Articles | Volume 11, issue 7
https://doi.org/10.5194/gmd-11-3071-2018
https://doi.org/10.5194/gmd-11-3071-2018
Methods for assessment of models
 | 
31 Jul 2018
Methods for assessment of models |  | 31 Jul 2018

Bayesian inference of earthquake rupture models using polynomial chaos expansion

Hugo Cruz-Jiménez, Guotu Li, Paul Martin Mai, Ibrahim Hoteit, and Omar M. Knio

Related authors

Improving accuracy and providing uncertainty estimations: ensemble methodologies for ocean forecasting
Ibrahim Hoteit, Eric Chassignet, and Mike Bell
State Planet, 5-opsr, 21, https://doi.org/10.5194/sp-5-opsr-21-2025,https://doi.org/10.5194/sp-5-opsr-21-2025, 2025
Short summary
Atmospheric forcing as a driver for ocean forecasting
Andreas Schiller, Simon A. Josey, John Siddorn, and Ibrahim Hoteit
State Planet, 5-opsr, 18, https://doi.org/10.5194/sp-5-opsr-18-2025,https://doi.org/10.5194/sp-5-opsr-18-2025, 2025
Short summary
Data assimilation schemes for ocean forecasting: state of the art
Matthew J. Martin, Ibrahim Hoteit, Laurent Bertino, and Andrew M. Moore
State Planet, 5-opsr, 9, https://doi.org/10.5194/sp-5-opsr-9-2025,https://doi.org/10.5194/sp-5-opsr-9-2025, 2025
Short summary
Towards Earth system modelling: coupled ocean forecasting
Ségolène Berthou, John Siddorn, Vivian Fraser-Leonhardt, Pierre-Yves Le Traon, and Ibrahim Hoteit
State Planet, 5-opsr, 20, https://doi.org/10.5194/sp-5-opsr-20-2025,https://doi.org/10.5194/sp-5-opsr-20-2025, 2025
Short summary
Investigating the long-term variability of the Red Sea marine heatwaves and their relationship to different climate modes: focus on 2010 events in the northern basin
Manal Hamdeno, Aida Alvera-Azcárate, George Krokos, and Ibrahim Hoteit
Ocean Sci., 20, 1087–1107, https://doi.org/10.5194/os-20-1087-2024,https://doi.org/10.5194/os-20-1087-2024, 2024
Short summary

Related subject area

Solid Earth
Empirical modeling of tropospheric delays with uncertainty
Jungang Wang, Junping Chen, and Yize Zhang
Geosci. Model Dev., 18, 1487–1504, https://doi.org/10.5194/gmd-18-1487-2025,https://doi.org/10.5194/gmd-18-1487-2025, 2025
Short summary
CitcomSVE-3.0: a three-dimensional finite-element software package for modeling load-induced deformation and glacial isostatic adjustment for an Earth with a viscoelastic and compressible mantle
Tao Yuan, Shijie Zhong, and Geruo A
Geosci. Model Dev., 18, 1445–1461, https://doi.org/10.5194/gmd-18-1445-2025,https://doi.org/10.5194/gmd-18-1445-2025, 2025
Short summary
NSOAS24: a new global marine gravity model derived from multi-satellite sea surface slopes
Shengjun Zhang, Xu Chen, Runsheng Zhou, and Yongjun Jia
Geosci. Model Dev., 18, 1221–1239, https://doi.org/10.5194/gmd-18-1221-2025,https://doi.org/10.5194/gmd-18-1221-2025, 2025
Short summary
GEOMAPLEARN 1.2: detecting structures from geological maps with machine learning – the case of geological folds
David Oakley, Christelle Loiselet, Thierry Coowar, Vincent Labbe, and Jean-Paul Callot
Geosci. Model Dev., 18, 939–960, https://doi.org/10.5194/gmd-18-939-2025,https://doi.org/10.5194/gmd-18-939-2025, 2025
Short summary
Accelerated pseudo-transient method for elastic, viscoelastic, and coupled hydromechanical problems with applications
Yury Alkhimenkov and Yury Y. Podladchikov
Geosci. Model Dev., 18, 563–583, https://doi.org/10.5194/gmd-18-563-2025,https://doi.org/10.5194/gmd-18-563-2025, 2025
Short summary

Cited articles

Abrahamson, N. A., Silva, W. J., and Kamai, R.: Summary of the ASK14 ground motion relation for active crustal regions, Earthq. Spectra, 30, 1025–1055, 2014.
Alexanderian, A., Winokur, J., Sraj, I., Srinivasan, A., Iskandarani, M., Thacker, W. C., and Knio, O. M.: Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach, Comput. Geosci., 16, 757–778, 2012.
Arroyo, D. and Ordaz, M.: Multivariate Bayesian regression analysis applied to ground-motion prediction equations, part 1: theory and synthetic example, B. Seismol. Soc. Am., 100, 1551–1567, 2010a.
Arroyo, D. and Ordaz, M.: Multivariate Bayesian regression analysis applied to ground-motion prediction equations, Part 2: Numerical example with actual data, B. Seismol. Soc. Am., 100, 1568–1577, 2010b.
Atkinson, G. M. and Boore, D. M.: Modifications to existing ground-motion prediction equations in light of new data, B. Seismol. Soc. Am., 101, 1121–1135, 2011.
Download
Short summary
One of the most important challenges seismologists and earthquake engineers face is reliably estimating ground motion in an area prone to large damaging earthquakes. This study aimed at better understanding the relationship between characteristics of geological faults (e.g., hypocenter location, rupture size/location, etc.) and resulting ground motion, via statistical analysis of a rupture simulation model. This study provides important insight on ground-motion responses to geological faults.
Share