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Abstract. Machine learning (ML) and data-driven ap-
proaches are increasingly used in many research areas. Ex-
treme gradient boosting (XGBoost) is a tree boosting method
that has evolved into a state-of-the-art approach for many
ML challenges. However, it has rarely been used in sim-
ulations of land use change so far. Xilingol, a typical re-
gion for research on serious grassland degradation and its
drivers, was selected as a case study to test whether XG-
Boost can provide alternative insights that conventional land-
use models are unable to generate. A set of 20 drivers was
analysed using XGBoost, involving four alternative sam-
pling strategies, and SHAP (Shapley additive explanations)
to interpret the results of the purely data-driven approach.
The results indicated that, with three of the sampling strate-
gies (over-balanced, balanced, and imbalanced), XGBoost
achieved similar and robust simulation results. SHAP values
were useful for analysing the complex relationship between
the different drivers of grassland degradation. Four drivers
accounted for 99 % of the grassland degradation dynamics
in Xilingol. These four drivers were spatially allocated, and
a risk map of further degradation was produced. The limita-
tions of using XGBoost to predict future land-use change are
discussed.

1 Introduction

Land-use and land-cover change (LUCC) has received in-
creasing attention in recent years (Aburas et al., 2019; Diouf
and Lambin, 2001; Lambin et al., 2003; Verburg et al., 2002).

Land-use change includes various land-use processes, such
as urbanisation, land degradation, water body shrinkage, and
surface mining, and has significant effects on ecosystem ser-
vices and functions (Sohl and Benjamin, 2012). Grassland is
the major land-use type on the Mongolian Plateau; its degra-
dation was first witnessed in the 1960s. About 15 % of the
total grassland area was characterised as being degraded in
the 1970s, which rose to 50 % in the mid-1980s (Kwon et
al., 2016). In general, grassland degradation (GD) refers to
any biotic disturbance in which grass struggles to grow or
can no longer exist due to physical stress (e.g. overgraz-
ing, trampling) or changes in growing conditions (e.g. cli-
mate; Akiyama and Kawamura, 2007). In this study, grass-
land degradation is defined as grassland that has been de-
stroyed and subsequently classified as some other land use,
or that has significantly decreased in coverage.

Grassland is a land use that provides extensive ecosystem
services (Bengtsson et al., 2019). When degraded, the conse-
quences are seen in an immediate decline in these services,
such as a decrease in carbon storage due to a reduction in
vegetation productivity (Li et al., 2017). About 90 % of car-
bon in grassland ecosystems is stored in the soil (Nkonya et
al., 2016). Furthermore, GD results in a reduction in plant
diversity and above-ground biomass available for grazing
(Wang et al., 2014). Likewise, GD leads to soil erosion and
frequent dusts storms in Inner Mongolia (Hoffmann et al.,
2008; Reiche, 2014). Drivers of GD are manifold and have
been analysed in a range of studies (Li et al., 2012; Liu et
al., 2019; Sun et al., 2017; Xie and Sha, 2012). However,
few studies use sophisticated driver analysis to predict spa-
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tial patterns of GD (Jacquin et al., 2016; Wang et al., 2018).
A number of studies have addressed the complex relation-
ship between GD and its drivers (Cao et al., 2013a; Feng et
al., 2011; Fu et al., 2018; Tiscornia et al., 2019a). However,
these studies focus mainly on visualising or describing non-
linear relationships between GD and its drivers.

The aim of developing various land-use models was to ex-
plore the causes and outcomes of land-use dynamics; these
models were implemented in combination with scenario
analysis to support land management and decision-making
(National Research Council, 2014; Ren et al., 2019). Most
such models are statistical models, such as logistic regres-
sion models or models based on principle component analy-
sis (Li et al., 2013; Lin et al., 2014) or Bayesian belief net-
works (Krüger and Lakes, 2015). Some such models are spa-
tially explicit (e.g. CLUE-S, GeoSOS-FLUS, LTM, Fu et al.,
2018; Liang et al., 2018a; Pijanowski et al., 2002, 2005; Ver-
burg and Veldkamp, 2004; Zhang et al., 2013); others are
not (e.g. Markov models; Iacono et al., 2015; Yuan et al.,
2015). Hybrid models, which combine different approaches
to make the best use of the advantages of each model, are
another important variety. This type of model is used to char-
acterise the multiple aspects of LUCC patterns and processes
(Li and Yeh, 2002; Sun and Müller, 2013). Agent-based mod-
els (ABM) simulate land use change decisions based on the
behaviour of individual decision-makers. They often con-
sider economic and political information to calculate land-
use change. Cellular automata (CA) models are gridded mod-
els in which time, space, and state are all discrete. CA mod-
els are spatially explicit and land use change decisions are
made based on the state of the neighbouring cells (Yang et
al., 2014). CA models are often used for the spatial alloca-
tion of land use and land cover at a high spatial resolution
(Cao et al., 2019) and may be used in combination with other
models, such as ABM (e.g. Charif et al., 2017; Mustafa et al.,
2017; Troost et al., 2015; Vermeiren et al., 2016).

In most cases of land-use change, it was either assumed
that the relationship between the drivers and the resulting
land-use change is constant over time (Fu et al., 2018; Samie
et al., 2017; Zhan et al., 2007), or the relationships were iden-
tified as being linear or non-linear but were not interpreted
(Tayyebi and Pijanowski, 2014a). We hypothesise that the
relationships between GD and its drivers are mainly non-
linear. We therefore see a need for methods that are capa-
ble of analysing and interpreting non-linear relationships be-
tween GD and dynamic drivers.

With the development of computer science, machine learn-
ing (ML) models have been increasingly used in land-use
change modelling (Islam et al., 2018; Krüger and Lakes,
2015; Lakes et al., 2009; Tayyebi and Pijanowski, 2014a).
ML is superior to the human brain when it comes to pattern
recognition in large datasets, e.g. images and sensor fields.
Once the task is defined and the data for training are pro-
vided, ML operates without any further human assistance.
Various ML approaches have been used in the analysis of

land-use change processes, the most prominent of which
are support vector machines (SVM; Huang et al., 2009,
2010), artificial neural networks (ANN; Ahmadlou et al.,
2016; Yang et al., 2016), classification and regression trees
(Tayyebi and Pijanowski, 2014b), and random forest (RF;
Freeman et al., 2016). While the different ML approaches
generally perform well in identifying patterns, they remain
a black box and make no contribution to our understand-
ing of how the underlying drivers act on the LUCC process.
Compared to linear methods such as logistic regression, ML
models often achieve higher accuracy and capture non-linear
land-use change processes. Likewise, ML models relax some
of the rigorous assumptions inherent in conventional models,
but at the expense of an unknown contribution of parameters
to the outcomes (Lakes et al., 2009). However, the key chal-
lenge is to crack the black box and reveal how each driver
affects the land-use change pattern or processes in the ML
models.

The extreme gradient boosting (XGBoost) method has re-
cently been developed as a supervised machine learning ap-
proach (Chen and Guestrin, 2016). XGBoost algorithms have
achieved superior results in many ML challenges; they are
characterised by being 10 times faster than popular exist-
ing solutions, and the ability to handle sparse datasets and
to process hundreds of millions of examples. XGBoost has
already been used in land-use change detection, combined
with remote sensing data (Georganos et al., 2018), but has
not yet been used in the simulation and prediction of land-use
change. Shapley additive explanations (SHAP; Lundberg and
Lee, 2017) is a unified approach to explain the output of any
ML model and to visualise and describe the complex causal
relationship between driving forces and the prediction target.
We propose using SHAP to analyse the driver relationships
hidden in the black box model of XGBoost when employed
for land-use change modelling.

Having earlier used a clustering approach to identify
drivers of GD in a case study in Inner Mongolia (Xilingol
League; Batunacun et al., 2019), we now use XGBoost and
SHAP to simulate GD dynamics across the same area. We
are primarily interested in learning whether ML models can
achieve a better predictive quality than linear methods, in ad-
dition to improving our understanding of how grassland de-
grades in Xilingol. With the intention to identify areas with a
high risk of further degradation and to determine the drivers
responsible for progressive degradation, we used XGBoost
to generate a data-driven model to explore the GD patterns.
We then used SHAP to open the non-linear relationships of
the black box model stepwise and transformed these relation-
ships into interpretable rules. The resulting model enabled us
to map the primary GD drivers and GD hot spots in Xilingol.
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2 Materials and methods

2.1 Study area

The Xilingol League is located about 600 km north of Bei-
jing (He et al., 2004), in the centre of Inner Mongolia. This
administrative unit, covering an area of 206 000 km2, spans
from 41.4 to 46.6◦ N and from 111.1 to 119.7◦ E (Fig. 1).
The area is dominated by the continental temperate semiarid
climate. The frequent droughts (in summer) and “dzud” (an
extremely harsh and snow-rich winter) are the major natu-
ral disasters that occasionally lead to catastrophic livestock
losses in this region (Allington et al., 2018; Tong et al., 2017;
Xu et al., 2014). Xilingol possessed about 18 104 km2 avail-
able pasture resources and 1240.4× 104 sheep units at the
end of 2015 (Xie and Sha, 2012). Around 1.044 million peo-
ple lived in Xilingol in 2015, with ethnic Mongolian minori-
ties accounting for around 31 % and the rural population for
37 % (Batunacun et al., 2019; Shao et al., 2017). Xilingol is a
vast grassland, known for its high-quality meat products, no-
madic culture, rich mineral resources, and ethnic minorities.
The ongoing degradation of grassland is receiving increasing
attention. A set of economic stimuli and ecological protec-
tion policies launched in Xilingol were viewed as the root
cause of GD over the past four decades. Although large-scale
ecological restoration policies were implemented after 2000
in a bid to reduce GD, the problem still persists.

2.2 Grassland degradation

This study defines grassland degradation based on land-use
conversion, involving two kinds of land-use change pro-
cesses: (i) the complete destruction of grassland by trans-
formation to another type of land use (built-up land, crop-
land, woodland, water bodies, and unused land), and (ii) a
decline in grassland coverage, which includes dense grass
deteriorating into moderately dense grass and sparse grass,
and moderately dense grass deteriorating into sparse grass
(see Fig. S1a in the Supplement). Given that GD is a dy-
namic process, we intended in this study to find the major
drivers of newly added grassland degradation (NGD). NGD
refers to the difference in spatial GD extent between two pe-
riods. About 13.0 % of the total grassland area (176 410 km2

in 2015) was degraded between 1975 and 2000 (Fig. S1b); a
further 10.6 % was degraded in 2000–2015 (Fig. S1c). Com-
paring the two periods, approximately 10.2 % of the grass-
land corresponded to the NGD area across the whole region
(Fig. S1d). In total 18 279 pixels were extracted from the to-
tal NGD area, while the pixel number of conversion for other
land uses is 181 190 in this study (hereafter: non-NGD).

2.3 Data collection

In line with previous studies, a checklist of possible drivers
(D) of GD was developed from the literature (Cao et al.,
2013b; Sun et al., 2017). A total of 19 drivers were grouped

into four categories (see Table 1). All categories were de-
scribed as follows: (1) Climate factors, including the an-
nual mean temperature (T ) and annual sum of precipita-
tion (P ) in the growing season (April to September), were
extracted from the longest available weather dataset (from
1958–2015), in combination with evaluation data and the
kriging algorithm, to produce 1×1 km2 raster files. (2) Geo-
graphic factors include elevation (DEM), and slope and as-
pect (extracted from DEM data), which can be treated as
the characteristic of each grid cell. The DEM data were ex-
tracted from the SRTM 90 m resolution and, after resampling
using the NEAREST method in ArcGIS, all data were pro-
cessed into 1× 1 km2 raster files. (3) Distance measures (the
distance of each pixel centre to urban, rural, road and min-
ing, forest, cropland, dense grass, moderately dense grass,
sparse grass, and unused land pixels) are widely used fac-
tors for different land-use models (Khoury, 2012; Samardžić-
Petrović et al., 2016, 2017; Zhang et al., 2013). All distance
measures were extracted from LUCC datasets from the years
2000 and 2015 using ArcGIS Euclidean distance and pro-
cessed into 1× 1 km2 grids. (4) Socio-economic factors in-
clude the gross domestic product (GDP) and population den-
sity from 2000 and 2010, and sheep density from 2000 and
2015. GDP and population density were obtained from a re-
sources and environment data cloud platform, CAS (http:
//www.resdc.cn/, last access: 8 February 2020); sheep density
data were accessed from statistical data, and we converted
all livestock data into grassland pixels. Unfortunately, high-
resolution GDP and population density data were not avail-
able for 2015 to match the other data that were recorded for
that year, so we may assume that GDP and population den-
sity introduce a bias to the result. While population density
did not change much between 2010 and 2015, GDP changed
from CNY 61.4 billion in 2010 to CNY 100.2 billion in 2015
in total over the Xilingol region (GDP data source: http:
//tjj.xlgl.gov.cn/ywlm/tjsj/jdsj/, last access: 1 April 2020).
(5) Finally, we identified an area in which we assumed a
strong policy impact in the past and developed a proxy for
the policy effect on grassland degradation. Here, a range of
ecological protection measures were implemented inside and
outside the Hunshandake and Wuzhumuqin sand lands (see
Fig. S2), e.g. a livestock ban and the promotion of chicken
farming (Su et al., 2015). In a bid to explore policy effects,
we assumed that GD is effectively slowed down by various
policies inside the sandy area (proxy set as 0), while outside
the sandy area, land degradation is more likely to happen in
the absence of any policy effect (proxy set as 1; see Fig. S2).

2.3.1 XGBoost and logistic regression

Two algorithms were selected in this study: logistic regres-
sion (LR) and XGBoost. LR is a linear method involving
two parts: the statistic LR and the classification LR. Both
methods have already been used to simulate land use (Lin
et al., 2011; Mustafa et al., 2018) and to define the rela-
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Figure 1. The location of the Xilingol League in Inner Mongolia and its land uses.

tionship between land-use change and its drivers (Gollnow
and Lakes, 2014; Mondal et al., 2014; Verburg et al., 2002;
Verburg and Chen, 2000). Here, we use LR as a bench-
mark model to compare linear and non-linear methods in
the simulation of land-use change. The optimised parame-
ters of LG are C = 0.1, penalty= l2, solver= “lbfgs”, and
multi_class= “multinomial”.

Boosting algorithms have been implemented in many past
studies, where they often outperformed other ML algorithms
(Ahmadlou et al., 2016; Filippi et al., 2014; Freeman et al.,
2016; Keshtkar et al., 2017; Tayyebi and Pijanowski, 2014a).
However, traditional boosting algorithms are often subject to
overfitting (Georganos et al., 2018). To overcome this prob-
lem, Chen and Guestrin (2016) presented a new, regularised
implementation of gradient boosting algorithms, which they
called XGBoost (extreme gradient boosting). XGBoost was
built as an enhanced version of the gradient boosting deci-
sion tree algorithm (GBDT), a regression and classification
technique developed to predict results based on many weak
prediction models – the decision tree (DT) (Abdullah et al.,
2019; Freeman et al., 2016). XGBoost provides strong reg-
ularisation by adopting a stepwise shrinkage process instead
of the traditional weighting process provided by GBDT. This
process limits overfitting, minimises training losses and re-
duces classification errors while developing the final model
(Abdullah et al., 2019; Hao Dong et al., 2018).

The XGBClassifier uses the following parameters: learn-
ing_rate (controls learning itself); max_depth (control depth

of the RF); the n_estimators (controls the number of estima-
tors used for the model); the min_child_weight (controls the
complexity of a model, defines the minimum sum of weights
of all observations required in a child); and lambda (L2
regularisation term on weights). The parameters were opti-
mised using a simple grid search algorithm provided by scikit
(Pedregosa et al., 2011) to estimate the optimal parame-
ters (learning_rate= 0.1, max_depth= 9, n_estimater= 500,
min_child_weight= 3, lambda= 10).

2.3.2 Sampling methods

Data are often distributed unevenly among different classes
(Vluymans, 2019). Such imbalanced class distribution gen-
erally induces a bias. Canonical ML algorithms assume that
data are roughly balanced in different classes. In real situ-
ations, however, the data are usually skewed, and smaller
classes often carry more important information and knowl-
edge than larger ones (Krawczyk, 2016). It is therefore im-
portant to develop learning from imbalanced data to build
real-world models (Krawczyk, 2016; Vluymans, 2019). To
ensure a highly accurate GD model, we introduced four dif-
ferent sampling methods in this study (Fig. S3).

Balanced sampling. This consists of random data sam-
pling, resulting in equal-sized samples.

Imbalanced sampling. This consists of random data sam-
pling, but with the same share of the sampled class, resulting
in unequal sized samples.

https://doi.org/10.5194/gmd-14-1493-2021 Geosci. Model Dev., 14, 1493–1510, 2021
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Over-sampling. Artificial points are added to the minority
class of an imbalanced sampling set, making it equal to the
majority class and resulting in equal sized samples.

Under-sampling. Points are removed from a majority class
of an imbalanced sampling set, making it equal to the minor-
ity class and resulting in equal sized samples (He and Garcia,
2009).

In the present study, we used these four sampling methods
to evaluate the model in the context of the sampling method
and its performance in the training process and the simulation
process (see Fig. S3). In our case study, 20 000 pixels (about
10 % of the total; including 18 190 pixels with value 0 indi-
cating no-change areas and restored grassland and 1810 pix-
els with value 1 indicating newly added grassland degrada-
tion) were selected by different sampling methods (Fig. S3)
to train (66 % of the sample size) and test (34 % of the sample
size) the model.

2.3.3 SHAP values

SHAP (Shapley additive explanations) is a novel approach
to improve our understanding of the complexity of predictive
model results and to explore relationships between individual
variables for the predicted case (Lundberg and Lee, 2017).
SHAP is a useful method to sort the driver’s effects and break
down the prediction into individual feature impacts. Fea-
ture selection is of primary concern when using ML meth-
ods to process land-use change (Samardžić-Petrović et al.,
2015, 2016, 2017). SHAP values show the extent to which
a given feature has changed the prediction and allows the
model builder to decompose any prediction into the sum of
the effects of each feature value and explain – in our case –
the predicted NGD probability for each pixel (see Fig. 2). In
this study, we used SHAP values to sort the driver’s attribu-
tions, capture the relationship between drivers and NGD, and
map the primary driver for NGD at the pixel level.

In our study, we define the base value as the value that
would be predicted by the model if no feature knowledge
were provided for the current output (mean prediction); we
define the output value as the prediction for this particular
observation. SHAP values are calculated in log odds. Fea-
tures that increase the value of the prediction (to the left in
Fig. 2) are always shown in red; those that lower the predic-
tion value are shown in blue (to the right in Fig. 2, Dataman,
2019). In this instance (Fig. 2), disdense (change of distance
to dense grass) is the primary driver of NGD at this pixel level
(largest value). The fact that the value is positive means that
the risk of NDG increases in line with an increase in distance
to dense grass areas.

2.3.4 Validation of the model

Two validation steps are required for ML models: validation
of the training process and validation of the simulation pro-
cess. For the training process, a robust model was selected us-

ing overall classification accuracy, precision, recall, and the
kappa index. Accuracy, precision, and recall were calculated
based on a confusion matrix (CM) (see Table 2) (He and Gar-
cia, 2009). For the simulation process, the final model was
validated using the kappa index, the area under the precision–
recall (PR) curve, and recall. The validation indicators are
defined as follows.

Overall classification accuracy (ACC) is the correct pre-
diction of NGD and other pixels in the whole region. This
indicator was used to evaluate the accuracy of the model.
Precision is the proportion of correctly predicted positive ex-
amples (which refers to NGD in this study) in all predicted
positive examples. Recall is the proportion of correctly pre-
dicted positive examples in all observed positive examples
(the observed NGD) (Sokolova and Lapalme, 2009). In gen-
eral, high-precision predictions have a low recall, and vice
versa, depending on the predicted goals. Here, since we focus
on NGD and other land-use changes, we use both indicators
to evaluate our models.

The precision–recall curve provides more information
about the model’s performance than, for instance, the re-
ceiver operator characteristic curve (ROC curve), when ap-
plied to skewed data (Davis and Goadrich, 2006). The PR
curve shows the trade-off of precision and recall and pro-
vides a model-wide evaluation. The area under the PR curve
(AUC-PR) is likewise effective in the classification of model
comparisons. The baseline for the PR curve (y) is determined
by positives (P) and negatives (N). In our study, y = 0.09
(y = 18374/200 652), which means when AUC-PR= 0.09,
the model is a random model (Brownlee, 2018; Davis and
Goadrich, 2006).

The kappa index (κ) is a popular indicator used to measure
the proportion of agreement between observed and simu-
lated data, especially to measure the degree of spatial match-
ing. When κ > 0.8, strong agreement is yielded between the
simulation and the observed map, 0.6< κ < 0.8 describes
high agreement, 0.4< κ < 0.6 describes moderate agree-
ment, and κ < 0.4 represents poor agreement (Landis and
Koch, 1977).

In this study, κ was used to evaluate the agreement and
disagreement between observed NGD and simulated NGD.
Kappa should be the primary validation measure, followed
by AUC-PR (used to evaluate model performance) and recall
(used to evaluate model sensitivity). Features and definitions
of these indicators are given below.

2.3.5 The structure of the ML model

The ML methodology of simulating GD involves six steps
(Fig. S4).

1. Target definition and data collection and processing.
The targets of this study are to build a robust ML model
for simulating NGD, as well as visualising these com-
plex relationships between various variables and the dy-
namics of GD. A total of 20 drivers of GD were col-
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Figure 2. Decomposed SHAP values for the individual prediction of an example pixel.

Table 2. Confusion matrix for binary classification of newly added grassland degradation (NGD) and other changes, including four indicators:
false positives (FP), cells that were predicted as non-change but changed in the observed map; false negatives (FN), cells that were predicted
as change but did not change in the observed map for disagreement; true positives (TP), cells that were predicted as change and changed in
the observed map; and true negatives (TN), cells that were predicted as non-change and did not change in the observed map for agreement.

Simulated values

Observed values

Others NGD

Others True negatives (TN) False positives (FP)
Recall=TP / (TP+FN)

NGD False negatives (FN) True positives (TP)

Precision=TP / (TP+FP)

ACC= (TP+TN) / (TP+FN+FP+TN)

lected. All dynamic drivers were processed by GIS into
raster files and exported into ASCII files as final inputs
for the ML model.

2. Data organisation. The ML model simulates land-use
change as a classification task (Samardžić-Petrović et
al., 2015, 2017). In the present study, we organise
this task as a binary classification Y (value 1 and 0,
stand for NGD and Non-NGD); related drivers are x
(x1,x2,x3. . .. . .xn), n is the driver identifier, and x de-
notes the change in value of each driver. The process
of data standardisation is usually necessary for most
ML models, but since XGBoost is a tree-based method,
it does not require standardisation or normalisation. In
this case, we performed standardisation only for the lo-
gistic regression model.

3. Data sampling. This is a necessary step to avoid over-
fitting or the loss of important information. The sam-
pling method generally includes balanced and imbal-
anced sample strategies. In this study, we tested various
balanced sampling strategies to identify the most suit-
able one.

4. Model building and selection. A ranking was used to
find the best model in each specific case. In our study,
we defined a model with κ > 0.8 and AUC-PR> 0.09
as robust, while 0.6< κ < 0.8 and AUC-PR> 0.09 rep-
resents an acceptable model.

5. Model validation and feature ranking. After tuning the
model, the most robust model and the driver with most
useful information are selected.

6. Explanation. The last step is explaining the model and
the simulation. The model used in the training pro-
cess was published in Zenodo (Batunacun and Wieland,
2020).

3 Results

3.1 Model validation

The XGBoost model outperformed the LG model in both
training and simulation (Figs. 3 and 4). The LG model seems
to be an inappropriate model for understanding NGD in this
case. XGBoost yielded robust results in both training and
simulation, with indicator values almost entirely above 90 %.

Figure 3 indicates that XGBoost performed very well
across all balanced sampling methods (over-sampling, under-
sampling, and balanced sampling; red rectangle in Fig. 3) in
the training process. Only the imbalanced sampling exhibited
a slightly weaker performance in the training process. This
is mainly due to the balanced sampling datasets, which pro-
vided more information for the model. In addition, the model
was affected less than the imbalanced sampling method by
the majority class or unchanged cells (Samardzic-Petrovic et
al., 2018).
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Figure 3. Evaluation of model performance during the training process for newly added grassland between 1975–2015.

Figures 4 and 5 show the model evaluation results in the
simulation process and the spatial prediction maps. XGBoost
with under-sampling (green rectangle in Fig. 4) yielded the
weakest performance compared to the other three sampling
methods. This is mainly due to the smaller sample size,
which prevents the model from extracting sufficient expe-
rience. As can be seen in Fig. 5b, XGBoost used with the
under-sampling method produced the error map with the
highest FP values, where the model predicted non-change
points as change points. The under-sampling method is un-
able to identify NGD points sufficiently well. XGBoost used
with the over-sampling method caused balanced and imbal-
anced sampling to have similar and strong prediction abilities
(see Fig. 4), differing only slightly in their CM indicators
(see Fig. 5). We finally selected XGBoost combined with the
over-sampling strategy for our study, mainly because of its
relatively higher values in κ , AUC-PR, and recall (see Fig. 4).

3.2 Driver selection

Figure 6 is a summary plot produced from the training
dataset; it includes approximately 13 200 points (66 % of the
sample size). This plot combines feature importance (drivers
are ordered along the y axis) and driver effects (SHAP values
on the x axis), which describe the probability of NGD having
occurred. Positive SHAP values refer to a higher probabil-

ity of NGD. The gradient colour represents the feature value
from high (red) to low (blue), as previously introduced in
Fig. 2. As Fig. 6 shows, disdense was the primary driver for
NGD in the study region. The relationship between disdense
and NGD is non-linear, which can be seen from the SHAP
values being both positive and negative (black rectangle in
Fig. 6). The interpretation of the effects of disdense can be
summarised as a higher probability of NGD with increasing
distance from dense grassland (see black rectangle in Fig. 6
with pink colour on the right).

Figure 6 shows that driver effects include both linear-
dominated relationships, such as sheep, GDP, and others, and
non-linear-dominated relations, such as disdense, dismode,
and others. In addition, the figure shows that the most impor-
tant drivers for NGD are the changes of distance to dense,
moderately dense, and sparse grassland, then followed by
sheep density and the distance to unused land. The effect of
policies comes almost at the bottom, indicating that policies
implemented outside sandy areas seem to have little effect
on GD. The geographical factors DEM and slope are also
positioned mid-field. The effect of geographical drivers does
not appear to be as strong as the effect of other drivers. The
change of distance to mining, located at the bottom for all
drivers, does not have a strong effect on NGD compared to
other drivers.
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Figure 4. Evaluation of model performance during the prediction process for newly added grassland between 1975–2015.

Note that the top rank indicates the most significant ef-
fects across all predictions. Each point in the cloud to the
left represents a row from the original dataset. The colour
code denotes high (red) to low (blue) feature values. Positive
SHAP values represent a higher likelihood of NGD, while
negative values indicate lower likelihoods. The range across
the SHAP value space indicates the degradation probability,
expressed as the logarithm of the odds.

A recursive attribute elimination method was performed to
determine how attribute reduction affects modelling perfor-
mance using XGBoost with the oversampling method (see
Fig. S5; for more details, refer to Samardžić-Petrović et
al., 2015). The results indicate that the first three drivers
may already produce a satisfactory model (κ = 0.74, AUC-
PR= 0.85, recall= 0.92), while adding the fourth driver
can produce a robust model (κ = 0.94, AUC-PR= 0.98, re-
call= 0.98). This means that XGBoost used with the over-
sampling strategy can predict NGD with very high accuracy
using a relatively small amount of data. Figure S6 shows the
simulation result using the first four drivers and compares the
results with the observed map.

3.3 Relationship between NGD and drivers in the
XGBoost model

SHAP values and spread (Fig. 7) indicate that no linear re-
lationship between driver and prediction could be found for
any of the individual features. Change of distance to dense,
moderately dense and sparse grass pixels, and change of
sheep density were the dominant drivers for NGD. Figure 7a
indicates that when disdense< 0, the SHAP value is nega-
tive, and when the distance to dense grass areas is small,
the likelihood of degradation is also small. The relation-
ship seems to be more complex for distance to moderately
dense grass (dismode; Fig. 7b); here, no simple linear inter-
pretation is obvious. For distance to sparse grass (dissparse;
Fig. 7c), the pattern again suggests a rather linear interpre-
tation, which is that the likelihood of degradation increases
with decreasing distance. For sheep density, Fig. 7d indicates
that when sheep density decreased, the probability of GD ob-
viously increased. Policy was not identified as a major driver
of GD (Fig. 6). However, policy effects obviously have a
different impact inside and outside sandy zones. Figure 7e
shows that our initial assumption is invalid: the probability
of GD increased inside the sandy areas where we assumed
effective policy measures to be in place (value 0). This result
is also in line with Fig. 7g, which shows that the closer an
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Figure 5. Error map of different sampling methods using the XGBoost model.

area is to unused land, the more likely it is that degradation
will occur there.

We can identify three groups for the remaining 14 drivers.
For GDP and population density (Fig. 7g and h), the likeli-
hood of NGD increases with increasing values. Figure 7i–j
indicate that warmer and drier climate conditions increase
the probability of GD. Figure 7k, l, m, and n indicate that the
probability of GD rises with closer distances to forest, urban,
rural, and water areas. Figure 7o shows a slight SHAP value
pattern, in which the closer to cropland, the more unlikely
degradation will occur. This is mainly due to transformation
from cropland to grassland. Figure 7p–t do not show any in-
terpretable spatial pattern.

3.4 Mapping the primary drivers of NGD

All drivers’ contributions to NGD were ranked according to
their SHAP values for each pixel in this study. Figure 8 shows
the primary driver for each NGD pixel. Distance to grass-
land pixels (dense, moderately dense, and sparse grass) were

the major drivers of NGD, responsible for 9478, 3892, and
1629 NGD pixels, respectively. Sheep density was respon-
sible for 3042 NGD pixels, ranking third among all drivers.
This order differs to that in Figs. 6 and 8 because in those
cases, ranking is based on the total contribution of all drivers.
Figure S7 shows the number of NGD pixels in which a driver
was dominant or primary. The change of distance to any type
of grassland was the primary driver for about 82.8 % of the
total NGD pixels; sheep density accounted for 16.8 %. The
remaining seven drivers caused less than 1 % of the total
NGD. We can see from the spatial pattern that the change
of distance to grassland was the major driver for GD in the
dense grassland region (counties of DW, XL, and AB), while
in the counties of SZ, SY, ZXB, ZL, and TP, sheep density
was often identified as the major driver.

3.5 Regions of high risk for grassland degradation

A probability map of NGD was produced (Fig. 9). Low
probabilities of NGD were found in the central and north-
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Figure 6. Driver ranking by SHAP values based on the training
dataset (66 % of sample size) using the over-sampling method.

ern counties (DW, XL, AB, SZ, ZL ZXB, and XH), while
high-probability regions were EL, SY, and XW. TP and DL
in the south were categorised as low-probability regions, due
to their lower share of grassland area.

4 Discussion

4.1 ML model building and evaluation

In this study, we defined a general framework for creating an
ML model using the XGBoost algorithm for the purpose of
analysing and predicting land-use change. XGBoost obtained
a κ of 93 % and a recall value of > 99 % when used to simu-
late and predict GD in this study. Compared to other popular
ML learning algorithms, XGBoost exhibited a strong predic-
tion ability. In studies where ANN, SVM, RF, CART, multi-
variate adaptive regression spline (MARS), or LR were used
in combination with cellular automata (CA), the recall value
is usually 54 %–60 % (Shafizadeh-Moghadam et al., 2017).
Ahmadlou et al. (2019) stated that MARS and RF only yield
high accuracy in training runs but do not prove to be very
accurate in the validating process when simulating land-use
change.

Concerning the four sampling strategies we used to test
the imbalance issue, we found that all strategies performed
satisfactorily in the training runs. In the simulation, the
under-sampling strategy yielded a relatively low accuracy
(κ = 0.46) model. We assume that removal of data from the
majority class causes the model to lose the important con-
cepts pertaining to the majority class (He and Garcia, 2009).

XGBoost used with the under-sampling method always pro-
duced similar results, irrespective of the size of the dataset
(see Fig. S8). We conclude from this pattern that XGBoost
is also able to use sparse data to reflect real-world problems
(Chen and Guestrin, 2016).

4.2 SHAP values and drivers of grassland degradation

The general idea of introducing SHAP values as a further
tool to analyse XGBoost ranking is to provide a method to
evaluate the ranking with respect to causal relationships. The
original XGBoost ranking is based on the in-built feature se-
lection functions “Gain” (refers to the improvement in accu-
racy provided by a feature), “Weight” (or frequency, refers to
the relative number of a feature occurrence in the trees of a
model), and “Coverage” (refers to the relative numbers of ob-
servations related to this feature). However, these functions
always produce different rankings of drivers (Abu-Rmileh,
2019) due to random components in the algorithms. SHAP
values introduce two further properties of feature importance
measures: consistency (whenever we change a model such
that it relies more on a feature, the attributed importance
for that feature should not decrease) and accuracy (the sum
of all feature importance values should equate to the total
importance of the model; Lundberg, 2018; Lundberg and
Lee, 2017). Consistency is required to stabilise the ranking
throughout the analysis, reducing the change of order in the
ranking to a minimum when the number of identified drivers
changes. The accuracy property of SHAP makes sure that
each driver’s contribution to overall accuracy remains the
same, even when drivers are excluded from analysis. Other
methods usually compensate for the withdrawal of a driver
from the analysis, which makes the determination of a single
driver’s contribution difficult.

The feature ranking based on SHAP values indicated that
the change of distance to any type of grassland (dense, mod-
erately dense, and sparse grass) is the most important driver
for any newly added grassland degradation. In this context,
dense and moderately dense grassland areas are more easily
degraded than other land-use types, followed by sparse grass.
These results are in line with previous studies (Li et al., 2012;
Xie and Sha, 2012). Good-quality grassland is more likely to
be degraded through increasing human disturbance. An ex-
planation for this can be derived from local people’s living
strategies. People who live in good-quality grassland areas
are more likely to use grassland for livestock production with
higher animal densities, risking overgrazing. Furthermore, Li
et al. (2012) indicated that good-quality grassland is more
likely to be converted to other land-use types, such as crop-
land. In contrast, people who have lived in sparse grassland
regions for centuries have long adapted to low productivity,
reducing their livestock numbers accordingly. They have also
developed strategies to cope with variability in weather con-
ditions, e.g. by preparing and storing more fodder and forage.

https://doi.org/10.5194/gmd-14-1493-2021 Geosci. Model Dev., 14, 1493–1510, 2021



1504 Batunacun et al.: Using SHAP to interpret XGBoost predictions of grassland degradation

Figure 7. The SHAP dependence plot for each driver (the y axis is the SHAP value for each driver).

Sheep density was identified as the fourth major driver.
However, the SHAP values indicate that when sheep den-
sity decreases, the probability of grassland degradation in-
creases. Overgrazing has been the dominant driver for grass-
land degradation on the Mongolian plateau before, which has
changed the grassland ecosystem significantly towards lower

grass coverage (Nkonya et al., 2016; Wang et al., 2017).
However, there is recent evidence that this causal relation-
ship has changed. It now appears that farmers increasingly
select their livestock numbers according to the carrying ca-
pacity of the grazing land (Cao et al., 2013b; Tiscornia et
al., 2019b). By passing the “Fencing Grassland and Mov-
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Figure 8. Spatial patterns of primary drivers for each pixel for
NGD.

Figure 9. Degradation probability map for grassland in Xilingol, in-
cluding a zoom into Xilinhot (XL) for more details. The probability
is based on the four most important drivers.

ing Users” policy (FGMU), the Chinese government issued
a law that regulates livestock numbers based on a previously
calculated carrying capacity. This development has upturned
the causal relationship between livestock numbers and NGD,
reflected by the SHAP value pattern in Fig. 6.

Besides the four main drivers, seven other drivers also oc-
casionally appear as the main driver for some pixels (Fig. 8).
This highlights the fact that, at the local level, other drivers
apart from the four drivers identified as being major can also

play a significant role. For example, in the county of EL, the
remaining seven drivers were mainly responsible for NGD.
EL has less NGD after 2000 compared with other counties
in Xilingol (Fig. S1), and most of the EL area is covered by
sparse grass. EL is the most frequented border control point
to Mongolia and is subject to intensive tourism.

In the sparse grassland and agro-pastoral regions (SZ, SY,
ZXB, ZL, and TP), sheep density was identified as the impor-
tant driver. This indicates that, even though livestock num-
bers have decreased, grassland is still experiencing serious
degradation in this region. Here we see additional potential
for installing further grassland conservation measures, such
as adjusting the livestock number to the grassland carrying
capacity.

4.3 The current risk of grassland degradation in
Xilingol

Three regions of different risk classes were identified in the
probability map of NGD (Fig. 9). The low-risk region (DW,
XL, AB, SZ, ZL ZXB, and XH) is dominated by good-
quality grassland (dense and moderately dense grass). In re-
cent decades, this region has suffered from increasing hu-
man disturbance, e.g. overgrazing and mining development.
However, after 2000, grassland in this region has recovered,
mainly as the result of ecological protection projects (Sun et
al., 2017). Even though this region is predicted as being less
exposed to the risk of land degradation in the future, atten-
tion is still required for the restoration process. The high-
risk region includes the counties of EL, SY, and XW. EL
and SY are covered by a large share of low-quality grass-
land, which – due to its own fragility – is likely to be af-
fected by extreme climate and human disturbance, more than
higher-quality grasslands for example. The recent change in
grassland property rights and the establishment of ecological
protection projects have also limited the mobility of nomadic
herders throughout Xilingol. As a consequence, herders can-
not easily change grazing spots if extreme weather occurs;
they are then bound to have their cattle graze at the same
spots, increasing the pressure on low-quality grasslands in
particular (Qian, 2011). For a long time, fragile grassland re-
mained in an equilibrium state with the extreme weather (fre-
quent droughts, “dudz”) to which it was exposed, and with
the nomadic livestock husbandry that the region’s inhabitants
practised. However, when the property rights of grassland
and livestock were changed from collective to private, the
nomadic lifestyle was largely abandoned.

4.4 The limitations of XGBoost for scenario
exploration

XGBoost has already scored top in a range of algorithm com-
petitions in the data science community (Kaggle, 2019) due
to its high accuracy and speed (Chen and Guestrin, 2016).
ML models extract patterns from data, without considering
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any existing expert knowledge, which is why they are in-
creasingly used to identify non-linear relationships (Ahmad-
lou et al., 2016; Samardžić-Petrović et al., 2015; Tayyebi
and Pijanowski, 2014b). However, ML models require spe-
cific data structures for each problem to which they are ap-
plied. In this study, we simulated grassland degradation in
two different phases (1975–2000 and 2000–2015). All time
series of driver data were organised as model inputs, while
grassland degradation dynamics were organised as predic-
tion targets. Although the model achieved high accuracy in
predicting NGD in Phase 2, it was not possible to achieve
acceptable results in simulating both Phase 1 and Phase 2
separately. Second, compared with conventional models, the
XGBoost model cannot be easily transferred to other regions
for the same research question. Models like CLUE-S and
GeoSOS-FLUS have been widely used in different regions
across the world (Fuchs et al., 2018; Liang et al., 2018b;
Liu et al., 2017; Verburg et al., 2002). When ML models
are used in other regions, driver data must be collected and
structures adapted. Thirdly, ML models always need to learn
sufficiently before they are able to make predictions. This re-
quires a sufficient amount of data covering historical periods
or different land-use change patterns.

XGBoost alone is unable to project any scenarios of land-
use change based on historical data. However, the method-
ology presented here can be applied to quantify alternative
scenarios produced using other approaches, such as conven-
tional, rule-based models (Verburg et al., 2002) or cellular
automata (Islam et al., 2018; Shafizadeh-Moghadam et al.,
2017).

5 Conclusion

Machine learning and data-driven approaches are becoming
more and more important in many research areas. The de-
sign and development of a practical land-use model requires
both accuracy and predictability to predict future land-use
change, a well-fitted model that reflects and monitors the real
world (Ahmadlou et al., 2019). The method framework pre-
sented here for building an ML model and explaining the re-
lationship between drivers and grassland degradation identi-
fied XGBoost as a robust data-driven model for this purpose.
XGBoost showed higher accuracy in training and simula-
tion compared to existing ML models. Combined with over-
sampling, it slightly outperformed in the simulation process.
The simulated map has a high agreement with the observed
values (kappa= 93 %).

We identified six basic steps that should be included in
ML model building, and they are also similar for other re-
search applications (Kiyohara et al., 2018; Kontokosta and
Tull, 2017; Subramaniyan et al., 2018). However, different
validation measures can be introduced in both the training
process and the simulation process. In this study, we tested
different evaluation measures to evaluate the ML model, e.g.

a typical confusion matrix to evaluate the training process,
AUC-PR to evaluate the goodness of the ML model, and the
kappa index to measure the degree of matching between ob-
served and simulated values. These validation indicators con-
sider both the research object and data characteristics. For ex-
ample, when the data size is unbalanced, AUC-PR is a better
choice than AUC-ROC (Brownlee, 2018; Davis and Goad-
rich, 2006; Saito and Rehmsmeier, 2015).

SHAP was introduced in this context to provide a causal
explanation of the patterns identified by the ML model. In
our case, SHAP was used to explain how drivers contribute
to grassland degradation processes at the pixel and regional
level, despite their non-linear relationship. According to the
analysis, the distance to dense, moderately dense, and sparse
grass and sheep density were the most important drivers that
caused new grassland degradation in this region. In addition,
individual SHAP values of sheep density indicated that the
causal relationship between grassland degradation and live-
stock pressure has changed over time: the increase in sheep
density was not the major driver for NGD in Phase 2 of the
land degradation trajectory. Instead, the decrease in the graz-
ing capacity of grassland caused a decrease in livestock num-
bers. The primary driver map of NGD provided a more de-
tailed picture of NGD drivers for each pixel, as an impor-
tant support for grassland management in the Xilingol re-
gion. The individual SHAP values of each driver may be an
important prerequisite for rule-based scenario-building in the
future.

Code and data availability. The development of XGBoost and
SHAP values, graphs, and model validation presented in this pa-
per were conducted using Python. The Python script and re-
lated data used in this study have been archived on Zenodo at
https://doi.org/10.5281/zenodo.3937226 (Batunacun and Wieland,
2020).

The used XGBoost algorithm including the SHAP library runs
well on a modern (Intel or AMD) PC (4 cores or more, 16 GB
RAM). The training and the simulation were carried out on a Linux
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