Articles | Volume 12, issue 7
https://doi.org/10.5194/gmd-12-2941-2019
https://doi.org/10.5194/gmd-12-2941-2019
Development and technical paper
 | 
15 Jul 2019
Development and technical paper |  | 15 Jul 2019

Efficiency and robustness in Monte Carlo sampling for 3-D geophysical inversions with Obsidian v0.1.2: setting up for success

Richard Scalzo, David Kohn, Hugo Olierook, Gregory Houseman, Rohitash Chandra, Mark Girolami, and Sally Cripps

Related authors

Blockworlds 0.1.0: a demonstration of anti-aliased geophysics for probabilistic inversions of implicit and kinematic geological models
Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps
Geosci. Model Dev., 15, 3641–3662, https://doi.org/10.5194/gmd-15-3641-2022,https://doi.org/10.5194/gmd-15-3641-2022, 2022
Short summary
Into the Noddyverse: a massive data store of 3D geological models for machine learning and inversion applications
Mark Jessell, Jiateng Guo, Yunqiang Li, Mark Lindsay, Richard Scalzo, Jérémie Giraud, Guillaume Pirot, Ed Cripps, and Vitaliy Ogarko
Earth Syst. Sci. Data, 14, 381–392, https://doi.org/10.5194/essd-14-381-2022,https://doi.org/10.5194/essd-14-381-2022, 2022
Short summary
Bayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3D geological models
Hugo K. H. Olierook, Richard Scalzo, David Kohn, Rohitash Chandra, Ehsan Farahbakhsh, Gregory Houseman, Chris Clark, Steven M. Reddy, and R. Dietmar Müller
Solid Earth Discuss., https://doi.org/10.5194/se-2019-4,https://doi.org/10.5194/se-2019-4, 2019
Revised manuscript not accepted

Related subject area

Numerical methods
Explicit stochastic advection algorithms for the regional-scale particle-resolved atmospheric aerosol model WRF-PartMC (v1.0)
Jeffrey H. Curtis, Nicole Riemer, and Matthew West
Geosci. Model Dev., 17, 8399–8420, https://doi.org/10.5194/gmd-17-8399-2024,https://doi.org/10.5194/gmd-17-8399-2024, 2024
Short summary
The Measurement Error Proxy System Model: MEPSM v0.2
Matt J. Fischer
Geosci. Model Dev., 17, 6745–6760, https://doi.org/10.5194/gmd-17-6745-2024,https://doi.org/10.5194/gmd-17-6745-2024, 2024
Short summary
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary

Cited articles

Agostinetti, N. P. and Malinverno, A.: Receiver function inversion by trans-dimensional Monte Carlo sampling, Geophys. J. Int., 181, 858–872, https://doi.org/10.1111/j.1365-246X.2010.04530.x, 2010. a, b, c
Anand, R. R. and Butt, C. R. M.: A guide for mineral exploration through the regolith in the Yilgarn Craton, Western Australia, Aust. J. Earth Sci., 57, 1015–1114, 2010. a
Beardsmore, G.: Data fusion and machine learning for geothermal target exploration and characterisation, Tech. rep., NICTA Final Report, available at: https://arena.gov.au/projects/data-fusion-and-machine-learning-for-geothermal/ (last access: 10 July 2019), 2014. a, b, c, d
Beardsmore, G., Durrant-Whyte, H., McCalman, L., O’Callaghan, S., and Reid, A.: A Bayesian inference tool for geophysical joint inversions, ASEG Extended Abstracts, 2016, 1–10, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Bodin, T., Sambridge, M., Tkalcic, H., Arroucau, P., Gallagher, K., and Rawlinson, N.: Transdimensional inversion of receiver functions and surface wave dispersion, Solid Earth, 117, B02301, https://doi.org/10.1029/2011JB008560, 2012. a, b, c
Download
Short summary
Producing 3-D models of structures under the Earth's surface based on sensor data is a key problem in geophysics (for example, in mining exploration). There may be multiple models that explain the data well. We use the open-source Obsidian software to look at the efficiency of different methods for exploring the model space and attaching probabilities to models, leading to less biased results and a better idea of how sensor data interact with geological assumptions.