Articles | Volume 11, issue 7
https://doi.org/10.5194/gmd-11-3071-2018
https://doi.org/10.5194/gmd-11-3071-2018
Methods for assessment of models
 | 
31 Jul 2018
Methods for assessment of models |  | 31 Jul 2018

Bayesian inference of earthquake rupture models using polynomial chaos expansion

Hugo Cruz-Jiménez, Guotu Li, Paul Martin Mai, Ibrahim Hoteit, and Omar M. Knio

Related authors

Atmospheric Forcing as a driver for Ocean Forecasting
Andreas Schiller, Simon A. Josey, John Siddorn, and Ibrahim Hoteit
State Planet Discuss., https://doi.org/10.5194/sp-2024-13,https://doi.org/10.5194/sp-2024-13, 2024
Preprint under review for SP
Short summary
Improving Accuracy and providing Uncertainty Estimations: Ensemble Methodologies for Ocean Forecasting
Ibrahim Hoteit, Eric Chassignet, and Mike Bell
State Planet Discuss., https://doi.org/10.5194/sp-2024-10,https://doi.org/10.5194/sp-2024-10, 2024
Preprint under review for SP
Short summary
Towards Earth System Modeling: Coupled Ocean Forecasting
Ségolène Berthou, John Siddorn, Vivian Fraser-Leonhardt, Pierre-Yves Le Traon, and Ibrahim Hoteit
State Planet Discuss., https://doi.org/10.5194/sp-2024-28,https://doi.org/10.5194/sp-2024-28, 2024
Preprint under review for SP
Short summary
Data assimilation schemes for ocean forecasting: state of the art
Matthew J. Martin, Ibrahim Hoteit, Laurent Bertino, and Andrew M. Moore
State Planet Discuss., https://doi.org/10.5194/sp-2024-20,https://doi.org/10.5194/sp-2024-20, 2024
Preprint under review for SP
Short summary
Investigating the long-term variability of the Red Sea marine heatwaves and their relationship to different climate modes: focus on 2010 events in the northern basin
Manal Hamdeno, Aida Alvera-Azcárate, George Krokos, and Ibrahim Hoteit
Ocean Sci., 20, 1087–1107, https://doi.org/10.5194/os-20-1087-2024,https://doi.org/10.5194/os-20-1087-2024, 2024
Short summary

Related subject area

Solid Earth
ShellSet v1.1.0 parallel dynamic neotectonic modelling: a case study using Earth5-049
Jon B. May, Peter Bird, and Michele M. C. Carafa
Geosci. Model Dev., 17, 6153–6171, https://doi.org/10.5194/gmd-17-6153-2024,https://doi.org/10.5194/gmd-17-6153-2024, 2024
Short summary
FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth
Jan Swierczek-Jereczek, Marisa Montoya, Konstantin Latychev, Alexander Robinson, Jorge Alvarez-Solas, and Jerry Mitrovica
Geosci. Model Dev., 17, 5263–5290, https://doi.org/10.5194/gmd-17-5263-2024,https://doi.org/10.5194/gmd-17-5263-2024, 2024
Short summary
Automatic adjoint-based inversion schemes for geodynamics: reconstructing the evolution of Earth's mantle in space and time
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024,https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Reconciling Surface Deflections From Simulations of Global Mantle Convection
Conor P. B. O'Malley, Gareth G. Roberts, James Panton, Fred D. Richards, J. Huw Davies, Victoria M. Fernandes, and Sia Ghelichkhan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1893,https://doi.org/10.5194/egusphere-2024-1893, 2024
Short summary
Benchmarking the accuracy of higher-order particle methods in geodynamic models of transient flow
Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Elbridge Gerry Puckett, and Cedric Thieulot
Geosci. Model Dev., 17, 4115–4134, https://doi.org/10.5194/gmd-17-4115-2024,https://doi.org/10.5194/gmd-17-4115-2024, 2024
Short summary

Cited articles

Abrahamson, N. A., Silva, W. J., and Kamai, R.: Summary of the ASK14 ground motion relation for active crustal regions, Earthq. Spectra, 30, 1025–1055, 2014.
Alexanderian, A., Winokur, J., Sraj, I., Srinivasan, A., Iskandarani, M., Thacker, W. C., and Knio, O. M.: Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach, Comput. Geosci., 16, 757–778, 2012.
Arroyo, D. and Ordaz, M.: Multivariate Bayesian regression analysis applied to ground-motion prediction equations, part 1: theory and synthetic example, B. Seismol. Soc. Am., 100, 1551–1567, 2010a.
Arroyo, D. and Ordaz, M.: Multivariate Bayesian regression analysis applied to ground-motion prediction equations, Part 2: Numerical example with actual data, B. Seismol. Soc. Am., 100, 1568–1577, 2010b.
Atkinson, G. M. and Boore, D. M.: Modifications to existing ground-motion prediction equations in light of new data, B. Seismol. Soc. Am., 101, 1121–1135, 2011.
Download
Short summary
One of the most important challenges seismologists and earthquake engineers face is reliably estimating ground motion in an area prone to large damaging earthquakes. This study aimed at better understanding the relationship between characteristics of geological faults (e.g., hypocenter location, rupture size/location, etc.) and resulting ground motion, via statistical analysis of a rupture simulation model. This study provides important insight on ground-motion responses to geological faults.