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Abstract. The rigorous quantification of uncertainty in geo-
physical inversions is a challenging problem. Inversions are
often ill-posed and the likelihood surface may be multi-
modal; properties of any single mode become inadequate
uncertainty measures, and sampling methods become ineffi-
cient for irregular posteriors or high-dimensional parameter
spaces. We explore the influences of different choices made
by the practitioner on the efficiency and accuracy of Bayesian
geophysical inversion methods that rely on Markov chain
Monte Carlo sampling to assess uncertainty using a multi-
sensor inversion of the three-dimensional structure and com-
position of a region in the Cooper Basin of South Australia
as a case study. The inversion is performed using an updated
version of the Obsidian distributed inversion software. We
find that the posterior for this inversion has a complex lo-
cal covariance structure, hindering the efficiency of adaptive
sampling methods that adjust the proposal based on the chain
history. Within the context of a parallel-tempered Markov
chain Monte Carlo scheme for exploring high-dimensional
multi-modal posteriors, a preconditioned Crank–Nicolson
proposal outperforms more conventional forms of random
walk. Aspects of the problem setup, such as priors on petro-
physics and on 3-D geological structure, affect the shape and
separation of posterior modes, influencing sampling perfor-
mance as well as the inversion results. The use of uninforma-

tive priors on sensor noise enables optimal weighting among
multiple sensors even if noise levels are uncertain.

1 Introduction

Construction of 3-D geological models is plagued by the
limitations on direct sampling and geophysical measurement
(Wellmann et al., 2010; Lindsay et al., 2013). Direct geo-
logical observations are sparse because of the difficulty in
acquiring them, with basement geology often obscured by
sedimentary or regolith cover; acquiring direct observations
at depth via drilling is expensive (Anand and Butt, 2010;
Salama et al., 2016). Indirect observations via geophysical
sensors deployed at or above the surface are more readily
obtained (Strangway et al., 1973; Gupta and Grant, 1985;
Sabins, 1999; Nabighian et al., 2005b, a). All geophysical
measurements integrate data from the surrounding volume,
so it is difficult to resolve precise geological constraints at
any given position and depth, except where borehole mea-
surements are also available. Determining the true underly-
ing geological structure, or range of geological structures,
consistent with observations constitutes an often poorly con-
strained inverse problem. One natural way to approach this
is forward modeling, whereby the responses of various sen-
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sors on a proposed geological structure are simulated, and the
proposed structure is then updated or sampled iteratively (for
examples see Jessell, 2001; Calcagno et al., 2008; Olierook
et al., 2015).

The incompleteness and uncertainty of the information
contained in geophysical data frequently mean that there are
many possible worlds consistent with the data being ana-
lyzed (Tarantola and Valette, 1982; Sambridge, 1998; Taran-
tola, 2005). To the extent that information provided by dif-
ferent datasets is complementary, combining all available in-
formation into a single joint inversion reduces uncertainty in
the final results. Accomplishing this in a principled and self-
consistent manner presents several challenges, including the
following: (i) how to weigh constraints provided by differ-
ent datasets relative to each other; (ii) how to rule out worlds
inconsistent with geological processes (expert knowledge);
(iii) how to present a transparent accounting of the remaining
uncertainty; and (iv) how to do all this in a computationally
efficient manner.

Bayesian statistical techniques provide a powerful frame-
work for characterizing and fusing disparate sources of
probabilistic information (Tarantola and Valette, 1982;
Mosegaard and Tarantola, 1995; Sambridge and Mosegaard,
2002; Sambridge et al., 2012). In a Bayesian approach,
model elements are flexible but all statements about the fit
of a model, either to data or to preexisting expert knowledge,
are expressed in terms of probability distributions; this forces
the practitioner to make explicit all assumptions, not only
about expected values or point estimates for system parame-
ters, but also about their beliefs regarding the true values of
those parameters. The output of a Bayesian method is also
a probability distribution (the posterior) representing all val-
ues of system parameters consistent with both the available
data and prior beliefs. For complex statistical models the ex-
act posterior cannot be expressed analytically; in such cases,
Monte Carlo algorithms, in particular Markov chain Monte
Carlo (MCMC; Mosegaard and Tarantola, 1995; Sambridge
and Mosegaard, 2002), can provide samples drawn from the
posterior for the purpose of computing averages over uncer-
tain properties of the system. The uncertainty associated with
the posterior can be visualized in terms of the marginal dis-
tributions of parameters of interest or rendered in 3-D vox-
elizations of information entropy (Wellmann and Regenauer-
Lieb, 2012). The inference also can be readily updated as
new information becomes available using the posterior for
the previous inference as the prior for the next one. This use
of Bayesian updating allows for automated decision-making
about which additional data to take to minimize the cost of
reducing uncertainty (Mockus, 2013).

Although Bayesian methods provide rigorous uncertainty
quantification, implementing them in practice for compli-
cated forward models with many free parameters has proven
difficult in other geoscientific contexts, such as landscape
evolution (Chandra et al., 2019) and coral reef assembly (Pall
et al., 2018). Sambridge and Mosegaard (2002) point out the

challenge of capturing all elements of a geophysical prob-
lem in terms of probability, which can be difficult for com-
plex datasets and even harder for approximate forward mod-
els or world representations in which the precise nature of
the approximation is hard to capture. The irregular shapes
and multi-modal structure of the posterior distributions for
realistic geophysics problems make them hard to explore.
The use of the inverse Fisher information matrix to describe
posterior uncertainty implicitly assumes a single multivariate
Gaussian mode; for posteriors with multiple modes or signif-
icant non-Gaussian tails, the inverse Fisher information pro-
vides only a lower bound on the posterior variance (Cramer,
1946; Rao, 1945) and may be a significant underestimate.
Moreover, the large number of parameters needed to spec-
ify 3-D structures also means these irregular posteriors are
embedded in high-dimensional spaces, increasing the com-
putational cost for both optimization and sampling. Since the
most appropriate sampling strategy may depend on the char-
acteristics of the posterior for specific problems, sampling
methods must usually be tailored to each individual problem
and no “one-size-fits-all” solution exists (Green et al., 2015;
Agostinetti and Malinverno, 2010; Bodin et al., 2012; Xiang
et al., 2018).

While 1-D inversions for specific sensor types may use
some quite sophisticated sampling methods (Agostinetti and
Malinverno, 2010; Bodin et al., 2012; Xiang et al., 2018),
the uptake of MCMC sampling appears to be slower for 3-D
structural modeling problems. Giraud et al. (2016) and Gi-
raud et al. (2017, 2018) demonstrate an optimization-based
Bayesian inversion framework for 3-D geological models,
which finds the maximum of the posterior distribution (max-
imum a posteriori, or MAP); while they show that fusing
data reduces uncertainty around this mode, they do not at-
tempt to find or characterize other modes, and only Giraud
et al. (2016) calculate the actual posterior covariance. Rug-
geri et al. (2015) investigate several MCMC schemes for
sampling a single-sensor inverse problem (cross-hole geo-
radar travel time tomography), focusing on sequential, lo-
calized perturbations of a proposed 3-D model (sequential
geostatistical resampling, or SGR); they show that sampling
is impractically slow due to high dimensionality and corre-
lations between model parameters. Laloy et al. (2016) em-
bed the SGR proposal within a parallel-tempered sampling
scheme to explore multiple posterior modes of a 2-D inverse
problem in groundwater flow, improving computational per-
formance but not to a cost-effective threshold.

The above methods are nonparametric in that the model
parameters simply form a 3-D field of rock properties to
which sensors respond. Although this type of method is flexi-
ble, parametric models, in which the parameterized elements
correspond more directly to geological interpretation, com-
prise a more transparent and parsimonious approach. Well-
mann et al. (2010) describe a workflow for propagating un-
certainty in structural data through to uncertainty in the ge-
ological interpretation. Pakyuz-Charrier et al. (2018b, a) fur-
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ther develop a Monte Carlo approach to uncertainty estima-
tion for structural and drill hole data, showing the impact of
different distributions used to summarize uncertainty in the
data. Such approaches are much simplified by the use of an
implicit potential-field parameterization of geological struc-
ture (Lajaunie et al., 1997), in which the data coincide di-
rectly with model parameters; conditioning on further data,
and hence the use of MCMC methods, is not necessary in this
context. de la Varga and Wellmann (2016) and de la Varga
et al. (2019) recast the modeling of structural data in terms
of MCMC sampling of a posterior, which is required in order
to fuse structural data with other types of data, including geo-
physical sensor data. A large-scale 3-D joint inversion with
multiple sensors remains to be done in this framework.

McCalman et al. (2014) present Obsidian, a flexible
software platform for MCMC sampling of 3-D multi-
modal geophysical models on distributed computing clusters.
Beardsmore (2014) and Beardsmore et al. (2016) demon-
strate Obsidian on a test problem in geothermal exploration
in the Moomba gas field of the Cooper Basin in South Aus-
tralia and compare their results to a deterministic inversion
of the same area performed by Meixner and Holgate (2009).
These papers outline a full-featured open-source inversion
method that can fuse heterogeneous data into a detailed so-
lution, but they make few comments about how the effi-
ciency and robustness of the method depend on the particular
choices they made.

In this paper, we revisit the inversion problem of
Beardsmore et al. (2016) using a customized version (Scalzo
et al., 2019) of the McCalman et al. (2014) inversion code.
Our interest is in exploring this problem as a case study to de-
termine which aspects of this problem’s posterior present the
most significant obstacles to efficient sampling, which up-
dates to the MCMC scheme improve sampling under these
conditions, and how plausible alternative choices of problem
setup might influence the efficiency of sampling or the ro-
bustness of the inversion. The aspects we consider include
correlations between model parameters, relative weights be-
tween datasets with poorly constrained uncertainty, and de-
grees of constraint from prior knowledge representing differ-
ent possible exploration scenarios.

2 Background

In this section we present a brief overview of the Bayesian
forward-modeling paradigm to geophysical inversions. We
also provide a discussion on implementing Bayesian infer-
ence via sampling using MCMC methods. We then present
the background of the original Moomba inversion problem,
commenting on choices made in the inversion process before
we begin to explore different choices in subsequent sections.

2.1 Overview of Bayesian inversion

A Bayesian inversion scheme for geophysical forward mod-
els is comprised of three key elements:

1. the underlying parameterized representation of the sim-
ulated volume or history, which we call the world or
world view, denoted by a vector of world parameters
θ = (θ1, . . .,θP);

2. a probability distribution p(θ) over the world param-
eters, called the prior, expressing expert knowledge or
belief about the world before any datasets are analyzed;
and

3. a probability distribution p(D|θ) over possible realiza-
tions of the observed data D as a function of world
parameters, called the likelihood, that incorporates the
prediction of a deterministic forward model g(θ) of the
sensing process for each value of θ .

The posterior is then the distribution p(θ |D) of the values of
the world parameters consistent with both prior knowledge
and observed data. Bayes’ theorem describes the relationship
between the prior, likelihood, and posterior:

p(θ |D)=
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

. (1)

Although each of these elements has a correspondence to
some similar model element in more traditional geophysical
inversion literature (for example, Menke, 2018), interpreting
model elements in terms of probability may motivate differ-
ent mathematical choices from the usual non-probabilistic
misfit or regularization terms. The terminology we use in this
paper will be typical of the statistics literature. In other geo-
physical inversion papers a “model” might refer to the world
representation, whereas below we will use the word “model”
to refer to the statistical model defined by a choice of pa-
rameterization, prior, and likelihood. A non-Bayesian inver-
sion would proceed by minimizing an objective function, one
simple form of which is the mean square misfit between the
(statistical) model predictions and the data, corresponding to
our negative log likelihood (assuming observational errors
that are independent and Gaussian-distributed with precisely
known variance). To penalize solutions that are considered
a priori unlikely, the objective function might include addi-
tional regularization terms corresponding to the negative log
priors in our framework; the weight of a non-probabilistic
regularization term might ordinarily be optimized by cross-
validation against subsets of the data (MacCarthy et al., 2011;
Wrona et al., 2018), whereas in our framework we include
plausible (possibly vague) constraints as part of the prior dis-
tribution. The full objective function would correspond to
the negative log posterior, and minimization of the objective
function would correspond to maximization of the posterior
probability, under some choice of prior.
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Indeed, there is considerable flexibility in choosing the
above elements even in a fully probabilistic context. For ex-
ample, the partitioning of information into “data” and “prior
knowledge” is neither unique nor cut-and-dried. However,
there are guiding principles: the ideal set of parameters θ is
both parsimonious – as few as possible to faithfully represent
the world – and interpretable, referring to meaningful aspects
of the world that can easily be read off the parameter vector.
Information resulting from processes that can be easily simu-
lated belongs in the likelihood: for example, one might argue
that the output of a gravimeter should have a Gaussian dis-
tribution because it responds to the mean rock density within
a volume and hence obeys the central limit theorem or that
the output of a Geiger counter should follow a Poisson distri-
bution to reflect the physics of radioactive decay. Even pro-
cesses that are not so easily simulated can at least be approxi-
mately described, for example by using a mixture distribution
to account for outlier measurements (Mosegaard and Taran-
tola, 1995) or a prior on the unknown noise level in a process
(Sambridge et al., 2012). Other information about allowable
or likely worlds belongs in the prior, such as the distribu-
tion of initial conditions for simulation or interpretations of
datasets with expensive or intractable forward models.

The implicit assumption behind the use of mean square er-
ror as a (log) likelihood – that the residuals of the data for
each sensor from the corresponding forward model are in-
dependent Gaussian – may not be true if the data have been
interpolated, resampled, or otherwise modified from origi-
nal point observations. For example, gravity anomaly and
magnetic anomaly measurements are usually taken at ground
level along access trails to a site or along spaced flight lines
in the case of aeromagnetics. In online data releases, the
original measurements may then be interpolated or resam-
pled onto a grid, changing the number and spacing of points
and introducing correlations on spatial scales comparable to
the scale of the smoothing kernel. This resampling of ob-
servations onto a regular grid may be useful for traditional
inversions using Fourier transform techniques. However, if
used uncritically in a Bayesian inversion context, correla-
tions in residuals from the model may then arise from the
resampling process rather than from model misfit, resulting
in stronger penalties in the likelihood for what would oth-
erwise be plausible worlds and muddying questions around
model inadequacy. If such correlations are known to exist,
they can be modeled explicitly as part of the likelihood. For
example, autoregressive models are already being used as er-
ror models for 1-D inversions of magnetotelluric and seismic
data (Agostinetti and Malinverno, 2010; Bodin et al., 2012;
Xiang et al., 2018). Care must be taken in formulating such
likelihoods to avoid confusion between real (but possibly un-
resolved) structure and correlated observational noise.

The inference process expresses its results in terms of ei-
ther p(θ |D) itself or integrals over p(θ |D) (including credi-
ble limits on θ ). This is different from the use of point esti-
mates for the world parameters, such as the maximum like-

lihood (ML) solution θML = supθp(D|θ) or the maximum a
posteriori (MAP) solution θMAP = supθp(D|θ)p(θ). To the
extent that ML or MAP prescriptions give any estimate of un-
certainty on θ , they usually do so through the covariance of
the log likelihood or log posterior around the optimal value
of θ , equivalent to a local approximation of the likelihood or
posterior by a multivariate Gaussian. As mentioned above,
these approaches will underestimate the uncertainty for com-
plex posteriors; a more rigorous accounting of uncertainty
will include all known modes, higher moments of the distri-
bution, or (more simply) enough samples from the distribu-
tion to characterize it.

The posterior distribution p(θ |D) is rarely available in
closed form. However, it is often known up to a normalizing
constant: p(D|θ)p(θ). Sampling methods such as MCMC
can therefore be used to approximate the posterior without
having to explicitly evaluate the normalizing constant (the
high-dimensional integral in the denominator of Eq. 1). It is
to these methods we turn next.

2.2 Markov chain Monte Carlo

An MCMC algorithm comprises a sequence of world pa-
rameter vectors {θ [j ]}, called a (Markov) chain, and a pro-
posal distribution q(θ ′|θ) to generate a new set of param-
eters based only on the last element of the chain. In the
commonly used Metropolis–Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970), a proposal θ ′ ∼ q(θ ′|θ [j ]) is
at random either accepted and added to the chain’s history
(θ [j+1]

= θ ′) with probability

Paccept =min

(
1,

P (D|θ ′)P (θ ′)q(θ [j ]|θ ′)
P (D|θ [j ])P (θ [j ])q(θ ′|θ [j ])

)
, (2)

or it is rejected and a copy of the previous state added in-
stead (θ [j+1]

= θ [j ]). This rule guarantees, under certain reg-
ularity conditions (Chib and Greenberg, 1995), that the se-
quence {θ [j ]} converges to the required stationary distribu-
tion, P(θ |D), in the limit of increasing n.

Metropolis–Hastings algorithms form a large class of sam-
pling algorithms limited only by the forms of proposals. Al-
though proofs that the chain will eventually sample from the
posterior are important, clearly chains based on efficient pro-
posals are to be preferred. A proposal’s efficiency will de-
pend on the degree of correlation between consecutive states
in the chain, which in turn can depend on how well matched
the proposal distribution is to the properties of the posterior.

One simple, commonly used proposal distribution is a
(multivariate) Gaussian random walk (GRW) step u from the
chain’s current position, drawn from a multivariate Gaussian
distribution with covariance matrix 6:

θ ′ = θ [j ]+u, u∼N(0,6). (3)

This proposal is straightforward to implement, but its effec-
tiveness can depend strongly on 6 and does not in general
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scale well to rich, high-dimensional world parameterizations.
If6 has too large a scale, the GRW proposal will step too of-
ten into regions of low probability, resulting in many repeated
states due to rejections; if the scale is too small, the chain
will take only small, incremental steps. In both cases, sub-
sequent states are highly correlated. If the shape of 6 is not
tuned to capture correlations between different dimensions
of θ , the overall scale must usually be reduced to ensure a
reasonable acceptance fraction. If constraints from additional
data are weak, 6 could take the shape of the prior; if there
are no other constraints, as in Monte Carlo uncertainty esti-
mation (MCUE) (Pakyuz-Charrier et al., 2018b, a), sampling
directly from the prior may be easier.

The SGR method (Ruggeri et al., 2015; Laloy et al.,
2016) can be seen as a mixture of multivariate Gaussians,
in which 6 has highly correlated sub-blocks of parameters
corresponding to variations of the world over different spa-
tial scales. Ruggeri et al. (2015) and Laloy et al. (2016) eval-
uate SGR using single-sensor inversions in cross-hole geo-
radar travel time tomography, with posteriors correspond-
ing to a Gaussian process – an unusually tractable (if high-
dimensional) problem that could be solved in closed form as
a cross-check. These authors found that in general updating
blocks of parameters simultaneously was inefficient, which
may not be surprising in a high-dimensional model: for a
tightly constrained posterior lying along a low-dimensional
subspace of parameter space, almost all directions – and
hence almost all posterior covariance choices – lead towards
regions of low probability. Directions picked at random with-
out regard for the shape of the posterior will scale badly with
increasing dimension.

Many other types of proposals can be used in Metropolis–
Hastings sampling schemes with information from ensem-
bles of particles (Goodman and Weare, 2010, as distinct from
particle swarm optimization or sequential Monte Carlo), the
adaptation of the proposal distribution based on the chain’s
history (Haario et al., 2001), derivatives of the posterior
(Neal, 2011; Girolami and Calderhead, 2011), approxima-
tions to the posterior (Strathmann et al., 2015), and so forth.
The GRW proposal is not only easy to write down and fast to
evaluate, but also requires no derivative information. We will
compare and contrast several derivative-free proposals in our
experiments below.

The posterior distributions arising in geophysical inver-
sion problems are also frequently multi-modal; MCMC al-
gorithms to sample such posteriors need the ability to es-
cape from, or travel easily between, local modes. Parallel-
tempered MCMC, or PTMCMC (Geyer and Thompson,
1995), is a meta-method used by Obsidian for sampling
multi-modal distributions that works by running an ensem-
ble of Markov chains. The ensemble is characterized by a se-
quence of M + 1 parameters {βi}, with β0 = 1> β1 > β2 >

.. . > βM > 0, called the (inverse) temperature ladder. Each

chain samples the distribution

Pi(θ |D)∝ (P (D|θ))
βiP(θ) (4)

so that the chain with β0 = 1 is sampling from the desired
posterior and a chain with βi = 0 samples from the prior,
which should be easy to explore. Chains with intermediate
values 0< β < 1 sample intermediate distributions in which
the data’s influence is reduced so that modes are shallower
and easier for chains to escape and traverse. In addition to
proposing new states within each chain, PTMCMC includes
Metropolis-style proposals that allow for adjacent chains on
the temperature ladder, with inverse temperatures β and β ′,
to swap their most recent states θ and θ ′ with probability

Pswap =min

(
1,
[
P(D|θ ′)
P (D|θ)

]β ′−β
P(θ ′)

P (θ)

)
. (5)

This allows chains with current states spread throughout pa-
rameter space to share global information about the pos-
terior in such a way that chain i still samples Pi(θ |D) in
the long-term limit. The locations of discovered modes dif-
fuse from low-βi chains (which can jump freely between
relaxed, broadened versions of these modes) towards the
β0 = 1 chain, which can then sample from all modes of the
unmodified posterior in the correct proportions. The temper-
ature ladder should be defined so that adjacent chains on the
ladder are sampling from distributions similar enough for
swaps to occur frequently.

Figure 1 illustrates the sampling of a simple bimodal prob-
ability distribution (a mixture of two Gaussians) via PTM-
CMC. The solid line depicts the true bimodal distribution,
while the broken lines show the stationary distribution of
tempered chains for smaller values of β. The tempered chains
are more likely to propose moves across modes than the un-
tempered chains, and the existence of a sequence of chains
ensures that the difference in probability between successive
chains is small enough that swaps can take place easily.

Since only samples from the β = 1 chain are retained as
samples from the true posterior, and since the time for infor-
mation about well-separated modes to propagate down the
ladder increases as the square of the number of inverse tem-
peratures used, PTMCMC can be extremely computation-
ally intensive. It should be employed only in cases in which
multiple modes are likely to be present and when capturing
the relative contributions of all of these modes is relevant
to the application. For problems that have many deep, well-
separated modes (e.g., Chandra et al., 2019), swap propos-
als may provide the only source of movement in the low-
temperature chains; such posteriors present next-generation
challenges for sampling.

Even without regard to multiple modes, PTMCMC can
also help to reduce correlations between successive indepen-
dent posterior samples. Laloy et al. (2016) use SGR as a
within-chain proposal in a PTMCMC scheme, demonstrating
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Figure 1. Parallel-tempered relaxation of a bimodal distribution.

its effects on correlations between samples but noting that the
algorithm remains computationally intensive.

2.3 Performance metrics for MCMC

Because MCMC guarantees results only in the limit of large
samples, criteria are still required to assess the algorithm’s
performance. Suppose for the discussion below that up to
the assessment point, we have obtained N samples of a d-
dimensional posterior from each of M separate chains; let
θ
[j ]
i = (θ

[j ]

1i , . . .,θ
[j ]
di ) be the d×1 vector of parameter values

drawn at iteration [j ] in chain i. Let

θ̂ki =
1
N

N∑
j=1

θ
[j ]
ki

be the mean value of the parameter θk in chain i across the
N iterates, and let θ̃k = 1

M

∑M
i=1θ̂ki be the sample mean of θk

across all iterates and chains. Then

Bk =
1

M − 1

M∑
i=1
(θ̂ki − θ̃k)

2.

Further define

s2
ki =

1
M − 1

N∑
j=1
(θ
[j ]
ki − θ̂ki)

2

and

Wk =
1
M

M∑
i=1

s2
ki .

For Metropolis–Hastings MCMC, the acceptance frac-
tion of proposals is easily measured and for a chain that
is performing well should be ∼ 20 %–50 %. Roberts et al.
(1997) showed that the optimal acceptance fraction for ran-
dom walks in the limit of a large number of dimensions is

0.234, which we will take as our target since the proposals
we will consider are modified random walks.

We examine correlations between samples within each
chain separated by a lag time l using the autocorrelation func-
tion,

ρlki =
1

(N − l)Wk

N∑
j=l+1

(θ
[j ]
ki − θ̂ki)(θ

[j−l]
ki − θ̂ki). (6)

The number of independent draws from the posterior with
equal statistical power to each set of N chain samples scales
with the area under the autocorrelation function or (inte-
grated) autocorrelation time,

τki = 1+ 2
N∑
l=1

(
1−

k

N

)
ρlki . (7)

A trace plot of the history of an element of the parameter
vector θ over time summarizes the sampling performance at
a glance, revealing where in parameter space an algorithm is
spending its time; Fig. 3 shows a series of such figures for
some of the different MCMC runs in the present work.

Gelman and Rubin (1992) assess the number of samples
required to reach a robust sampling of the posterior by com-
paring results among multiple chains. If the simulation has
run long enough, the mean values among chains should dif-
fer by some small fraction of the width of the distribution;
intuitively, this is similar to a hypothesis test that the chains
are sampling the same marginal distribution for each param-
eter. More precisely, the quantity

V̂k/Wk =
N − 1
N
+
M + 1
MN

Bk/Wk (8)

provides a metric for the convergence of different chains to
the same result, which decreases to 1 as N→∞. The chains
may be stopped and results read out when the metric dips
below a target value for all world parameters θ . The precise
number of samples needed may depend on the details of the
distribution; the metric provides a stopping condition but not
an estimate of how long it will take to achieve.

The results from this procedure must still be evaluated
according to how well the underlying statistical model de-
scribes the geophysical data and whether the results are ge-
ologically plausible – although this is not unique to MCMC
solutions. The distribution of residuals of model predictions
(forward-modeled datasets) from the observed data can be
compared to the assumed likelihood. The standard devia-
tion or variance of the residuals (relative to the uncertainty)
provides a convenient single-number summary, but the spa-
tial distribution of residuals may also be important; outliers
and/or structured residuals will indicate places where the
model fails to predict the data well and highlight parts of the
model parameterization that need refinement.

Finally, representative instances of the world itself should
be visualized to check for surprising features. Given the com-
plexity of real-world data, the adequacy of a given model is
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in part a matter of scientific judgment or fitness for a par-
ticular applied purpose to which the model will be put. We
will use the term model inadequacy to refer to model errors
arising from approximations or inaccuracies in the world pa-
rameterization or the mathematical specification of the for-
ward model – although there will always be such approxima-
tions in real problems, and the presence of model inadequacy
should not imply that the model is unfit for purpose.

2.4 The Obsidian distributed PTMCMC code

For our experiments we use a customized fork (v0.1.2;
Scalzo et al., 2019) of the open-source Obsidian software
package. Obsidian was previously presented in McCalman
et al. (2014) and was used to obtain the modeling results of
Beardsmore et al. (2016); v0.1.1 was the most recent open-
source version publicly available before our work. We refer
the reader to these publications for a comprehensive descrip-
tion of Obsidian, but below we summarize key elements cor-
responding to the inversion framework set out above and de-
scribe the changes we have made to the code since v0.1.1.

Obsidian was designed to run on large distributed archi-
tectures such as supercomputing clusters. McCalman et al.
(2014) show that the code scales well to large numbers of
processors by allowing individual MCMC chains to run in
parallel and initiating communication between chains only
when a PTMCMC swap proposal is initiated. The inversion
of Beardsmore et al. (2016) was performed on Amazon Web
Services using 160 cores.

2.4.1 World parameterization

Obsidian’s world is parameterized as a series of discrete
units, each with its own spatially constant rock properties
separated by smooth boundaries. Each unit boundary is de-
fined by a set of control points that specify the subsurface
depth of the boundary at given surface locations. The depth
to each unit boundary at any other location is calculated us-
ing a two-dimensional Gaussian process regression (kriging)
through the control points; each unit is truncated against the
overlying unit to allow for the lateral termination of units and
ensure a strict stratigraphic sequence.

For a world with N units, indexed by i with 1≤ i ≤N ,
each with a grid ni of regularly spaced control points at sites
xi and with K rock properties necessary and sufficient to
evaluate the forward models for all relevant sensors, the pa-
rameter vector is therefore

θ = (α11. . .αNnN ,ρ11. . .ρNK), (9)

where αij is the offset of the mean depth of the top of unit i
at site j , and ρis is the rock property of unit i associated with
sensor s. Taken together, the rock properties for each unit
and the control points for the boundaries between the units
fully specify the world. This parameterization requires that
interface depths be single-valued, not, for example, permit-

ting the surface to fold above or below. Such a limitation still
enables reasonable representations of sedimentary basins but
may hinder faithful modeling of other kinds of structures.

2.4.2 Prior

The control point depth offsets within each unit i have a mul-
tivariate Gaussian prior with mean zero and covariance 6αi .
The Gaussian processes that interpolate the unit boundaries
across the lateral extent of the world use a radial basis func-
tion kernel to describe the correlation structure of the surface
between two surface locations (x,y) and (x′,y′),

k(x,y;x′,y′)= exp

[
−
(x− x′)2

12
x

−
(y− y′)2

12
y

]
, (10)

and have a mean function µi(x,y) that can be specified at
finer resolution to capture fine detail in unit structure. The
correlation lengths 1x and 1y could in principle be varied,
but in this case they are fixed in value to the spacing between
control point locations along the x and y coordinate axes, re-
spectively. The rock properties for each unit i, which are sta-
tistically independent of the control points, also have a mul-
tivariate Gaussian prior, with mean µρi and covariance 6ρi .
This allows the user to formulate priors that capture intrinsic
covariances between rock properties, though of a somewhat
simpler form than the petrophysical mixture models of Gi-
raud et al. (2017). The prior for the full parameter vector is
therefore block diagonal:

P(θ)=

N∏
i=1
P(αi·)P (ρi·)

=

N∏
i=1
N(αi·;0,6αi )N(ρi·;µρi ,6ρi ). (11)

2.4.3 Likelihood

The likelihood for each Obsidian sensor s is Gaussian, mean-
ing that the residuals of the dataDs = {dsi} from the forward
model predictions {fsi(θ)} for the true world parameters θ
are assumed to be independent, identically distributed Gaus-
sian draws. The underlying variance of the Gaussian noise is
not known but is assumed to follow an inverse gamma distri-
bution IG(x;αs,βs) with different (user-specified) hyperpa-
rameters αs and βs for each sensor s. This choice of distri-
bution amounts to a prior, but the hyperparameters αs and βs
for each sensor are not explicitly sampled over; instead, they
are integrated out analytically so that the final likelihood has
the form

P(Ds |θ)=
Ks∏
k=1

t2αs

(
fsi(θ)− dsi
√
βs/αs

)
, (12)

where tν(x) is a Student’s t distribution with ν degrees of
freedom. This distribution is straightforward to calculate, al-
though the results may be sensitive to the user’s choices of
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αs and βs ; unrestrictive choices (e.g., αs = βs = 1) should
be used if the user has little prior knowledge about the noise
level in the data. The likelihood including all sensors is there-
fore

P(D|θ)=
S∏
s=1

P(Ds |θ), (13)

since each sensor probes a different physical aspect of the
rock. Obsidian v0.1.1 includes forward models for gravity
and magnetic anomaly, magnetotellurics, reflection seismic,
thermal, and contact-point sensors for drill cores; v0.1.2 in-
troduces a lithostratigraphic sensor.

2.4.4 MCMC

The sampling algorithm used by Obsidian is an adaptive
form of PTMCMC, described in detail in Miasojedow et al.
(2013). This algorithm allows for the progressive adjustment
of the step size used for proposals within each chain, as well
as the temperature ladder used to sample across chains, as
sampling progresses. A key feature of the adjustment pro-
cess is that the maximum allowed change to any chain prop-
erty diminishes over time, made inversely proportional to the
number of samples; this is necessary to ensure that the chains
converge to the correct distribution in the limit of large num-
bers of samples (Roberts and Rosenthal, 2007). The Obsid-
ian implementation of PTMCMC also allows it to be run
on distributed computing clusters, making it truly parallel
in resource use as well as in the requirement for multiple
chains. Obsidian v0.1.2 uses the same methods for adapting
the PTMCMC temperature ladder and the sizes of within-
chain proposals as v0.1.1, but it adds new options for within-
chain proposal distributions (see Sect. 3.1 below).

2.5 The original Moomba inversion problem

The goal of the original Moomba inversion problem
(Beardsmore, 2014; Beardsmore et al., 2016; McCalman
et al., 2014) was to identify potential geothermal energy ap-
plications from hot granites in the South Australian part of
the Cooper Basin (see Carr et al., 2016, for a recent review
of the Cooper Basin). Modeling the structure of granite intru-
sions and their temperature enabled the inference of the prob-
ability of the presence of granite above 270 ◦C at any point
within the volume. The provenance of the original datasets
involved, and how they were used to set up the prior for
the original inversion, is described in more detail in the final
technical report published by NICTA (Beardsmore, 2014),
while the results are described in the corresponding confer-
ence paper (Beardsmore et al., 2016); we summarize key el-
ements in this section as appropriate.

The chosen region was a portion of the Moomba gas
field with dimensions of 35 km× 35 km× 12 km volume
centered at −28.1◦ S, 140.2◦ E. The volume is divided into
six layers, with the first four being thin, sub-horizontal,

Permo–Triassic sedimentary layers, the fifth corresponding
to Carboniferous–Permian granitoid intrusions (Big Lake
Suite), and the sixth to a Proterozoic basement (Carr et al.,
2016). The number of layers and the priors on mean depths
of layer boundaries were related to interpretations of depth-
converted seismic reflection horizons published by the De-
partment of State Development (DSD) in South Australia
(Beardsmore et al., 2016). Data used in the original inver-
sion include Bouguer anomaly, total magnetic intensity, mag-
netotelluric sensor data at 44 frequencies between 0.0005
and 240 Hz, temperature measurements from gas wells, and
petrophysical laboratory measurements based on 115 core
samples from holes drilled throughout the region. Rock
properties measured for each sample include density, mag-
netic susceptibility, thermal conductivity, thermal productiv-
ity, and resistivity.

The original choices of how to partition knowledge be-
tween prior and likelihood struck a balance between the ac-
curacy of the world representation and computational effi-
ciency. The empirical covariances of the petrophysical sam-
ple measurements for each layer were used to specify a mul-
tivariate Gaussian prior on that layer’s rock properties; al-
though these measurements could be construed as data, the
simplifying assumption of spatially constant mean rock prop-
erties left little reason to write their properties into the like-
lihood. The gravity, magnetic, magnetotelluric, and thermal
data all directly constrained rock properties relevant to the
geothermal application and were explicitly forward-modeled
as data. “Contact points” from drilled wells, directly con-
straining the layer depths in the neighborhood of a drilled
hole as part of the likelihood, were available and used to in-
form the prior but were not treated as sensors in the like-
lihood. Treating the seismic measurements as data would
have dramatically increased computational overhead relative
to the use of interpreted reflection horizons as mean functions
for layer boundary depths in the prior. Using interpreted seis-
mic data to inform the mean functions of the layer boundary
priors also reduced the dimension of the parameter space,
letting the control points specify long-wavelength deviations
from seismically derived prior knowledge at finer detail: each
reflection horizon was interpolated onto a 20× 20 grid.

Given this knowledge of the local geology (Carr et al.,
2016; Beardsmore, 2014; McCalman et al., 2014), the world
parameters for geometry were chosen as follows: the sur-
face was fixed by a level plane at zero depth. The control
point grids for the relatively simple sedimentary layers were
specified by 2× 2 grids of control points (lateral spacing:
17.5 km). The layer boundary for the granite intrusion layer
used a 7× 7 grid (lateral spacing: 5 km) and also underwent
a nonlinear transformation stretching the boundary vertically
to better represent the elongated shapes of the intrusions. In-
cluding the rock properties, this allowed the entire world to
be specified by a vector of 101 parameters, which is a large
but not unmanageable number.
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Figure 4 shows horizontal slices through the posterior
probability density for granite at a depth of 3.5 km, similar
to that shown in Fig. 9 of Beardsmore et al. (2016), for three
MCMC runs sampling from the original problem. While the
posterior samples from the previous inference are not avail-
able for quantitative comparison, we see reasonable quali-
tative agreement with previous results in the cross-sectional
shape of the granite intrusion.

3 Experiments

To demonstrate the impact of problem setup and proposal ef-
ficiency in a Bayesian MCMC scheme for geophysical inver-
sion, we run a series of experiments altering the prior, like-
lihood, and proposal for the Moomba problem. We approach
this variation as an iterative investigation into the nature of
the data and the posterior’s dependence on them, motivating
each choice with the intent of relating our findings to related
3-D inversion problems.

The experiments described in this section were run on the
Artemis high-performance computing cluster at the Univer-
sity of Sydney. Artemis’s standard job queue provides ac-
cess to 56 nodes with 24 Intel Xeon E5-2680-V3 (2.5 GHz)
cores each and 80 nodes with 32 Intel Xeon E5-2697A-V4
(2.6 GHz) cores each. Each run used 32 cores and ran for up
to 8 h of wall time.

The datasets we use for our experiments are the gravity
anomaly, total magnetic intensity, and magnetotelluric read-
ings originally distributed as an example Moomba configu-
ration with v0.1.1 of the Obsidian source code. In order to
focus on information that may be available in an exploration
context (i.e., publicly available geophysical surveys without
contact points), we omit the thermal sensor readings relying
on a joint inversion of gravity, magnetic, and magnetotelluric
data. Maps of the locations of these sensor readings, referring
to the coordinate system of the inversion, are shown in Fig. 2.

All experiments use PTMCMC sampling, with 4 simulta-
neous temperature ladders or “stacks” of chains, each with 8
temperatures unless otherwise specified. The posterior is for-
mally defined in terms of samples over the world parameters,
so when quantifying predictions for particular regions of the
world and their uncertainty (such as entropy), the parameter
samples are each used to create a voxelized realization of the
3-D world and the average observable calculated over these
voxelized samples. A quantitative summary of our results is
shown in Table 1, including the following for each run:

– the shortest (τmin), median (τmed), and longest (τmax)
autocorrelation time measured for individual model pa-
rameters;

– the standard deviations, σgrav and σmag, of the gravity
and magnetic anomaly sensor data from the posterior
mean forward model prediction in physical units;

– the mean information entropy S (Shannon, 1948; Well-
mann and Regenauer-Lieb, 2012) of the posterior prob-
ability density for granite, averaged over the volume be-
neath 3.5 km, in bits (i.e., the presence or absence of
granite; an entropy of 0 bits means total certainty, while
1 bit of entropy indicates total uncertainty) – this mea-
sure is appropriate to summarize posterior uncertainty
in categorical predictions such as the type of rock; and

– the CPU time spent per worst-case autocorrelation time
as a measure of computational efficiency.

3.1 Choice of within-chain proposal

The initial work of McCalman et al. (2014) and Beardsmore
et al. (2016) used an isotropic Gaussian random walk
(iGRW) proposal within each chain:

θ ′ = θn+ ηu,u∼N(0,I ), (14)

where η is a (possibly adaptive) step size parameter tuned to
reach a target acceptance rate, which we choose to be 25 %
for our experiments. Each dimension of a sampled parameter
vector is “whitened” by dividing it by a scale factor corre-
sponding to the allowed full range of the variable (of the or-
der of a few times the prior width; this also accounts for dif-
ferences in physical units between parameters). This should
at least provide a scale for the marginal distribution of each
parameter but does not account for potential correlations be-
tween parameters. The covariance matrix of the iGRW pro-
posal is a multiple of the identity matrix so that, on aver-
age, steps of identical extent are taken along every direction
in parameter space. When tuning the proposal, the adaptive
scheme tunes only an overall step size applying to all dimen-
sions at once.

The iGRW proposal is the simplest proposal available, but
as noted above, it loses efficiency in high-dimensional pa-
rameter spaces, and it is unable to adapt if the posterior is
highly anisotropic – for example, if parameters are scaled in-
appropriately or are highly correlated. To maintain the tar-
get acceptance rate, the adapted step size approaches the
scale of the posterior’s narrowest dimension, and the ran-
dom walk will then slowly explore the other dimensions us-
ing this small step size. The time it takes for a random walk
to cover a distance scales as the square of that distance, so we
might expect the worst-case autocorrelation time for random
walk MCMC in a long, narrow mode to scale as the condition
number of the covariance matrix for that mode.

The adaptive (anisotropic) Gaussian random walk (Haario
et al., 2001), or aGRW, attempts to learn an appropriate co-
variance structure for a random walk proposal based on the
past history of the chain. The covariance of the aGRW pro-
posal is calculated in terms of the sample covariance of the
chain history {θ [j ]}:

θ ′ = θn+ ηu, u∼N(0,6n), (15)
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Figure 2. Locations of sensor readings used in the inversions in this paper.

Table 1. Performance metrics for each run, including the following: best-case (τi,min), median (τi,med), and worst-case (τi,max) autocorrela-
tion times for model parameters; standard deviations, σgrav and σmag, of residuals of the posterior mean forward model predictions for the
gravity anomaly and magnetic anomaly data; volume-average information entropy S; number of chain iterates Nsamples (with each iterate
representing a single evaluation of all forward models for a given set of world parameters); and CPU hours per autocorrelation time (i.e., the
computational cost of obtaining a single independent sample from the posterior).

Run τi,min τmed τi,max σgrav σmag S Nsamp CPU (h) Comments
(/1000) (/1000) (/1000) (mgal) (nT) (bits) (/1000) /τmax

A 4.3 16.4 67.8 0.4 19.2 0.79 764.5 10.8 baseline iGRW
A1 4.7 10.7 42.8 0.4 18.5 0.68 1566.5 8.1 . . . with Nβ = 12
B 2.1 4.0 28.4 0.5 18.8 0.66 628.8 5.5 baseline pCN
B1 2.4 4.4 24.3 0.5 20.5 0.62 1166.5 6.2 . . . with Nβ = 12
C 1.9 17.4 > 143.2 0.5 20.9 0.57 872.6 > 19.7 baseline aGRW
C1 2.7 14.1 310.6 0.4 17.1 0.61 2190.2 53.8 . . . with Nβ = 12
D 2.3 7.2 54.9 0.8 5.7 0.47 586.6 11.5 Cauchy likelihood
E 3.0 8.0 > 172.1 0.7 6.4 0.51 669.2 > 29.0 5 km margin
J 1.6 26.3 115.4 0.8 7.0 0.61 1172.6 11.0 loosen rock property priors
J2 2.1 7.9 53.8 1.1 9.4 497.7 14.4 . . . using one top layer only
K 4.2 19.8 64.7 0.5 9.9 0.90 708.8 9.9 loosen control point priors
K2 3.7 7.7 24.7 0.5 8.4 479.1 7.4 . . . using one top layer only

in which

6n =
n

n+ a
cov

{
θ [j ]

}
+

a

n+ a
I , (16)

where a is a timescale for adaptation (measured in sam-
ples). As the length n of the chain increases, the proposal
will smoothly transition from an isotropic random walk to
an anisotropic random walk with a covariance structure that
reflects the chain history.

A third proposal, addressing high-dimensional parameter
spaces, is the preconditioned Crank–Nicolson (pCN) pro-
posal (Cotter et al., 2013):

θn+1 =

√
1− η2θn+ ηu, u∼ P(θ), (17)

with 0< η < 1 and P(θ) as a multivariate Gaussian prior.
For η� 1, the proposal resembles a GRW proposal with
small step size, while for η ∼ 1 the proposal becomes a draw
from the prior. This proposal results in a sampling efficiency

that is independent of the dimensionality of θ ; in fact, it
was developed by Cotter et al. (2013) to sample infinite-
dimensional function spaces arising in inversion problems
using differential equations as forward models, wherein the
prior is specified in the eigenbasis for the forward model
operator. In our case, the prior incorporates the correlation
between neighboring control points in the Gaussian process
layer boundaries, so we might expect a proposal that respects
this structure to improve sampling.

Our first three runs (A, B, C) use the iGRW, pCN, and
aGRW (with a = 10) proposals, respectively. All three algo-
rithms give roughly similar results on the baseline dataset.
The autocorrelation time for this problem remains very long,
of the order of 104 samples. This means that ∼ 106 samples
are required to achieve reasonable statistical power.

There are nevertheless differences in efficiency among the
samplers. The pCN proposal has not only the lowest median
autocorrelation, but also the lowest worst-case autocorrela-

Geosci. Model Dev., 12, 2941–2960, 2019 www.geosci-model-dev.net/12/2941/2019/



R. Scalzo et al.: 3-D geophysical inversions with Obsidian v0.1.2 2951

tion across dimensions. The aGRW proposal has the largest
spread in autocorrelation times across dimensions, with its
median performance comparable to iGRW and its worst-case
performance at least 3 times worse (it had still failed to con-
verge after over 1000 h of CPU time). Repeat trials running
for twice as many samples with 12 chains per stack instead
of 8 (runs A1, B1, C1) produced similar results, although we
were then able to reliably measure the worst-case autocorre-
lation time for aGRW. For all samplers, but most noticeably
aGRW, the step size can take a long time to adapt. Large
differences are sometimes seen in the adapted step sizes be-
tween chains at similar temperatures in different stacks and
do not always increase monotonically with temperature.

The differences are shown in Fig. 3, showing the zero-
temperature chains from the four stacks in each run sampling
the marginal distribution of the rock density for layer 3, a
bimodal parameter. The iGRW chains converge slowly, and
though they manage to travel between modes with the help
of parallel-tempered swap proposals, the relative weights of
the two modes are not fully converged and vary between re-
runs at a fixed length. Each aGRW chain has a relatively nar-
row variance and none successfully crosses over to the high-
density mode despite parallel-tempered swaps. Only the pCN
chains converge “quickly” (after about 70 000 samples) and
are able to explore the full width of the distribution.

These behaviors suggest that the local shape of the pos-
terior varies across parameter space, so proposals that de-
pend on a global fixed scaling across all dimensions are un-
likely to perform well. The clearly superior performance of
pCN for this problem is nevertheless intriguing, since for a
sufficiently small step size near β = 1, the proposal reduces
to GRW.

The different proposals vary in performance when hop-
ping between modes despite the fact that all three propos-
als are embedded within a PTMCMC scheme with a rela-
tively simple multivariate Gaussian prior, to which aGRW
should be able to adapt readily. We believe pCN will prove to
be a good baseline proposal for tempered sampling of high-
dimensional problems because of its prior-preserving proper-
ties, which ensure peak performance when constraints from
the data are weak. As the chain temperature increases, the
tempered posterior density approaches the prior so that pCN
proposals with a properly adapted step size will smoothly
approach independent draws from the prior with an accep-
tance probability of 1. The result is that when used as the
within-chain proposal in a high-dimensional PTMCMC al-
gorithm, pCN proposals will result in near-optimal behavior
for the highest-temperature chain and should explore multi-
ple modes much more easily than GRW proposals.

This behavior stands in contrast to GRW proposals, for
which the acceptance fraction given any particular tun-
ing will approach zero as the dimension increases. In fact,
aGRW’s attempt to adapt globally to proposals with local
structure may mean mid-temperature chains become trapped
in low-probability areas and break the diffusion of informa-

Figure 3. Trace plots (a, c, e, g) and marginal densities (b, d, f,
h) for layer 3 rock density as explored by iGRW, pCN, and aGRW
proposals, as well as by a pCN proposal under a Cauchy likelihood
(top to bottom). The four colors represent the four different chains.

tion down to lower temperatures from the prior. A more de-
tailed study of the behavior of these proposals within tem-
pered sampling schemes would be an interesting topic for
future research.

3.2 Variations in likelihood and noise prior

In the fiducial Moomba configuration used in Beardsmore
et al. (2016), the priors on the unknown variance of the Gaus-
sian likelihood for each sensor are relatively informative. The
uncertainty on the variance of a sensor is determined by the α
parameter in that sensor’s prior, with smaller α correspond-
ing to more uncertainty. For example, the gravity and mag-
netotelluric sensors use a prior with α = 5 so that the re-
sulting t distribution for model residuals in the likelihood
has ν = 2α = 10 degrees of freedom. The magnetic anomaly
sensor prior uses α = 1.25, resulting in a residual distribu-
tion with thick tails closer to a Cauchy distribution than a
Gaussian.
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If specific informative prior knowledge about observa-
tional errors exists, using such a prior, or even fixing the noise
level outright, makes sense. In cases in which the amplitude
of the noise term is not well constrained, using a broader
prior on the noise term may be preferable. When more than
one sensor with unknown noise variance is used, identical
broad priors allow the data to constrain the relative influence
of each sensor on the final results. The trade-off is that a more
permissive prior on the noise variance could mask structured
residuals due to model inadequacy or non-Gaussian outliers
in the true noise distribution.

The idea that such broad assumptions could deliver com-
petitive results arises from the incorporation of Occam’s ra-
zor into Bayesian reasoning, as demonstrated in Sambridge
et al. (2012). For example, the log likelihood corresponding
to independent Gaussian noise is

logL=−
1
2

Nd∑
j=1

[
(fsj (θ)−Dsj )2

σ 2 + log 2πσ 2

]
. (18)

Ordinary least-squares fitting maximizes the left-hand term
inside the sum, and the right-hand term is a constant that can
be ignored if the observational uncertainty σ is known. This
clearly penalizes worlds θ , resulting in large residuals. Sup-
pose that σ is not perfectly known a priori, however (but is
still assumed to be the same for all points in a single sen-
sor dataset), and is allowed to vary alongside θ : the left-hand
term penalizes small (overly confident) values of σ , while
the right-hand term penalizes large values of σ , correspond-
ing to an assumption that the data are entirely explained by
observational noise.

Typical residuals from the Beardsmore et al. (2016) infer-
ences correspond to about 10 % of the dataset’s full range,
so we next perform a run in which the noise prior is set
to α = 0.5 and β = 0.05 for all sensors (gravity, magnetic,
and magnetotelluric). The corresponding likelihood (with the
noise variance prior integrated out) becomes a Cauchy (or t1)
distribution, with thick tails that allow for substantial outliers
from the core. This choice of α and β thus also allows us to
make contact with prior work in which Cauchy distributions
have been used (Silva and Cutrim, 1989; de la Varga et al.,
2019): a Gaussian likelihood with unknown, IG(0.5,βs)-
distributed variance is mathematically equivalent to a Cauchy
likelihood with known scale 2βs . The two choices are con-
ceptually different, since in the Gaussian case outliers ap-
pear when the wrong variance scale is applied, whereas in
the Cauchy case the scale is assumed known and the data
have an intrinsically heavy-tailed distribution.

Under this new likelihood the residuals from the gravity
observations increase (by about a factor of 1.5–2), while the
residuals from the magnetic sensors decrease (by a factor of
3–4). This rebalancing of residuals among the sensors with
an uninformative prior can be used to inform subsequent
rounds of modeling more readily.

The inference also changes: in run D, a granite bridge runs
from the main outcrop to the eastern edge of the modeled
volume, with the presence of granite in the northwest cor-
ner being less certain. Agreement with run B and with the
Beardsmore et al. (2016) map is still good along the east-
ern edge. The posterior entropy also decreases substantially
due to an increase in the probability of granite structures at
greater depths (beneath 3.5 km).

The weight given to the gravity sensor is thus an important
factor determining the behavior of the inversion throughout
half the modeled volume. With weakened gravity constraints,
the two modes for the inferred rock density in layer 3 separate
widely (see Fig. 3), though the algorithm is still able to move
between the modes occasionally. The marginal distributions
of the other rock properties do not change substantially and
remain unimodal.

The comparison map for the inversion of Beardsmore et al.
(2016) comes from the deterministic inversion of Meixner
and Holgate (2009), which uses gravity as the main surface
sensor but relies heavily on seismic data, with reflection hori-
zons used to constrain the depth to basement and measure-
ments of wave velocities (which correlate with density) from
a P -wave refraction survey to constrain density at depth.
While Meixner and Holgate (2009) mention constraints on
rock densities, no mention is made of the level of agreement
with the gravity data.

Without more information – a seismic sensor in our in-
version, priors based on the specific seismic interpretations
of Meixner and Holgate (2009), or specific knowledge about
the noise level in the gravity dataset that would justify an in-
formative prior – it is hard to say how concerned we should
be about the differences between the deterministic inversion
and our probabilistic version. The comparison certainly high-
lights the potential importance of seismic data, as a constraint
on both rock properties at depth and on the geometry of geo-
logical structures.

Indeed, one potential weakness of this approach to bal-
ancing sensors is model inadequacy: the residuals from the
inference may include systematic residuals from unresolved
structure in the model, in addition to sensor noise. The pres-
ence of such residuals is a model selection question that in a
traditional inversion context would be resolved by compar-
ing residuals to the assumed noise level, but this depends
strongly upon informative prior knowledge of the sensing
process for all sensors used in the inversion. The remaining
experiments will use the Cauchy likelihood unless otherwise
specified.

3.3 Boundary conditions

The boundary conditions that Obsidian imposes on world
voxelizations assume that rock properties rendered at a
boundary edge (north–south, east–west) extend indefinitely
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Figure 4. Slices through the voxelized posterior probability of occupancy by granite for each run at a depth of 3.5 km.

Figure 5. Gravity anomaly at the surface (z= 0). In a contour plot (a), filled contours are observations, and black lines represent mean
posterior forward model prediction. Residuals of observations from the mean posterior forward model are also shown as a contour map (b) and
histogram (c).

off the edges, e.g.,

ρis(x < xmin)= ρis(xmin), (19)
ρis(x > xmax)= ρis(xmax). (20)

This may not be a good approximation when rock properties
show strong gradients near the boundary. The residual plots
in Figs. 5 and 6 show persistently high residuals along the
western edge of the world, where such gradients appear in
both the gravity anomaly and the magnetic anomaly.

For geophysical sensors with a localized response, one
way to mitigate this is to include in the world representa-
tion a larger area than the sensor data cover, incorporating
a margin with a width comparable to the scale of bound-
ary artifacts, in order to let the model respond to edge ef-

fects for sensors with a finite area of response. In run E, we
add a boundary zone of width 5 km around the margins of
the world while increasing the number of control points in
the granite intrusion layer boundary from 49 (7× 7 grid) to
64 (8× 8 grid). The model residuals and the inferred rock
geometry do not differ substantially from the previous run,
suggesting that the remaining outliers are actual outliers and
not primarily due to mismatched boundary conditions. The
autocorrelation time, however, increases substantially due to
both the increase in the problem dimension and the fact that
the new world parameters are relatively unconstrained and
hence poorly scaled relative to the others.
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Figure 6. Magnetic anomaly at the surface (z= 0) in the same format as Fig. 5.

Figure 7. Volume renderings of the posterior mean for runs B (a, c) and D (b, d), demonstrating the change in inference at depth. (a,
b) Probability of occupancy for layer 5 (granite intrusion). (c, d) Probability of occupancy for layer 6 (basement). Red volumes indicate high
probability, and blue volumes indicate low probability; zero-probability regions have been rendered transparent to make the shape of the
region more readily visible.

3.4 Looser priors on rock properties and layer depths

In cases in which samples of rock for a given layer are few or
unavailable, the empirical covariance used to build the prior
on rock properties may be highly uncertain or undefined. In
these cases, the user may have to resort to a broad prior on
rock properties. The limiting case is when no petrophysical
data are available at all. Similarly, definitive data on layer
depths may become unavailable in the absence of drill cores,

or at least seismic data, so a broad prior on control point
depths may also become necessary.

We rerun the main Moomba analysis using two new pri-
ors. The first (run J) simulates the absence of petrophysical
measurements. The layer depth priors are the same as the
Beardsmore et al. (2016) setup, but the rock property prior
for each layer is now replaced by an independent Gaussian
prior on each rock property, with the same mean as in previ-
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ous runs but a large width common to all layers:

ρis ∼N (µρis ,σρis ). (21)

The standard deviations are 0.2 g,cm−3 (density), 0.5 (log
magnetic susceptibility), and 0.7 (log resistivity in �m).

The run J voxelization shows reasonable correspondence
with the baseline run D, though with larger uncertainty, par-
ticularly in the northwest corner. In the absence of petro-
physical samples but taking advantage of priors on overlying
structure from seismic interpretations, a preliminary segmen-
tation of granite from basement can thus still be obtained us-
ing broad priors on rock properties. Although the algorithm
cannot reliably infer the bulk rock properties in the layers,
the global prior on structure is enough for it to pick out the
shapes of intrusions by looking for changes in bulk properties
between layers.

The second run (run K) removes structural prior informa-
tion instead of petrophysical prior information. The priors on
rock properties are as in the Beardsmore et al. (2016) setup,
but the control point prior for each layer is replaced by a mul-
tivariate Gaussian with the same anisotropic Gaussian covari-
ance:

6α = σα


1.0 0.5 . . . 0.5
0.5 1.0 . . . 0.5
...

...
. . .

...

0.5 0.5 . . . 1.0

 , (22)

with σα = 3 km.
Run K yields no reliable information about the location

of granite at 3.5 km of depth. This seems to be solely due
to the uncertain thickness of layers of sedimentary rock
that are constrained to be nearly uniform horizontal slabs
in run J, corresponding to a known insensitivity to depth
among potential-field sensors. When relaxed, these strong
priors cause a crisis of identifiability for the resulting models.
Further variations on runs J and K show that replacing these
multiple thin layers with a single uniform slab of ∼ 3 km
depth (runs J2 and K2) does not aid convergence or accu-
racy, as long as more than one layer boundary is allowed to
have large-scale structure.

As mentioned above and in Beardsmore et al. (2016), the
strong priors on layer boundaries and locations were origi-
nally derived from seismic sensor data. Such data will not
always be available but seem to be critical to constrain the
geometry of existing layers to achieve a plausible inversion
at depth.

4 Discussion

Our experiments show concrete examples of how the effi-
ciency of MCMC sampling changes with assumptions about
the prior, likelihood, and proposal distributions for an Obsid-
ian inversion, particularly as tight constraints on the solution

are relaxed and uncertainty increases. Unrealistically tight
constraints can hamper sampling, but relaxing priors or like-
lihoods may sometimes widen the separation between modes
(as shown in Fig. 3), which also makes the posterior diffi-
cult to sample. Additionally, particular weaknesses in sen-
sors, such as the insensitivity of potential-field sensors to the
depth of geological features or to the addition of any hor-
izontally invariant density distribution, can make it impos-
sible to distinguish between multiple plausible alternatives,
thus adding to the irregularity and multi-modality of the pos-
terior.

While any single data source may be easy to understand
on its own, unexpected interactions between parameters can
also arise. Structural priors from seismic data or geological
field measurements appear to play a crucial role in stabilizing
the inversions in this paper, as seen by the collapse of our
inversion after relaxing them.

Our findings reinforce the impression that to make
Bayesian inversion techniques useful in this context, the
computational burden must be reduced by developing effi-
cient sampling methods. Three complementary ways forward
present themselves:

1. developing MCMC proposals, or nonparametric meth-
ods to approximate probability distributions, that func-
tion in (relatively) high-dimensional spaces and capture
local structure in the posterior;

2. developing fast approximate forward models for com-
plex sensors (especially seismic) that deliver detailed
information at depth, along with new ways of assessing
and reducing model inadequacy; and

3. developing richer world parameterizations of 3-D geo-
logical models that faithfully represent real-world struc-
ture in as few dimensions as possible.

All three of the MCMC proposals studied here are varia-
tions of random walks, which explore parameter space by
diffusion and do not easily handle posteriors with detailed
local covariance structures such as the ones we find here.
Proposals that can sense and adjust to local structure from
the present state require, almost by definition, knowledge of
the posterior’s gradient (as in Hamiltonian Monte Carlo; Du-
ane et al., 1987; Hoffman and Gelman, 2014; Neal, 2011)
or higher-order curvature tensors (Girolami and Calderhead,
2011, as in Riemannian manifold Monte Carlo) with respect
to the model parameters, which in turn require the gradi-
ents of both the prior and the likelihood (in particular of for-
ward models).

Taking derivatives of a complex forward model by finite
differences is also likely to be prohibitively expensive, and
practitioners may not have the luxury of rewriting their for-
ward model code to return derivatives. This is one goal of
writing fast emulations of forward models, particularly em-
ulations for which derivatives can be calculated analytically
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(see, for example, Fichtner et al., 2006a, b). Smooth univer-
sal approximators, such as artificial neural networks, are one
possibility; Gaussian process latent variable models (Titsias
and Lawrence, 2010) and Gaussian process regression net-
works (Wilson et al., 2012) are others, which would also en-
able nonlinear dimensionality reduction for difficult forward
models or posteriors. Algorithms that alternate between fast
and approximate forward models for local exploration, on the
one hand, and expensive and precise forward models for eval-
uation of the objective function, on the other, have proved
useful in engineering design problems (Jin, 2011; Sóbester
et al., 2014). These approximate emulators give rise to model
inadequacy terms in the likelihood, which can be explicitly
addressed; for example, Köpke et al. (2018) present a geo-
physics inversion framework in which the inference scheme
learns a model inadequacy term as sampling proceeds, show-
ing proof of principle on a cross-hole georadar tomography
inversion. A related, complementary route is to produce an-
alytically differentiable approximations to the posterior that
are built as the chain explores the space (Strathmann et al.,
2015; Lan et al., 2016).

Another source of overall model inadequacy comes from
the world parameterization, which can be viewed as part
of the prior. Obsidian’s world parameterization is tuned to
match sedimentary basins and is thus best suited for appli-
cations such as oil, gas, and geothermal exploration; it is
too limited to represent more complex structures, particu-
larly those with folds and faults, that might arise in hard
rock or mining scenarios. The GemPy package developed
by de la Varga et al. (2019) makes an excellent start on a
more general-purpose open-source code for 3-D geophysical
inversions: it uses the implicit potential-field approach (La-
jaunie et al., 1997) to describe geological structures, includes
forward models for geophysical sensors, and is designed to
produce posteriors that can easily be sampled by MCMC.
GemPy is also specifically written to take advantage of au-
todifferentiation, providing ready derivative information for
advanced MCMC proposals.

5 Conclusions

We have performed a suite of 3-D Bayesian geophysical in-
versions for the presence of granite at depth in the Moomba
gas field of the Cooper Basin, including altering aspects of
the problem setup to determine their effects on the efficiency
and accuracy of MCMC sampling. Our main findings are as
follows.

– Parameterized worlds have much lower dimensional-
ity than nonparametric worlds, and the parameters also
offer a more interpretable description of the world –
for example, boundaries between geological units are
explicitly represented. However, the resulting posterior
has a complex local covariance structure in parameter
space, even for linear sensors.

– Although isotropic random walk proposals explore such
posteriors inefficiently, poorly adapted anisotropic ran-
dom walks are even less efficient. A modified high-
dimensional random walk such as pCN outperforms
these proposals, and the prior-preserving properties of
pCN make it especially attractive for use in tempered
sampling.

– The shape of the posterior and number of modes can
also depend in complex ways upon the prior, making
tempered proposals essential.

– Hierarchical priors on observational noise provide a
way to capture uncertainty about the weighting among
datasets, although this may also make sampling more
challenging, such as when priors on world parameters
are relaxed.

– Useful information about structures at depth can some-
times be obtained through sensor fusion even in the
absence of informative priors. However, direct con-
straints on 3-D geometry from seismic interpretations or
structural measurements seem to play a privileged role
among priors owing to the relatively weak constraints
on depth of structure afforded by potential-field meth-
ods.

In summary, both advanced MCMC methods and careful at-
tention to the properties of the data are necessary for inver-
sions to succeed.

Code and data availability. The code for version 0.1.2 of Obsid-
ian is available at https://doi.org/10.5281/zenodo.2580422 (Scalzo
et al., 2019). All configuration files for 3-D model runs specified
in this paper, together with corresponding datasets, are available in
named subfolders of this repository and are also provided in the
Supplement.
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Appendix A: Analytic integration of likelihood over
sensor noise prior

The usual mean square likelihood often used in geophys-
ical sensor inversions assumes the residuals of the sensor
measurements from each forward model are independent
Gaussian-distributed with some variance σ 2. In typical non-
probabilistic inversions, this noise amplitude is specified ex-
actly as part of the objective function. A probabilistic inver-
sion would specify a prior P(σ 2) for the probability density
of the noise variance and condition the likelihood P(y|θ,σ 2)

on this variance and on the other parameters describing
the world.

Unless the noise levels in the sensors are themselves tar-
gets for inference, sampling will be more efficient if their
values are integrated out beforehand. If the conditional like-
lihood P(y|θ,σ 2) is independent Gaussian, a point mass
prior P(σ 2)= δ(σ 2

− σ 2
0 ) results in a Gaussian likelihood

P(y|θ). If some uncertainty about σ 2 exists, specifying the
prior P(σ 2) as an inverse gamma function IG(σ 2

|α,β) en-
ables the integration over σ 2 to be done analytically. The pa-
rameter α describes the weight of the tail in the distribution
of σ 2, while β/α gives a typical variance scale referring to
the sample variance of the data; these parameters are then
either specified by experts with prior knowledge about the
sensors or are set to uninformative values, e.g., α = β = 1.

For a single observation y, we start with

P(y|µ,σ 2)=
1

√
2πσ 2

exp
[
−
(y−µ)2

2σ 2

]
, (A1)

P(σ 2
|α,β)=

βα

0(α)
σ−2(α+1) exp

(
−β

σ 2

)
, (A2)

where the mean µ is given by the forward model. Carrying
out the integration over the prior proceeds as follows.

P(y|µ,α,β)=

∞∫
0

P(y|µ,σ 2)P (σ 2
|α,β)dσ 2 (A3)

=

∞∫
0

βα

0(α)
√

2πσ 2
σ−2(α+1)e

−β

σ2 −
(y−µ)2

2σ2 (A4)

=
βα

0(α)
√

2π

∞∫
0

uα−
1
2 e
−

[
1
2 (y−µ)

2
+β

]
u

du (A5)

=

βα
[

1
2 (y−µ)

2
+β

]−(α+ 1
2

)
0
(
α+ 1

2

)
0(α)
√

2π
(A6)

=
1
√

2πβ

0
(
α+ 1

2

)
0(α)

[
(y−µ)2

2β
+ 1

]−(α+ 1
2

)
(A7)

This is the density for a t distribution in the normalized resid-
ual ξ = y−µ

√
β/α

with ν = 2α degrees of freedom.
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Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/gmd-12-2941-2019-supplement.
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