Articles | Volume 11, issue 2
https://doi.org/10.5194/gmd-11-521-2018
https://doi.org/10.5194/gmd-11-521-2018
Model description paper
 | 
06 Feb 2018
Model description paper |  | 06 Feb 2018

An axisymmetric non-hydrostatic model for double-diffusive water systems

Koen Hilgersom, Marcel Zijlema, and Nick van de Giesen

Related authors

Practical considerations for enhanced-resolution coil-wrapped distributed temperature sensing
Koen Hilgersom, Tim van Emmerik, Anna Solcerova, Wouter Berghuijs, John Selker, and Nick van de Giesen
Geosci. Instrum. Method. Data Syst., 5, 151–162, https://doi.org/10.5194/gi-5-151-2016,https://doi.org/10.5194/gi-5-151-2016, 2016
Short summary

Related subject area

Numerical methods
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary
Assessing the benefits of approximately exact step sizes for Picard and Newton solver in simulating ice flow (FEniCS-full-Stokes v.1.3.2)
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024,https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary
Assessing effects of climate and technology uncertainties in large natural resource allocation problems
Jevgenijs Steinbuks, Yongyang Cai, Jonas Jaegermeyr, and Thomas W. Hertel
Geosci. Model Dev., 17, 4791–4819, https://doi.org/10.5194/gmd-17-4791-2024,https://doi.org/10.5194/gmd-17-4791-2024, 2024
Short summary
VISIR-2: ship weather routing in Python
Gianandrea Mannarini, Mario Leonardo Salinas, Lorenzo Carelli, Nicola Petacco, and Josip Orović
Geosci. Model Dev., 17, 4355–4382, https://doi.org/10.5194/gmd-17-4355-2024,https://doi.org/10.5194/gmd-17-4355-2024, 2024
Short summary

Cited articles

Arnon, A., Lensky, N. G., and Selker, J. S.: High-resolution temperature sensing in the Dead Sea using fiber optics, Water Resour. Res., 50, 1756–1772, https://doi.org/10.1002/2013WR014935, 2014.
Batchelor, G.: An introduction to fluid dynamics, Cambridge University Press, 615 pp., 1967.
Bennett, G., Reilly, T., and Hill, M.: Technical training notes in ground-water hydrology: radial flow to a well, Technical report, US Geological Survey; Books and Open-File Reports, 1990.
Bergman, T. L., Incropera, F. P., and Lavine, A. S.: Fundamentals of heat and mass transfer, John Wiley & Sons, 1048 pp., 2011.
Berthold, S. and Börner, F.: Detection of free vertical convection and double-diffusion in groundwater monitoring wells with geophysical borehole measurements, Environ. Geol., 54, 1547–1566, https://doi.org/10.1007/s00254-007-0936-y, 2008.
Download
Short summary
This study models the local inflow of groundwater at the bottom of a stream with large density gradients between the groundwater and surface water. Modelling salt and heat transport in a water body is very challenging, as it requires large computation times. Due to the circular local groundwater inflow and a negligible stream discharge, we assume axisymmetry around the inflow, which is easily implemented in an existing model, largely reduces the computation times, and still performs accurately.