun and Wieland, R.: XGBoost-SHAP values, prediction of grassland degradation, Zenodo, https://doi.org/10.5281/zenodo.3937226, 2020.
Batunacun, Wieland, R., Lakes, T., Yunfeng, H., and Nendel, C.: Identifying
drivers of land degradation in Xilingol, China, between 1975 and 2015, Land
Use Policy, 83, 543–559, https://doi.org/10.1016/j.landusepol.2019.02.013, 2019.
Bengtsson, J., Bullock, J. M., Egoh, B., Everson, C., Everson, T., O'Connor,
T., O'Farrell, P. J., Smith, H. G., and Lindborg, R.: Grasslands-more
important for ecosystem services than you might think, Ecosphere, 10,
e02582, https://doi.org/10.1002/ecs2.2582, 2019.
Brownlee, J.: How and When to Use ROC Curves and Precision-Recall Curves for
Classification in Python, Mach. Learn. Mastery, available at:
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/
(last access: 19 July 2019), 2018.
Cao, J., Yeh, E. T., Holden, N. M., Qin, Y., and Ren, Z.: The Roles of
Overgrazing, Climate Change and Policy As Drivers of Degradation of China's
Grasslands, Nomadic Peoples, 17, 82–101, https://doi.org/10.3167/np.2013.170207,
2013a.
Cao, J., Yeh, E. T., Holden, N. M., Qin, Y., and Ren, Z.: The Roles of
Overgrazing, Climate Change and Policy As Drivers of Degradation of China's
Grasslands, Nomadic Peoples, 17, 82–101, https://doi.org/10.3167/np.2013.170207,
2013b.
Cao, M., Zhu, Y., Quan, J., Zhou, S., Lü, G., Chen, M., and Huang, M.:
Spatial Sequential Modeling and Predication of Global Land Use and Land
Cover Changes by Integrating a Global Change Assessment Model and Cellular
Automata, Earths Future, 7, 1102–1116, https://doi.org/10.1029/2019EF001228, 2019.
Charif, O., Omrani, H., Abdallah, F., and Pijanowski, B.: A multi-label
cellular automata model for land change simulation, Trans. GIS, 21,
1298–1320, https://doi.org/10.1111/tgis.12279, 2017.
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining – KDD '16, pp. 785–794, ACM Press, San Francisco,
California, USA, 2016.
Dataman: Explain Your Model with the SHAP Values – Towards Data Science,
Data Sci., available at:
https://towardsdatascience.com/explain-your-model-with-the-shap-values-bc36aac4de3d, last access: 8 October 2019.
Davis, J. and Goadrich, M.: The relationship between Precision-Recall and
ROC curves, in Proceedings of the 23rd international conference on Machine
learning – ICML '06, pp. 233–240, ACM Press, Pittsburgh, Pennsylvania,
2006.
Diouf, A. and Lambin, E. F.: Monitoring land-cover changes in semi-arid regions: remote sensing data and field observations in the Ferlo, Senegal, J. Arid Environ., 48, 129–148, https://doi.org/10.1006/jare.2000.0744, 2001.
Feng, Y., Liu, Y., Tong, X., Liu, M., and Deng, S.: Modeling dynamic urban
growth using cellular automata and particle swarm optimization rules,
Landsc. Urban Plan., 102, 188–196,
https://doi.org/10.1016/j.landurbplan.2011.04.004, 2011.
Filippi, A. M., Güneralp, İ., and Randall, J.: Hyperspectral remote
sensing of aboveground biomass on a river meander bend using multivariate
adaptive regression splines and stochastic gradient boosting, Remote Sens.
Lett., 5, 432–441, https://doi.org/10.1080/2150704X.2014.915070, 2014.
Freeman, E. A., Moisen, G. G., Coulston, J. W., and Wilson, B. T.: Random
forests and stochastic gradient boosting for predicting tree canopy cover:
comparing tuning processes and model performance, Can. J. For. Res., 46,
323–339, https://doi.org/10.1139/cjfr-2014-0562, 2016.
Fu, Q., Hou, Y., Wang, B., Bi, X., Li, B., and Zhang, X.: Scenario analysis
of ecosystem service changes and interactions in a mountain-oasis-desert
system: a case study in Altay Prefecture, China, Sci. Rep.-UK, 8, 1–13,
https://doi.org/10.1038/s41598-018-31043-y, 2018.
Fuchs, R., Prestele, R., and Verburg, P. H.: A global assessment of gross and net land change dynamics for current conditions and future scenarios, Earth Syst. Dynam., 9, 441–458, https://doi.org/10.5194/esd-9-441-2018, 2018.
Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., and
Wolff, E.: Very High Resolution Object-Based Land Use – Land Cover Urban
Classification Using Extreme Gradient Boosting, IEEE Geosci. Remote Sens.
Lett., 15, 607–611, https://doi.org/10.1109/LGRS.2018.2803259, 2018.
Gollnow, F. and Lakes, T.: Policy change, land use, and agriculture: The
case of soy production and cattle ranching in Brazil, 2001–2012, Appl.
Geogr., 55, 203–211, https://doi.org/10.1016/j.apgeog.2014.09.003, 2014.
Hao Dong, Xin Xu, Lei Wang, and Fangling Pu: Gaofen-3 PolSAR Image
Classification via XGBoost and Polarimetric Spatial Information, Sensors,
18, 611, https://doi.org/10.3390/s18020611, 2018.
He, H. and Garcia, E. A.: Learning from Imbalanced Data, IEEE Trans. Knowl.
Data Eng., 21, 1263–1284, https://doi.org/10.1109/TKDE.2008.239, 2009.
He, C., Shi, P., Li, X., Chen, J., Li, Y., and Li, J.: Developing Land Use Scenario Dynamics Model by the Integration of System Dynamics Model and Cellular Automata Model, IEEE, Anchorage, AK, USA, 2647–2650, 2004.
Hoffmann, C., Funk, R., Wieland, R., Li, Y., and Sommer, M.: Effects of
grazing and topography on dust flux and deposition in the Xilingele
grassland, Inner Mongolia, J. Arid Environ., 72, 792–807,
https://doi.org/10.1016/j.jaridenv.2007.09.004, 2008.
Huang, B., Xie, C., Tay, R., and Wu, B.: Land-Use-Change Modeling Using
Unbalanced Support-Vector Machines, Environ. Plan. B Plan. Des., 36,
398–416, https://doi.org/10.1068/b33047, 2009.
Huang, B., Xie, C., and Tay, R.: Support vector machines for urban growth
modeling, GeoInformatica, 14, 83–99, https://doi.org/10.1007/s10707-009-0077-4,
2010.
Iacono, M., Levinson, D., El-Geneidy, A., and Wasfi, R.: A Markov Chain Model of Land Use Change, Tema J. Land Use Mobil. Environ., 8, 263–276, 2015.
Islam, K., Rahman, M. F., and Jashimuddin, M.: Modeling land use change
using Cellular Automata and Artificial Neural Network: The case of Chunati
Wildlife Sanctuary, Bangladesh, Ecol. Indic., 88, 439–453,
https://doi.org/10.1016/j.ecolind.2018.01.047, 2018.
Jacquin, A., Goulard, M., Hutchinson, J. M. S., Devienne, T., and Hutchinson,
S. L.: A statistical approach for predicting grassland degradation in
disturbance-driven landscapes, J. Environ. Prot., 7, 912–925,
https://doi.org/10.4236/jep.2016.76081?. ?hal-01509642?, 2016.
Kaggle: Kaggle: Your Home for Data Science, available at:
https://www.kaggle.com/ (last access: 5 January 2020), 2019.
Keshtkar, H., Voigt, W., and Alizadeh, E.: Land-cover classification and
analysis of change using machine-learning classifiers and multi-temporal
remote sensing imagery, Arab. J. Geosci., 10, 154,
https://doi.org/10.1007/s12517-017-2899-y, 2017.
Khoury, A. E.: Modeling Land-Use Changes in the South Nation Watershed using
Dyna-CLUE, University of Ottawa, Ottawa, Canada, available at:
http://hdl.handle.net/10393/22902 (last access: 7 August 2020), 2012.
Kiyohara, S., Miyata, T., Tsuda, K., and Mizoguchi, T.: Data-driven approach
for the prediction and interpretation of core-electron loss spectroscopy,
Sci. Rep.-UK, 8, 1–12, https://doi.org/10.1038/s41598-018-30994-6, 2018.
Kontokosta, C. E. and Tull, C.: A data-driven predictive model of city-scale
energy use in buildings, Appl. Energy, 197, 303–317,
https://doi.org/10.1016/j.apenergy.2017.04.005, 2017.
Krawczyk, B.: Learning from imbalanced data: open challenges and future
directions, Prog. Artif. Intell., 5, 221–232,
https://doi.org/10.1007/s13748-016-0094-0, 2016.
Krüger, C. and Lakes, T.: Bayesian belief networks as a versatile method
for assessing uncertainty in land-change modeling, Int. J. Geogr. Inf. Sci.,
29, 111–131, https://doi.org/10.1080/13658816.2014.949265, 2015.
Kwon, H. Y., Nkonya, E., Johnson, T., Graw, V., Kato, E., and Kihiu, E.: Global Estimates of the Impacts of Grassland Degradation on Livestock Productivity from 2001 to 2011, in: Economics of Land Degradation and Improvement – A Global Assessment for Sustainable Development, edited by: Nkonya, E., Mirzabaev, A., and von Braun, J., Springer, Cham, Switzerland, https://doi.org/10.1007/978-3-319-19168-3_8, 2016.
Lakes, T., Müller, D., and Krüger, C.: Cropland change in southern
Romania: a comparison of logistic regressions and artificial neural
networks, Landsc. Ecol., 24, 1195–1206, https://doi.org/10.1007/s10980-009-9404-2,
2009.
Lambin, E. F., Geist, H. J., and Lepers, E.: Dynamics of Land-Use and Land-Cover Change in Tropical Regions, Annu. Rev. Environ. Resour., 28, 205–241, https://doi.org/10.1146/annurev.energy.28.050302.105459, 2003.
Landis, J. R. and Koch, G. G.: The Measurement of Observer Agreement for
Categorical Data, Biometrics, 33, 159, https://doi.org/10.2307/2529310, 1977.
Li, S., Verburg, P. H., Lv, S., Wu, J., and Li, X.: Spatial analysis of the
driving factors of grassland degradation under conditions of climate change
and intensive use in Inner Mongolia, China, Reg. Environ. Change, 12,
461–474, https://doi.org/10.1007/s10113-011-0264-3, 2012.
Li, X. and Yeh, A. G.-O.: Neural-network-based cellular automata for
simulating multiple land use changes using GIS, Int. J. Geogr. Inf. Sci.,
16, 323–343, https://doi.org/10.1080/13658810210137004, 2002.
Li, X., Zhou, W., and Ouyang, Z.: Forty years of urban expansion in Beijing:
What is the relative importance of physical, socioeconomic, and neighborhood
factors?, Appl. Geogr., 38, 1–10, https://doi.org/10.1016/j.apgeog.2012.11.004, 2013.
Li, X., Bai, Y., Wen, W., Wang, H., Li, R., Li, G., and Wang, H.: Effects of
grassland degradation and precipitation on carbon storage distributions in a
semi-arid temperate grassland of Inner Mongolia, China, Acta Oecol., 85,
44–52, https://doi.org/10.1016/j.actao.2017.09.008, 2017.
Liang, X., Liu, X., Li, D., Zhao, H., and Chen, G.: Urban growth simulation
by incorporating planning policies into a CA-based future land-use
simulation model, Int. J. Geogr. Inf. Sci., 32, 2294–2316,
https://doi.org/10.1080/13658816.2018.1502441, 2018a.
Liang, X., Liu, X., Li, X., Chen, Y., Tian, H., and Yao, Y.: Delineating
multi-scenario urban growth boundaries with a CA-based FLUS model and
morphological method, Landsc. Urban Plan., 177, 47–63,
https://doi.org/10.1016/j.landurbplan.2018.04.016, 2018b.
Lin, Y., Deng, X., Li, X., and Ma, E.: Comparison of multinomial logistic
regression and logistic regression: which is more efficient in allocating
land use?, Front. Earth Sci., 8, 512–523, https://doi.org/10.1007/s11707-014-0426-y,
2014.
Lin, Y.-P., Chu, H.-J., Wu, C.-F., and Verburg, P. H.: Predictive ability of
logistic regression, auto-logistic regression and neural network models in
empirical land-use change modeling – a case study, Int. J. Geogr. Inf.
Sci., 25, 65–87, https://doi.org/10.1080/13658811003752332, 2011.
Liu, M., Dries, L., Heijman, W., Zhu, X., Deng, X., and Huang, J.: Land
tenure reform and grassland degradation in Inner Mongolia, China, China
Econ. Rev., 55, 181–198, https://doi.org/10.1016/j.chieco.2019.04.006, 2019.
Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., Li, S., Wang, S., and
Pei, F.: A future land use simulation model (FLUS) for simulating multiple
land use scenarios by coupling human and natural effects, Landsc. Urban
Plan., 168, 94–116, https://doi.org/10.1016/j.landurbplan.2017.09.019, 2017.
Lundberg, S.: Interpretable Machine Learning with XGBoost, available at: https://towardsdatascience.com/interpretable-machine-learning-with-xgboost-9ec80d148d27 (last access: 2 August 2019), 2018.
Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model
Predictions, pp. 4768–4777, Long Beach, California, USA, 2017.
Mondal, I., Srivastava, V. K., Roy, P. S., and Talukdar, G.: Using logit
model to identify the drivers of landuse landcover change in the lower
gangetic basin, india, ISPRS – Int. Arch. Photogramm, Remote Sens. Spat.
Inf. Sci., XL–8, 853–859, https://doi.org/10.5194/isprsarchives-XL-8-853-2014, 2014.
Mustafa, A., Cools, M., Saadi, I., and Teller, J.: Coupling agent-based,
cellular automata and logistic regression into a hybrid urban expansion
model (HUEM), Land Use Policy, 69, 529–540,
https://doi.org/10.1016/j.landusepol.2017.10.009, 2017.
Mustafa, A., Rienow, A., Saadi, I., Cools, M., and Teller, J.: Comparing
support vector machines with logistic regression for calibrating cellular
automata land use change models, Eur. J. Remote Sens., 51, 391–401,
https://doi.org/10.1080/22797254.2018.1442179, 2018.
National Research Council: Advancing Land Change Modeling:
Opportunities and Research Requirements, National Academies Press,
Washington, D.C., 2014.
Nkonya, E., Mirzabaev, A., and von Braun, J. (Eds.): Economics of Land
Degradation and Improvement – A Global Assessment for Sustainable
Development, Springer International Publishing, Cham, Switzerland, 2016.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., and Cournapeau, D.: Scikit-learn: Machine Learning in Python,
Mach. Learn. PYTHON, 12, 2825–2830, 2011.
Pijanowski, B. C., Brown, D. G., Shellito, B. A., and Manik, G. A.: Using
neural networks and GIS to forecast land use changes: a Land Transformation
Model, Comput. Environ. Urban Syst., 26, 553–575,
https://doi.org/10.1016/S0198-9715(01)00015-1, 2002.
Pijanowski, B. C., Pithadia, S., Shellito, B. A., and Alexandridis, K.:
Calibrating a neural network-based urban change model for two metropolitan
areas of the Upper Midwest of the United States, Int. J. Geogr. Inf. Sci.,
19, 197–215, https://doi.org/10.1080/13658810410001713416, 2005.
Qian, Z.: Herders' Social Vulnerability to Climate Change: A case of desert
grassland in Inner Mongolia, Sociol. Study, 6, 171–195,
2011 (in Chinese).
Reiche, M.: Wind erosion and dust deposition – A landscape in Inner
Mongolia Grassland, China, Universität Potsdam, Germany, 2014.
Ren, Y., Lü, Y., Comber, A., Fu, B., Harris, P., and Wu, L.: Spatially
explicit simulation of land use/land cover changes: Current coverage and
future prospects, Earth-Sci. Rev., 190, 398–415,
https://doi.org/10.1016/j.earscirev.2019.01.001, 2019.
Saito, T. and Rehmsmeier, M.: The Precision-Recall Plot Is More Informative
than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets,
edited by: Brock, G., PLOS ONE, 10, e0118432,
https://doi.org/10.1371/journal.pone.0118432, 2015.
Samardžić-Petrović, M., Dragićević, S., Bajat, B., and
Kovačević, M.: Exploring the Decision Tree Method for Modelling
Urban Land Use Change, GEOMATICA, 69, 313–325, https://doi.org/10.5623/cig2015-305,
2015.
Samardžić-Petrović, M., Dragićević, S.,
Kovačević, M., and Bajat, B.: Modeling Urban Land Use Changes Using
Support Vector Machines: Modeling Urban Land Use Changes Using Support
Vector Machines, Trans. GIS, 20, 718–734, https://doi.org/10.1111/tgis.12174, 2016.
Samardžić-Petrović, M., Kovačević, M., Bajat, B., and
Dragićević, S.: Machine Learning Techniques for Modelling Short Term
Land-Use Change, ISPRS Int. J. Geo-Inf., 6, 387,
https://doi.org/10.3390/ijgi6120387, 2017.
Samardžić-Petrović, M., Bajat, B., Kovačević, M., and Dragicevic,
S.: Modelling and analysing land use changes with data-driven
models: a review of application on the Belgrade study area, in: ResearchGate,
Belgrade, available at:
https://www.researchgate.net/publication/330910156_Modelling_and_analysing_land_use_changes_with_data-driven_models_a_review_of_application_on_the_Belgrade_study_area (last access: 10 March 2019),
2018.
Samie, A., Deng, X., Jia, S., and Chen, D.: Scenario-Based Simulation on
Dynamics of Land-Use-Land-Cover Change in Punjab Province, Pakistan,
Sustainability, 9, 1285, https://doi.org/10.3390/su9081285, 2017.
Shafizadeh-Moghadam, H., Asghari, A., Tayyebi, A., and Taleai, M.: Coupling
machine learning, tree-based and statistical models with cellular automata
to simulate urban growth, Comput. Environ. Urban Syst., 64, 297–308,
https://doi.org/10.1016/j.compenvurbsys.2017.04.002, 2017.
Shao, L., Chen, H., Zhang, C., and Huo, X.: Effects of Major Grassland
Conservation Programs Implemented in Inner Mongolia since 2000 on Vegetation
Restoration and Natural and Anthropogenic Disturbances to Their Success,
Sustainability, 9, 466, https://doi.org/10.3390/su9030466, 2017.
Sohl, T. and Benjamin, S.: Land-use and land-cover scenarios and spatial modeling at the regional scale, Fact Sheet, https://doi.org/10.3133/fs20123091, 2012.
Sokolova, M. and Lapalme, G.: A systematic analysis of performance measures
for classification tasks, Inf. Process. Manag., 45, 427–437,
https://doi.org/10.1016/j.ipm.2009.03.002, 2009.
Su, H., Liu, W., Xu, H., Wang, Z., Zhang, H., Hu, H., and Li, Y.: Long-term
livestock exclusion facilitates native woody plant encroachment in a sandy
semiarid rangeland, Ecol. Evol., 5, 2445–2456, https://doi.org/10.1002/ece3.1531,
2015.
Subramaniyan, M., Skoogh, A., Salomonsson, H., Bangalore, P., and Bokrantz,
J.: A data-driven algorithm to predict throughput bottlenecks in a
production system based on active periods of the machines, Comput. Ind.
Eng., 125, 533–544, https://doi.org/10.1016/j.cie.2018.04.024, 2018.
Sun, B., Li, Z., Gao, Z., Guo, Z., Wang, B., Hu, X., and Bai, L.: Grassland
degradation and restoration monitoring and driving forces analysis based on
long time-series remote sensing data in Xilin Gol League, Acta Ecol. Sin.,
37, 219–228, https://doi.org/10.1016/j.chnaes.2017.02.009, 2017.
Sun, Z. and Müller, D.: A framework for modeling payments for ecosystem
services with agent-based models, Bayesian belief networks and opinion
dynamics models, Environ. Model. Softw., 45, 15–28,
https://doi.org/10.1016/j.envsoft.2012.06.007, 2013.
Tayyebi, A. and Pijanowski, B. C.: Modeling multiple land use changes using
ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory
power of data mining tools, Int. J. Appl. Earth Obs. Geoinformation,
28, 102–116, https://doi.org/10.1016/j.jag.2013.11.008, 2014a.
Tayyebi, A. and Pijanowski, B. C.: Modeling multiple land use changes using
ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory
power of data mining tools, Int. J. Appl. Earth Obs. Geoinformation, 28,
102–116, https://doi.org/10.1016/j.jag.2013.11.008, 2014b.
Tiscornia, G., Jaurena, M., and Baethgen, W.: Drivers, Process, and
Consequences of Native Grassland Degradation: Insights from a Literature
Review and a Survey in Río de la Plata Grasslands, Agronomy, 9, 239,
https://doi.org/10.3390/agronomy9050239, 2019a.
Tiscornia, G., Jaurena, M., and Baethgen, W.: Drivers, Process, and
Consequences of Native Grassland Degradation: Insights from a Literature
Review and a Survey in Río de la Plata Grasslands, Agronomy, 9, 239,
https://doi.org/10.3390/agronomy9050239, 2019b.
Tong, S., Bao, Y., Te, R., Ma, Q., Ha, S., and Lusi, A.: Analysis of Drought
Characteristics in Xilingol Grassland of Northern China Based on SPEI and
Its Impact on Vegetation, Math. Probl. Eng., 2017, 1–11,
https://doi.org/10.1155/2017/5209173, 2017.
Troost, C., Walter, T., and Berger, T.: Climate, energy and environmental
policies in agriculture: Simulating likely farmer responses in Southwest
Germany, Land Use Policy, 46, 50–64, https://doi.org/10.1016/j.landusepol.2015.01.028,
2015.
Verburg, P. H. and Chen, Y.: Multiscale Characterization of Land-Use
Patterns in China, Ecosystems, 3, 369–385, https://doi.org/10.1007/s100210000033,
2000.
Verburg, P. H. and Veldkamp, A.: Projecting land use transitions at forest
fringes in the Philippines at two spatial scales, Landsc. Ecol., 19,
77–98, https://doi.org/10.1023/B:LAND.0000018370.57457.58, 2004.
Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., and
Mastura, S. S. A.: Modeling the Spatial Dynamics of Regional Land Use: The
CLUE-S Model, Environ. Manage., 30, 391–405,
https://doi.org/10.1007/s00267-002-2630-x, 2002.
Vermeiren, K., Vanmaercke, M., Beckers, J., and Van Rompaey, A.: ASSURE: a
model for the simulation of urban expansion and intra-urban social
segregation, Int. J. Geogr. Inf. Sci., 30, 2377–2400,
https://doi.org/10.1080/13658816.2016.1177641, 2016.
Vluymans, S.: Learning from Imbalanced Data, in Dealing with Imbalanced and
Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Methods,
807, 81–110, Springer International Publishing, Cham, Switzerland, 2019.
Wang, X., Dong, S., Yang, B., Li, Y., and Su, X.: The effects of grassland
degradation on plant diversity, primary productivity, and soil fertility in
the alpine region of Asia's headwaters, Environ. Monit. Assess., 186,
6903–6917, https://doi.org/10.1007/s10661-014-3898-z, 2014.
Wang, Y., Wang, Z., Li, R., Meng, X., Ju, X., Zhao, Y., and Sha, Z.:
Comparison of Modeling Grassland Degradation with and without Considering
Localized Spatial Associations in Vegetation Changing Patterns,
Sustainability, 10, 316, https://doi.org/10.3390/su10020316, 2018.
Wang, Z., Deng, X., Song, W., Li, Z., and Chen, J.: What is the main cause of
grassland degradation? A case study of grassland ecosystem service in the
middle-south Inner Mongolia, CATENA, 150, 100–107,
https://doi.org/10.1016/j.catena.2016.11.014, 2017.
Xie, Y. and Sha, Z.: Quantitative Analysis of Driving Factors of Grassland
Degradation: A Case Study in Xilin River Basin, Inner Mongolia, Sci. World
J., 2012, 1–14, https://doi.org/10.1100/2012/169724, 2012.
Xu, G. C., Kang, M. Y., Metzger, M., and Jiang, Y.: Vulnerability of the
Human-Environment System in Arid Regions: The Case of Xilingol Grassland in
Northern China, Pol. J. Environ. Stud., 23, 1773–1785, 2014.
Yang, J., Chen, F., Xi, J., Xie, P., and Li, C.: A Multitarget Land Use
Change Simulation Model Based on Cellular Automata and Its Application,
Abstr. Appl. Anal., 2014, 1–11, https://doi.org/10.1155/2014/375389, 2014.
Yang, X., Chen, R., and Zheng, X. Q.: Simulating land use change by
integrating ANN-CA model and landscape pattern indices, Geomat. Nat. Hazards
Risk, 7, 918–932, https://doi.org/10.1080/19475705.2014.1001797, 2016.
Yuan, T., Yiping, X., Lei, Z., and Danqing, L.: Land Use and Cover Change Simulation and Prediction in Hangzhou City Based on CA-Markov Model, Int. Proc. Chem. Biol. Environ. Eng., 90, 108–113, https://doi.org/10.7763/IPCBEE.2015.V90.17, 2015.
Zhan, J. Y., Deng, X., Jiang, O., and Shi, N.: The Application of System
Dynamics and CLUE-S Model in Land Use Change Dynamic Simulation: a Case
Study in Taips County, Inner Mongolia of China, in: Management Science, pp.
2781–2790, Shanghai, available at:
https://www.researchgate.net/publication/228986766_The_Application_of_System_Dynamics_and_CLUE-S_Model_in_Land_Use_Change_Dynamic_Simulation_a_Case_Study_in_Taips_County_Inner_Mongolia_of_China (last access: 29 April 2018),
2007.
Zhang, M., Zhao, J., and Yuan, L.: Simulation of Land-Use Policies on Spatial
Layout with the CLUE-S Model, ISPRS – Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci., XL-2/W1, 185–190,
https://doi.org/10.5194/isprsarchives-XL-2-W1-185-2013, 2013.
Short summary
Extreme gradient boosting (XGBoost) can provide alternative insights that conventional land-use models are unable to generate. Shapley additive explanations (SHAP) can interpret the results of the purely data-driven approach. XGBoost achieved similar and robust simulation results. SHAP values were useful for analysing the complex relationship between the different drivers of grassland degradation.
Extreme gradient boosting (XGBoost) can provide alternative insights that conventional land-use...